Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materiel
2.2. Seed Coating Treatment
2.3. Experimental Design for Field Trials
2.4. Inoculum Production and Inoculation
2.5. Disease Assessment
2.6. Effect of Seed Coating on Yield Components and Physiological Parameters
2.7. Effect of Seed Coating on Total Nitrogen and Carbon Content and Stable Carbon and Nitrogen Isotope Composition
2.8. Statistical Analyses
3. Results
3.1. Climatic Features and Sources of Variances of Three Years of Study
3.2. Effect of FHB Severity on Wheat Yield Components in Control Plants
3.3. Effect of Seed Coating Treatments on FHB Severity and Yield Components
3.4. Effect of Seed Coating Treatment and FHB Severity on Physiological Traits and Isotopic Composition of Leaves and Grains
4. Discussion
4.1. Variability of FHB Severity and Its Impact on Physiological Traits, Yield Components and Stable Isotopic Composition
4.2. Effect of the Biostimulants on Physiological Traits
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taha, R.S.; Seleiman, M.F.; Shami, A.; Alhammad, B.A.; Mahdi, A.H. Integrated Application of Selenium and Silicon Enhances Growth and Anatomical Structure, Antioxidant Defense System and Yield of Wheat Grown in Salt-Stressed Soil. Plants 2021, 10, 1040. [Google Scholar] [CrossRef]
- World Food Situation. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 7 October 2021).
- Chakraborty, S.; Liu, C.; Mitter, V.; Scott, J.; Akinsanmi, O.; Ali, S.; Dill-Macky, R.; Nicol, J.; Backhouse, D.; Simpfendorfer, S. Pathogen population structure and epidemiology are keys to wheat crown rot and Fusarium head blight management. Australas. Plant Pathol. 2006, 35, 643–655. [Google Scholar] [CrossRef]
- Matny, O.N. Fusarium head blight and crown rot on wheat barley: Losses and health risks. Adv. Plants Agric. Res. 2015, 2, 00039. [Google Scholar] [CrossRef]
- Petronaitis, T.; Simpfendorfer, S.; Hüberli, D. Importance of Fusarium spp. In Wheat to Food Security: A Global Perspective. In Plant Diseases and Food Security in the 21st Century; Springer: Cham, Switzerland, 2021; pp. 127–159. [Google Scholar]
- Hassani, F.; Zare, L.; Khaledi, N. Evaluation of germination and vigor indices associated with Fusarium-infected seeds in pre-basic seeds wheat fields. J. Plant Prot. Res. 2019, 59, 69–85. [Google Scholar]
- Tini, F.; Beccari, G.; Onofri, A.; Ciavatta, E.; Gardiner, D.M.; Covarelli, L. Fungicides may have differential efficacies towards the main causal agents of Fusarium head blight of wheat. Pest Manag. Sci. 2020, 76, 3738–3748. [Google Scholar] [CrossRef] [PubMed]
- Porter, F.E.; Scott, J.M. Plant Seed Coating. U.S. Patent N°64 028, 6 August 1979. [Google Scholar]
- Ahmed, H.F.A.; Seleiman, M.F.; Al-Saif, A.M.; Alshiekheid, M.A.; Battaglia, M.L.; Taha, R.S. Biological Control of Celery Powdery Mildew Disease Caused by Erysiphe heraclei DC In Vitro and In Vivo Conditions. Plants 2021, 10, 2342. [Google Scholar] [CrossRef]
- Scherm, B.; Balmas, V.; Spanu, F.; Pani, G.; Delogu, G.; Pasquali, M.; Migheli, Q. F usarium culmorum: Causal agent of foot and root rot and head blight on wheat. Mol. Plant Pathol. 2013, 14, 323–341. [Google Scholar] [CrossRef]
- Kthiri, Z.; Jabeur, M.B.; Chairi, F.; López-Cristoffanini, C.; López-Carbonell, M.; Serret, M.D.; Hamada, W. Exploring the Potential of Meyerozyma guilliermondii on Physiological Performances and Defense Response against Fusarium Crown Rot on Durum Wheat. Pathogens 2021, 10, 52. [Google Scholar] [CrossRef] [PubMed]
- Kthiri, Z.; Jabeur, M.B.; Machraoui, M.; Gargouri, S.; Hiba, K.; Hamada, W. Coating seeds with Trichoderma strains promotes plant growth and enhance the systemic resistance against Fusarium crown rot in durum wheat. Egypt J. Biol. Pest Control 2020, 30, 1–10. [Google Scholar] [CrossRef]
- Lahlali, R.; Hamadi, Y.; Jijakli, M.H. Efficacy assessment of Pichia guilliermondii strain Z1, a new biocontrol agent, against citrus blue mould in Morocco under the influence of temperature and relative humidity. Biol. Control 2011, 56, 217–224. [Google Scholar] [CrossRef]
- Zhao, Y.; Tu, K.; Shao, X.; Jing, W.; Su, Z. Effects of the yeast Pichia guilliermondii against Rhizopus nigricans on tomato fruit. Postharvest Biol. Technol. 2008, 49, 113–120. [Google Scholar] [CrossRef]
- Li, Y.; Sun, R.; Yu, J.; Saravanakumar, K.; Chen, J. Antagonistic and biocontrol potential of Trichoderma asperellum ZJSX5003 against the maize stalk rot pathogen Fusarium graminearum. Indian J. Microbiol. 2016, 56, 318–327. [Google Scholar] [CrossRef] [Green Version]
- Hewedy, O.A.; Abdel Lateif, K.S.; Seleiman, M.F.; Shami, A.; Albarakaty, F.M.; El-Meihy, R.M. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology 2020, 9, 189. [Google Scholar] [CrossRef]
- Kthiri, Z.; Jabeur, M.B.; Omri, N.; Hamada, W. Effect of coating seeds with Trichoderma harzianum (S. INAT) on the oxidative stress induced by Fusarium culmorum in durum wheat. J. New Sci. 2020, 77, 4523–4532. [Google Scholar]
- Chekali, S.; Gargouri, S.; Paulitz, T.; Nicol, J.M.; Rezgui, M.; &Nasraoui, B. Effects of Fusarium culmorum and water stress on durum wheat in Tunisia. Crop Pro. 2011, 30, 718–725. [Google Scholar] [CrossRef]
- Rezgui, M.; BenMechlia, N.; Bizid, E.; Kalboussi, R.; Hayouni, R. Etude de la stabilité du rendement de blé dur dans différentes régions de la Tunisie. L’amélioration du blé durdans la région méditerranéenne: Nouveaux défis. Cah. Options Mediterr. 2000, 40, 167–172. [Google Scholar]
- Ben-Jabeur, M.; Kthiri, Z.; Harbaoui, K.; Belguesmi, K.; Serret, M.D.; Araus, J.L.; Hamada, W. Seed coating with thyme essential oil or Paraburkholderia phytofirmans PsJN strain: Conferring Septoria leaf blotch resistance and promotion of yield and grain isotopic composition in wheat. Agronomy 2019, 9, 586. [Google Scholar] [CrossRef] [Green Version]
- Bicakci, T.; Aksu, E.; Arslan, M. Effect of seed coating on germination, emergence and early seedling growth in alfalfa (Medicago sativa L.) under salinity conditions. Fresenius Environ. Bull. 2018, 27, 6978. [Google Scholar]
- Abdallah-Nekache, N.; Laraba, I.; Ducos, C.; Barreau, C.; Bouznad, Z.; Boureghda, H. Occurrence of Fusarium head blight and Fusarium crown rot in Algerian wheat: Identification of associated species and assessment of aggressiveness. Eur. J. Plant Pathol. 2019, 154, 499–512. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Hamzehzarghani, H.; Kushalappa, A.C.; Dion, Y.; Rioux, S.; Comeau, A.; Yaylayan, V.; Marshall, W.D.; Mather, D.E. Metabolic profiling and factor analysis to discriminate quantitative resistance in wheat cultivars against Fusarium head blight. Physiol. Mol. Plant Pathol. 2005, 66, 119–133. [Google Scholar] [CrossRef]
- Kammoun, L.G.; Gargouri, S.; Barreau, C.; Richard-Forget, F.; Hajlaoui, M.R. Trichothecene chemotypes of Fusarium culmorum infecting wheat in Tunisia. Int. J. Food Microbiol. 2010, 140, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Doohan, F.M.; Brennan, J.; Cooke, B.M. Influence of climatic factors on Fusarium species pathogenic to cereals. In Epidemiology of Mycotoxin Producing Fungi; Springer: Dordrecht, The Netherland, 2003; pp. 755–768. [Google Scholar]
- Golinski, P.; Kaczmarek, Z.; Kiecana, I.; Wisniewska, H.; Kaptur, P.; Kostecki, M.; &Chelkowski, J. Fusarium head blight of common Polish winter wheat cultivars–comparison of effects of Fusarium avenaceum and Fusarium culmorum on yield components. J. Phytopathol. 2002, 150, 135–141. [Google Scholar] [CrossRef]
- Salgado, J.D.; Madden, L.V.; Paul, P.A. Quantifying the effects of Fusarium head blight on grain yield and test weight in soft red winter wheat. Phytopathology 2015, 105, 295–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Schöneberg, T.; Vogelgsang, S.; Vincenti, J.; Bertossa, M.; Mauch-Mani, B.; Mascher, F. Factors of wheat grain resistance to Fusarium head blight. Phytopathol. Mediterr. 2017, 56, 154–166. [Google Scholar]
- Spanic, V.; Marcek, T.; Abicic, I.; Sarkanj, B. Effects of Fusarium head blight on wheat grain and malt infected by Fusarium culmorum. Toxins 2018, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Lemmens, M.; Haim, K.; Lew, H.; Ruckenbauer, P. The Effect of Nitrogen Fertilization on Fusarium Head Blight Development and Deoxynivalenol Contamination in Wheat. J. Phytopathol. 2004, 152, 1–8. [Google Scholar] [CrossRef]
- Bauriegel, E.; Giebel, A.; Herppich, W.B. Hyperspectral and chlorophyll fluorescence imaging to analyse the impact of Fusarium culmorum on the photosynthetic integrity of infected wheat ears. Sensors 2011, 11, 3765–3779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghashghaie, J.; Tcherkez, G. Isotope ratio mass spectrometry technique to follow plant metabolism: Principles and applications of 12C/13C isotopes. Adv. Bot. Res. 2013, 67, 377–405. [Google Scholar]
- Kang, Z.; Buchenauer, H. Ultrastructural and immunocytochemical investigation of pathogen development and host responses in resistant and susceptible wheat spikes infected by Fusarium culmorum. Physiol. Mol. Plant Pathol. 2002, 57, 255–268. [Google Scholar] [CrossRef]
- Francesconi, S.; Balestra, G.M. The modulation of stomatal conductance and photosynthetic parameters is involved in Fusarium head blight resistance in wheat. PLoS ONE 2020, 15, e0235482. [Google Scholar] [CrossRef]
- Sanchez-Bragado, R.; Serret, M.D.; Araus, J.L. The nitrogen contribution of different plant parts to wheat grains: Exploring genotype, water, and nitrogen effects. Front. Plant Sci. 2017, 7, 19–86. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Xu, M.; Qiu, G.Y.; Zhou, J. Use of 15N stable isotope to quantify nitrogen transfer between mycorrhizal plants. J. Plant Ecol. 2009, 2, 107–118. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.D.; Brooks, J.R.; Lajtha, K. Sources of variation in the stable isotopic composition of plants. In Stable Isotopes in Ecology and Environmental Science, 2nd ed.; Michener, R., Lajtha, K., Eds.; Wiley-Blackwell: Malden, MA, USA, 2007; Volume 2, pp. 22–60. [Google Scholar]
- Foscari, A.; Leonarduzzi, G.; Incerti, G. N uptake, assimilation and isotopic fractioning control δ 15N dynamics in plant DNA: A heavy labelling experiment on Brassica napus L. PLoS ONE 2021, 16, e0247842. [Google Scholar] [CrossRef]
- Fagard, Alban Launay, Gilles Clément, Julia Courtial, Alia Dellagi, Mahsa Farjad, Anne Krapp, Marie-Christine Soulié, Céline Masclaux-Daubresse, Nitrogen metabolism meets phytopathology. J. Exp. Bot. 2014, 65, 5643–5656.
- Pageau, K.; Reisdorf-Cren, M.; Morot-Gaudry, J.F.; Masclaux-Daubresse, C. The two senescence-related markers, GS1 (cytosolic glutamine synthetase) and GDH (glutamate dehydrogenase), involved in nitrogen mobilization, are differentially regulated during pathogen attack and by stress hormones and reactive oxygen species in Nicotiana tabacum L. leaves. J. Exp. Bot. 2006, 57, 547–557. [Google Scholar] [PubMed]
- Keane, P. How pathogens attack plants. Microbiol. Aust. 2012, 33, 26–28. [Google Scholar] [CrossRef]
- Castro, G.A.T.D. Chitosan as Seed Soaking Agent: Germination and Growth of Coriandrum Sativum and Solanum Lycopersicum. Doctoral Dissertation, Escola Superior de Turismo e Tecnologia do Mar, Peniche, Portugal, 2018. [Google Scholar]
- Goulas, Y.; Cerovic, Z.G.; Cartelat, A.; Moya, I. Dualex: A new instrument for field measurements of epidermal ultraviolet absorbance by chlorophyll fluorescence. Appl. Opt. 2004, 43, 4488–4496. [Google Scholar] [CrossRef] [PubMed]
Parameter | Mean Temperature (°C) | Precipitation (mm) | ||||
---|---|---|---|---|---|---|
Season | 2016–2017 | 2017–2018 | 2018–2019 | 2016–2017 | 2017–2018 | 2018–2019 |
November | 15.63 | 16.65 | 15.25 | 60 | 67.8 | 74 |
December | 12.63 | 11.25 | 11 | 40.8 | 84.8 | 60.4 |
January | 8.7 | 12.15 | 8 | 119.2 | 44.4 | 138.4 |
February | 13.15 | 11.75 | 10.2 | 96.4 | 89.8 | 49.8 |
March | 13.3 | 14.9 | 13.6 | 25.6 | 89.1 | 55 |
April | 16.55 | 17.4 | 15.5 | 42.4 | 17.8 | 37 |
May | 21.3 | 22.85 | 17.3 | 0 | 48.9 | 106.2 |
June | 28.3 | 27.25 | 26.25 | 19.8 | 4.2 | 0 |
Sum/Average | 16.195 | 16.775 | 14.6375 | 404.2 | 446.8 | 520.8 |
pH | 7.2 | ||||
---|---|---|---|---|---|
Soil Type | Vertosol (Texture: Clay Loam) | ||||
Composition of Soil | |||||
Depth | Clay (%) | Loam (%) | Sand (%) | Mineral N (ppm) | Total N (%) |
0–20 | 67.5 | 22.5 | 10 | 859 | 0.17 |
20–40 | 65 | 23.7 | 11.3 | 934.7 | 0.16 |
Treatments | ||||||
---|---|---|---|---|---|---|
Year | NIC | IC | CM | CP | CT | CC |
2017 | 15.1 ± 0.7 | 54.3 ± 0.5 | 16.3 ± 1.5 | 17.0 ± 2.0 | 17.3 ± 0.5 | 22.5 ± 0.5 |
2018 | 23.3 ± 1.2 | 62.3 ± 0.5 | 38.6 ± 0.5 | 30.1 ± 1.0 | 22.1 ± 1.2 | 22.8 ± 0.7 |
2019 | 26.6 ± 0.2 | 73.1 ± 0.7 | 40.0 ± 1.0 | 40.1 ± 0.7 | 41.1 ± 1.0 | 24.6 ± 0.5 |
Comparison | IR (%) | RR compared to inoculated control (IC) (%) | ||||
2017 | 72.1 | 69.98 | 68.7 | 68.1 | 58.5 | |
2018 | 62.6 | 37.97 | 51.6 | 64.4 | 63.3 | |
2019 | 63.6 | 45.32 | 45.1 | 43.7 | 66.29 |
Traits | Treatments | ||||||
---|---|---|---|---|---|---|---|
Year | NIC | IC | CM | CP | CT | CC | |
Grain yield (Mg/ha) | 2017 | 2.62 ± 0.62 | 2.17 ± 0.48 | 3.70 ± 0.16 | 3.40 ± 0.28 | 6.38 ± 0.01 | 6.82 ± 0.03 |
2018 | 2.41 ± 0.17 | 2.01 ± 0.08 | 3.60 ± 0.23 | 2.70 ± 0.26 | 4.02 ± 0.17 | 6.37 ± 0.03 | |
2019 | 1.87 ± 0.17 | 1.46 ± 0.31 | 2.76 ± 0.25 | 2.86 ± 0.24 | 2.64 ± 0.12 | 2.77 ± 0.03 | |
Comparison | RR (%) | IR compared to inoculated control (IC) (%) | |||||
2017 | 17.3 | 41.4 | 36.3 | 66.0 | 68.2 | ||
2018 | 16.6 | 44.1 | 25.5 | 49.9 | 68.3 | ||
2019 | 21.8 | 47.1 | 48.8 | 44.7 | 47.3 | ||
Thousand Kernels weigh (TKW) (g) | 2017 | 49.2 ± 0.2 | 48.1 ± 0.6 | 50.9 ± 0.2 | 51.9 ± 0.9 | 50.3 ± 0.2 | 52.6 ± 0.8 |
2018 | 39.9 ± 0.6 | 38.8 ± 0.2 | 42.9 ± 1.4 | 42.1 ± 3.3 | 41.9 ± 0.8 | 45.9 ± 0.5 | |
2019 | 39.8 ± 0.7 | 37.7 ± 1.0 | 41.9 ± 0.9 | 36.2 ± 1.9 | 37.8 ± 0.9 | 39.0 ± 0.2 | |
Comparison | RR (%) | IR compared to inoculated control (IC) (%) | |||||
2017 | 2.2 | 5.4 | 7.2 | 4.2 | 8.5 | ||
2018 | 2.9 | 9.6 | 7.9 | 7.4 | 15.5 | ||
2019 | 5.4 | 10.2 | −4.2 | 0.3 | 3.3 |
Yield Components | Physiological Traits | |||||||
GS | Harvest | the Early Milk Stage (GS 73) | ||||||
Traits | GY (Mg/ha) | TKW (g) | FHB (%) | NDVI | SPAD | CT (°C) | SC (mmol.m−2.s−1) | |
NIC | 2.41 ± 0.17 | 39.96 ± 0.68 | 23.33 ± 1.2 | 0.70 ± 0.003 | 45.19 ± 0.22 | 22.06 ± 0.4 | 276.8 ± 30.5 | |
IC | 2.01 ± 0.08 | 38.80 ± 0.26 | 62.33 ± 0.5 | 0.66 ± 0.040 | 42.39 ± 2.00 | 22.76 ± 0.5 | 249.9 ± 1.3 | |
CM | 3.60 ± 0.23 | 42.90 ± 1.42 | 38.66 ± 0.5 | 0.72 ± 0.017 | 45.81 ± 0.41 | 20.16 ± 0.5 | 276.8 ± 30.5 | |
CP | 2.70 ± 0.26 | 42.13 ± 3.31 | 30.16 ± 1.0 | 0.77 ± 0.018 | 48.94 ± 0.51 | 20.96 ± 0.3 | 249.5 ± 0.6 | |
CT | 4.02 ± 0.17 | 41.92 ± 0.89 | 22.16 ± 1.2 | 0.80 ± 0.003 | 50.49 ± 0.83 | 19.26 ± 0.05 | 220.0 ± 21.7 | |
CC | 6.37 ± 0.03 | 45.93 ± 0.58 | 22.83 ± 0.7 | 0.79 ± 0.006 | 46.80 ± 0.64 | 19.03 ± 0.2 | 212.3 ± 31.1 | |
The carbon and nitrogen content and isotope discrimination | ||||||||
GS | The late milk stage (GS 77) | Harvest | ||||||
Traits | Cleaf(%, g DW) | δ13Cleaf (‰) | Nleaf (%, g DW) | δ15Nleaf (‰) | Cgrain (%, g DW) | δ13Cgrain (‰) | Ngrain (%, g DW) | δ15Ngrain (‰) |
NIC | 40.58 ± 0.29 | −29.14 ± 0.11 | 3.06 ± 0.057 | 4.26 ± 0.07 | 41.80 ± 0.11 | −25.45 ± 0.01 | 2.06 ± 0.019 | 2.58 ± 0.07 |
IC | 39.20 ± 0.38 | −29.27 ± 0.04 | 2.73 ± 0.24 | 4.13 ± 0.06 | 39.19 ± 0.43 | −25.75 ± 0.08 | 1.85 ± 0.074 | 1.38 ± 0.33 |
CM | 37.03 ± 0.55 | −29.42 ± 0.04 | 3.15 ± 0.079 | 2.51 ± 0.11 | 42.39 ± 0.28 | −25.18 ± 0.05 | 2.00 ± 0.016 | 2.21 ± 0.2 |
CP | 40.00 ± 0.004 | −28.81 ± 0.09 | 1.70 ± 0.14 | 3.33 ± 0.39 | 41.26 ± 0.23 | −25.31 ± 0.07 | 2.24 ± 0.028 | 3.28 ± 0.02 |
CT | 39.79 ± 0.067 | −28.95 ± 0.05 | 1.43 ± 0.006 | 4.01 ± 0.04 | 40.70 ± 0.16 | −25.56 ± 0.06 | 1.94 ± 0.015 | 1.87 ± 0.11 |
CC | 40.22 ± 0.11 | −27.80 ± 0.23 | 2.19 ± 0.05 | 2.04 ± 0.12 | 40.39 ± 0.29 | −25.49 ± 0.02 | 2.16 ± 0.008 | 2.89 ± 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kthiri, Z.; Jabeur, M.B.; Harbaoui, K.; Karmous, C.; Chamekh, Z.; Chairi, F.; Serret, M.D.; Araus, J.L.; Hamada, W. Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight. Microorganisms 2021, 9, 2410. https://doi.org/10.3390/microorganisms9122410
Kthiri Z, Jabeur MB, Harbaoui K, Karmous C, Chamekh Z, Chairi F, Serret MD, Araus JL, Hamada W. Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight. Microorganisms. 2021; 9(12):2410. https://doi.org/10.3390/microorganisms9122410
Chicago/Turabian StyleKthiri, Zayneb, Maissa Ben Jabeur, Kalthoum Harbaoui, Chahine Karmous, Zoubeir Chamekh, Fadia Chairi, Maria Dolores Serret, Jose Luis Araus, and Walid Hamada. 2021. "Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight" Microorganisms 9, no. 12: 2410. https://doi.org/10.3390/microorganisms9122410
APA StyleKthiri, Z., Jabeur, M. B., Harbaoui, K., Karmous, C., Chamekh, Z., Chairi, F., Serret, M. D., Araus, J. L., & Hamada, W. (2021). Comparative Performances of Beneficial Microorganisms on the Induction of Durum Wheat Tolerance to Fusarium Head Blight. Microorganisms, 9(12), 2410. https://doi.org/10.3390/microorganisms9122410