Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacteria Strains and Culture Condition
2.2. Experiment Diet
2.3. Experiment Design and Rearing Conditions
2.4. Monitoring Lc and Thermophiles in Water
2.5. Experiment 1: The Improved, Highly Sensitive Selective Culture Method
2.5.1. Gastrointestine Homogenate Preparations
2.5.2. Dynamics of Lc and the Transit Marker in the Gastrointestinal Tract
2.6. Experiment 2: 16S rRNA Gene Amplicon Sequencing Method (16S)
2.7. Data Analyses
3. Results
3.1. Effect of 100% Water Renewal on Interfering Bacteria
3.2. Effect of Sterilizing the Feed with 60Co Irradiation
3.3. Selective Culture for LAB and Gs
3.4. The Concentration of Lc Changes in the GI Tract of Crucian Carp
3.5. Relative Abundance Changes of Lc and Gs in the Crucian Carp Gastrointestine
4. Discussion
4.1. Elimination Interference Is Essential for Colonization
4.2. The Improved, Highly Sensitive Selective Culture Combined with a Transit Marker Is a Suitable Method for the Study of Colonization in Fish
4.3. Monitored Relative Abundance Changes by High-Throughput Sequencing
4.4. Lc ATCC 393 Cannot Colonize the Gastrointestinal Tract
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Appendix A
Proximate Composition | Proportion/% |
---|---|
Crude protein | not less than 33.0 |
Crude lipid | not less than 5.0 |
Crude fibre | not more than 8.0 |
Crude ash | not more than 15.0 |
Total phosphorus | not less than 1.1 |
Appendix B
Feed | General Heterotrophic Bacteria/Lg cell Concentration | Lactic Acid Bacteria/Lg cell Concentration | Thermophiles/Lg cell Concentration |
---|---|---|---|
No.1 | 4.84 ± 0.35 | 3.21 ± 0.57 | 4.00 ± 0.65 |
No.2 | 5.50 ± 0.41 | 2.56 ± 0.21 | 4.22 ± 0.19 |
No.3 | 4.29 ± 0.24 | 4.16 ± 0.15 | 3.80 ± 0.21 |
No.4 | 6.48 ± 0.39 | 2.37 ± 0.10 | 4.37 ± 0.28 |
No.5 | 4.70 ± 0.36 | 2.37 ± 0.10 | 2.94 ± 0.35 |
Appendix C
Feed | Lg cell Concentration | |
---|---|---|
Beginning | End | |
L.casei/G. stearothermophilus (Experiment 1) | 7.0/6.9 | 6.8/6.8 |
L.casei/G. stearothermophilus (Experiment 2) | 9.3/8.0 | 9.1/8.0 |
Appendix D
References
- El-Saadony, M.T.; Alagawany, M.; Patra, A.K.; Kar, I.; Tiwari, R.; Dawood, M.A.O.; Dhama, K.; Abdel-Latif, H.M.R. The functionality of probiotics in aquaculture: An overview. Fish Shellfish. Immun. 2021, 117, 36–52. [Google Scholar] [CrossRef]
- Vargas-Albores, F.; Martínez-Córdova, L.R.; Hernández-Mendoza, A.; Cicala, F.; Lago-Lestón, A.; Martínez-Porchas, M. Therapeutic modulation of fish gut microbiota, a feasible strategy for aquaculture? Aquacultrue 2021, 544, 737050. [Google Scholar] [CrossRef]
- Li, X.; Ringø, E.; Hoseinifar, S.H.; Lauzon, H.L.; Birkbeck, H.; Yang, D. The adherence and colonization of microorganisms in fish gastrointestinal tract. Rev. Aquacult. 2019, 11, 603–618. [Google Scholar] [CrossRef]
- Tian, J.; Kang, Y.; Chu, G.; Liu, H.; Kong, Y.; Zhao, L.; Kong, Y.; Shan, X.; Wang, G. Oral administration of lactobacillus casei expressing flagellin a protein confers effective protection against Aeromonas Veronii in common carp, Cyprinus Carpio. Int. J. Mol. Sci. 2020, 21, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehdinejad, N.; Imanpour, M.R.; Jafari, V. Combined or individual effects of dietary probiotic Pedicoccus acidilactici and nucleotide on growth performance, intestinal microbiota, hemato-biochemical parameters, and innate immune response in goldfish (Carassius auratus). Probiot. Antimicrob. Protein 2018, 10, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Wu, S.; Feng, W.; Jakovlić, I.; Tran, N.T.; Xiong, F. Adhesion and colonization properties of potentially probiotic Bacillus paralicheniformis strain FA6 isolated from grass carp intestine. Fisheries Sci. 2020, 86, 153–161. [Google Scholar] [CrossRef]
- Mohammadian, T.; Alishahi, M.; Tabandeh, M.R.; Ghorbanpoor, M.; Gharibi, D. Changes in immunity, expression of some immune-related genes of shabot fish, Tor grypus, following experimental infection with Aeromonas hydrophila: Effects of autochthonous probiotics. Probiot. Antimicrob. Protein 2018, 10, 616–628. [Google Scholar] [CrossRef]
- Zhao, L.L.; Liu, M.; Ge, J.W.; Qiao, X.Y.; Li, Y.J.; Liu, D.Q. Expression of infectious pancreatic necrosis virus (IPNV) VP2–VP3 fusion protein in Lactobacillus casei and immunogenicity in rainbow trouts. Vaccine 2012, 30, 1823–1829. [Google Scholar]
- Balcázar, J.L.; Blas, I.D.B.; Ruiz-Zarzuela, I.; Vendrell, D.; Gironés, O.; Muzquiz, J.L. Enhancement of the immune response and protection induced by probiotic lactic acid bacteria against furunculosis in rainbow trout (Oncorhynchus mykiss). FEMS Immunol. Med. Microbiol. 2007, 51, 185–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, S.X.; Ran, C.; Qin, C.B.; Li, S.N.; Zhang, H.L.; Vos, W.M.D.; Ringø, E.; Zhou, Z.G. Anti-infective effect of adhesive probiotic lactobacillus in fish is correlated with their spatial distribution in the intestinal tissue. Sci. Rep. 2017, 7, 13195. [Google Scholar] [CrossRef]
- Xia, Y.; Cao, J.M.; Wang, M.; Lu, M.X.; Chen, G.; Gao, F.Y.; Liu, Z.G.; Zhang, D.F.; Ke, X.L.; Yi, M.M. Effects of Lactococcus lactis subsp. lactis JCM5805 on colonization dynamics of gut microbiota and regulation of immunity in early ontogenetic stages of tilapia. Fish Shellfish. Immun. 2019, 86, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Li, L.P.; Liu, Y.; Luo, Y.J.; Wang, R.; Tang, J.Y.; Chen, M. Spatiotemporal distribution of Streptococcus agalactiae attenuated vaccine strain YM001 in the intestinal tract of tilapia and its effect on mucosal associated immune cells. Fish Shellfish. Immun. 2019, 87, 714–720. [Google Scholar] [CrossRef]
- Balcazar, J.L.; de Blas, I.; Ruiz-Zarzuela, I.; Vendrell, D.; Calvo, A.C.; Marquez, I.; Girones, O.; Muzquiz, J.L. Changes in intestinal microbiota and humoral immune response following probiotic administration in brown trout (Salmo trutta). Br. J. Nutr. 2007, 97, 522–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russo, P.; Iturria, I.; Mohedano, M.L.; Caggianiello, G.; Rainieri, S.; Fiocco, D.; Angel Pardo, M.; López, P.; Spano, G. Zebrafish gut colonization by mCherry-labelled lactic acid bacteria. Appl. Microbiol. Biot. 2015, 99, 3479–3490. [Google Scholar] [CrossRef]
- Nikoskelainen, S.; Ouwehand, A.C.; Bylund, G.; Salminen, S.; Lilius, E. Immune enhancement in rainbow trout (Oncorhynchus mykiss) by potential probiotic bacteria (Lactobacillus rhamnosus). Fish Shellfish. Immun. 2003, 15, 443–452. [Google Scholar] [CrossRef]
- Ringø, E.; Gatesoupe, F. Lactic acid bacteria in fish: A review. Aquaculture 1998, 160, 177–203. [Google Scholar] [CrossRef]
- Ringø, E.; Van Doan, H.; Lee, S.H.; Soltani, M.; Hoseinifar, S.H.; Harikrishnan, R.; Song, S.K. Probiotics, lactic acid bacteria and bacilli: Interesting supplementation for aquaculture. J. Appl. Microbiol. 2020, 129, 116–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conway, T.; Cohen, P.S. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatesoupe, F.J. The use of probiotics in aquaculture. Aquaculture 1999, 180, 147–165. [Google Scholar] [CrossRef]
- Chen, Q.L.; Ha, Y.M.; Chen, Z.J. A study on radiation sterilization of SPF animal feed. Radiat. Phys. Chem. 2000, 57, 329–330. [Google Scholar] [CrossRef]
- Marteau, P.; Vesa, T. Pharmacokinetics of probiotics and biotherapeutic agents in humans. Biosci. Microflora 1998, 17, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Banla, L.I.B.; Salzman, N.H.; Kristich, C.J. Colonization of the mammalian intestinal tract by enterococci. Curr. Opin. Microbiol. 2019, 47, 26–31. [Google Scholar] [CrossRef]
- Safari, R.; Hoseinifar, S.H.; Nejadmoghadam, S.; Khalili, M. Apple cider vinegar boosted immunomodulatory and health promoting effects of Lactobacillus casei in common carp (Cyprinus carpio). Fish Shellfish. Immunol. 2017, 67, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Qin, C.B.; Xu, L.; Yang, Y.L.; He, S.X.; Dai, Y.Y.; Zhao, H.Y.; Zhou, Z.G. Comparison of fecundity and offspring immunity in zebrafish fed Lactobacillus rhamnosus CICC 6141 and Lactobacillus casei BL23. Reproduction 2013, 147, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Klijn, N.; Weerkamp, A.H.; de Vos, W.M. Genetic marking of Lactococcus lactis shows its survival in the human gastrointestinal tract. Appl. Environ. Microbiol. 1995, 61, 2771–2774. [Google Scholar] [CrossRef] [Green Version]
- Vesa, T.; Pochart, P.; Marteau, P. Pharmacokinetics of Lactobacillus plantarum NCIMB 8826, Lactobacillus fermentum KLD, and Lactococcus lactis MG 1363 in the human gastrointestinal tract. Aliment. Pharmacol. Ther. 2000, 14, 823–828. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Hu, K.; Jiao, L.; Zhao, M.; Yang, X.; Xia, L. Effect of Dietary Supplementation of Lactobacillus Casei YYL3 and L. Plantarum YYL5 on Growth, Immune Response and Intestinal Microbiota in Channel Catfish. Animals 2019, 9, 1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringø, E.; Zhou, Z.; Vecino, J.L.G.; Wadsworth, S.; Romero, J.; Krogdahl, Å.; Olsen, R.E.; Dimitroglou, A.; Foey, A.; Davies, S.; et al. Effect of dietary components on the gut microbiota of aquatic animals. A never-ending story? Aquacult. Nutr. 2016, 22, 219–282. [Google Scholar] [CrossRef] [Green Version]
- Merrifield, D.L.; Dimitroglou, A.; Bradley, G.; Baker, R.T.M.; Davies, S.J. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) I. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria. Aquacult. Nutr. 2010, 16, 504–510. [Google Scholar] [CrossRef]
- Merrifield, D.L.; Bradley, G.; Baker, R.T.M.; Davies, S.J. Probiotic applications for rainbow trout (Oncorhynchus mykiss Walbaum) II. Effects on growth performance, feed utilization, intestinal microbiota and related health criteria postantibiotic treatment. Aquacult. Nutr. 2010, 16, 496–503. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhao, J.X.; Zhang, H.; Zhai, Q.X.; Chen, W. Mining Lactobacillus and Bifidobacterium for organisms with long-term gut colonization potential. Clin. Nutr. 2020, 39, 1315–1323. [Google Scholar] [CrossRef]
- Goossens, D.A.M.; Jonkers, D.M.A.E.; Russel, M.G.V.M.; Stobberingh, E.E.; Stockbrügger, R.W. The effect of a probiotic drink with Lactobacillus plantarum 299v on the bacterial composition in faeces and mucosal biopsies of rectum and ascending colon. Aliment. Pharmacol. Ther. 2006, 23, 255–263. [Google Scholar] [CrossRef] [PubMed]
- De Vos, P.; Garrity, G.M.; Jones, D.; Krieg, N.R.; Ludwig, W.; Rainey, F.A.; Schleifer, K.-H.; Whitman, W.B. Bergey’s Manual of Systematic Bacteriology; Springer: Berlin/Heidelberg, Germany, 2009; Volume 3. [Google Scholar]
- Zhang, X.; Wu, J.; Zhou, C.; Tan, Z.; Jiao, J. Spatial and temporal organization of jejunal microbiota in goats during animal development process. J. Appl. Microbiol. 2021, 131, 68–79. [Google Scholar] [CrossRef]
- Crobach, M.J.T.; Ducarmon, Q.R.; Terveer, E.M.; Harmanus, C.; Sanders, I.M.J.G.; Verduin, K.M.; Kuijper, E.J.; Zwittink, R.D. The bacterial gut microbiota of adult patients infected, colonized or noncolonized by clostridioides difficile. Microorganisms 2020, 8, 677. [Google Scholar] [CrossRef] [PubMed]
- Howitt, S.H.; Blackshaw, D.; Fontaine, E.; Hassan, I.; Malagon, I. Comparison of traditional microbiological culture and 16S polymerase chain reaction analyses for identification of preoperative airway colonization for patients undergoing lung resection. J. Crit. Care 2018, 46, 84–87. [Google Scholar] [CrossRef] [PubMed]
- Amrane, S.; Lagier, J. Metagenomic and clinical microbiology. Hum. Microbiome J. 2018, 9, 1–6. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Wang, H.B.; Zhao, M.J.; Jiao, L.T.; Hu, K.; Yang, X.L.; Xia, L. Colonization of Bacillus licheniformis A1 in intestine of Ictalurus punctatus. J. Fish. Sci. China 2019, 26, 1136–1143. [Google Scholar]
- Zmora, N.; Zilberman-Schapira, G.; Suez, J.; Mor, U.; Dori-Bachash, M.; Bashiardes, S.; Kotler, E.; Zur, M.; Regev-Lehavi, D.; Ben-Zeev Brik, R.; et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell 2018, 174, 1388–1405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Mu, X.; Wang, H.; Wang, H.; Wang, H.; Li, Y.; Mu, Y.; Song, J.; Xia, L. Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp. Microorganisms 2021, 9, 2547. https://doi.org/10.3390/microorganisms9122547
Zhang H, Mu X, Wang H, Wang H, Wang H, Li Y, Mu Y, Song J, Xia L. Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp. Microorganisms. 2021; 9(12):2547. https://doi.org/10.3390/microorganisms9122547
Chicago/Turabian StyleZhang, Hongyu, Xiyan Mu, Hongwei Wang, Haibo Wang, Hui Wang, Yingren Li, Yingchun Mu, Jinlong Song, and Lei Xia. 2021. "Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp" Microorganisms 9, no. 12: 2547. https://doi.org/10.3390/microorganisms9122547
APA StyleZhang, H., Mu, X., Wang, H., Wang, H., Wang, H., Li, Y., Mu, Y., Song, J., & Xia, L. (2021). Lacticaseibacillus casei ATCC 393 Cannot Colonize the Gastrointestinal Tract of Crucian Carp. Microorganisms, 9(12), 2547. https://doi.org/10.3390/microorganisms9122547