Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Characterization
2.2. Spiking the Blood Samples and Incubation of Blood Cultures
2.3. Library Preparation and Whole-Genome Sequencing
2.4. Bioinformatic Analyses of Bacterial Genomics
2.4.1. Quality Control and Trimming of Illumina and Nanopore Reads
2.4.2. Bacterial Whole-Genome Assembly and Visualization
2.4.3. Bacterial Whole-Genome Annotation
2.4.4. Bacterial Plasmid Identification
2.4.5. Detection of Antimicrobial Resistance Genes
2.4.6. Bacterial Virulence Factor Identification
3. Results
3.1. Basic Statistics of Short and Long Reads
3.2. Unicycler Performed Better Than SPAdes and ABySS for the Assembly of Short-Reads
3.3. Flye as a Top-Performing Assembler for MinION Long-Reads
3.4. Unicycler Produced Superior Hybrid Assemblies over hybridSPAdes and MaSurCa
3.5. Assembly Comparison between the Top-Performing Long, Short and Hybrid Read Assemblers
3.6. Whole-Genome Annotation of the Short, Long and Hybrid Assemblies
3.7. Plasmid Identification in Short, Long and Hybrid Assemblies
3.8. Identification of Acquired Antimicrobial Resistance Genes and Mutations
3.9. Identification of Virulence Factors in Short, Long and Hybrid Assemblies
3.10. HybASM Enables the Complete Recovery of Plasmid Replicons, AMR Genes, and Virulence Factors from the Mixed Culture Sample
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2019, 19, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Dunn, S.J.; Connor, C.; McNally, A. The evolution and transmission of multi-drug resistant Escherichia coli and Klebsiella pneumoniae: The complexity of clones and plasmids. Curr. Opin. Microbiol. 2019, 51, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoads, A.; Au, K.F. PacBio Sequencing and Its Applications. Genom. Proteom. Bioinform. 2015, 13, 278–289. [Google Scholar] [CrossRef] [Green Version]
- Payne, A.; Holmes, N.; Rakyan, V.; Loose, M. BulkVis: A graphical viewer for Oxford nanopore bulk FAST5 files. Bioinformatics 2018, 35, 2193–2198. [Google Scholar] [CrossRef]
- Amarasinghe, S.L.; Su, S.; Dong, X.; Zappia, L.; Ritchie, M.E.; Gouil, Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020, 21, 30. [Google Scholar] [CrossRef] [Green Version]
- Laver, T.; Harrison, J.; O’Neill, P.A.; Moore, K.; Farbos, A.; Paszkiewicz, K.; Studholme, D.J. Assessing the performance of the Oxford Nanopore Technologies MinION. Biomol. Detect. Quantif. 2015, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Loman, N.J.; Quick, J.; Simpson, J.T. A complete bacterial genome assembled de novo using only nanopore sequencing data. Nat. Methods 2015, 12, 733–735. [Google Scholar] [CrossRef]
- Juraschek, K.; Borowiak, M.; Tausch, S.H.; Malorny, B.; Käsbohrer, A.; Otani, S.; Schwarz, S.; Meemken, D.; Deneke, C.; Hammerl, J.A. Outcome of Different Sequencing and Assembly Approaches on the Detection of Plasmids and Localization of Antimicrobial Resistance Genes in Commensal Escherichia coli. Microorganisms 2021, 9, 598. [Google Scholar] [CrossRef]
- Rang, F.J.; Kloosterman, W.P.; de Ridder, J. From squiggle to basepair: Computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018, 19, 90. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom. 2017, 3, e000132. [Google Scholar] [CrossRef] [PubMed]
- Bayliss, S.C.; Hunt, V.L.; Yokoyama, M.; Thorpe, H.A.; Feil, E.J. The use of Oxford Nanopore native barcoding for complete genome assembly. Gigascience 2017, 6, gix001. [Google Scholar] [CrossRef] [Green Version]
- Berbers, B.; Ceyssens, P.J.; Bogaerts, P.; Vanneste, K.; Roosens, N.H.C.; Marchal, K.; De Keersmaecker, S.C.J. Development of an NGS-Based Workflow for Improved Monitoring of Circulating Plasmids in Support of Risk Assessment of Antimicrobial Resistance Gene Dissemination. Antibiotics 2020, 9, 503. [Google Scholar] [CrossRef]
- Antipov, D.; Korobeynikov, A.; McLean, J.S.; Pevzner, P.A. hybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics 2015, 32, 1009–1015. [Google Scholar] [CrossRef] [Green Version]
- Zimin, A.V.; Marçais, G.; Puiu, D.; Roberts, M.; Salzberg, S.L.; Yorke, J.A. The MaSuRCA genome assembler. Bioinformatics 2013, 29, 2669–2677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kancharla, N.; Jalali, S.; Narasimham, J.V.; Nair, V.; Yepuri, V.; Thakkar, B.; Reddy, V.B.; Kuriakose, B.; Madan, N.; Arockiasami, S. De Novo Sequencing and Hybrid Assembly of the Biofuel Crop Jatropha curcas L.: Identification of Quantitative Trait Loci for Geminivirus Resistance. Genes 2019, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.R.; Zhou, P.; Mudge, J.; Gurtowski, J.; Lee, H.; Ramaraj, T.; Walenz, B.P.; Liu, J.; Stupar, R.M.; Denny, R.; et al. Hybrid assembly with long and short reads improves discovery of gene family expansions. BMC Genom. 2017, 18, 541. [Google Scholar] [CrossRef]
- Brown, C.L.; Keenum, I.M.; Dai, D.; Zhang, L.; Vikesland, P.J.; Pruden, A. Critical evaluation of short, long, and hybrid assembly for contextual analysis of antibiotic resistance genes in complex environmental metagenomes. Sci. Rep. 2021, 11, 3753. [Google Scholar] [CrossRef]
- Avershina, E.; Sharma, P.; Taxt, A.M.; Singh, H.; Frye, S.A.; Paul, K.; Kapil, A.; Naseer, U.; Kaur, P.; Ahmad, R. AMR-Diag: Neural network based genotype-to-phenotype prediction of resistance towards β-lactams in Escherichia coli and Klebsiella pneumoniae. Comput. Struct. Biotechnol. J. 2021, 19, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Taxt, A.M.; Avershina, E.; Frye, S.A.; Naseer, U.; Ahmad, R. Rapid identification of pathogens, antibiotic resistance genes and plasmids in blood cultures by nanopore sequencing. Sci. Rep. 2020, 10, 7622. [Google Scholar] [CrossRef]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 19 May 2019).
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Biobam. OmicsBox—Bioinformatics Made Easy. BioBam Bioinformatics. Available online: https://www.biobam.com/omicsbox/ (accessed on 3 March 2019).
- Wick, R.R. Filtlong. Available online: https://github.com/rrwick/Filtlong (accessed on 17 November 2020).
- De Coster, W.; D’Hert, S.; Schultz, D.T.; Cruts, M.; Van Broeckhoven, C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics 2018, 34, 2666–2669. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, J.T.; Wong, K.; Jackman, S.D.; Schein, J.E.; Jones, S.J.M.; Birol, I. ABySS: A parallel assembler for short read sequence data. Genome Res. 2009, 19, 1117–1123. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, M.; Yuan, J.; Lin, Y.; Pevzner, P.A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 2019, 37, 540–546. [Google Scholar] [CrossRef]
- Koren, S.; Walenz, B.P.; Berlin, K.; Miller, J.R.; Bergman, N.H.; Phillippy, A.M. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017, 27, 722–736. [Google Scholar] [CrossRef] [Green Version]
- Li, H. Minimap and miniasm: Fast mapping and de novo assembly for noisy long sequences. Bioinformatics 2016, 32, 2103–2110. [Google Scholar] [CrossRef] [Green Version]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wick, R.R.; Schultz, M.B.; Zobel, J.; Holt, K.E. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics 2015, 31, 3350–3352. [Google Scholar] [CrossRef] [Green Version]
- Gourlé, H.; Karlsson-Lindsjö, O.; Hayer, J.; Bongcam-Rudloff, E. Simulating Illumina metagenomic data with InSilicoSeq. Bioinformatics 2018, 35, 521–522. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garcia-Fernandez, A.; Voldby Larsen, M.; Lund, O.; Villa, L.; Moller Aarestrup, F.; Hasman, H. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef]
- Zankari, E.; Allesoe, R.; Joensen, K.G.; Cavaco, L.M.; Lund, O.; Aarestrup, F.M. PointFinder: A novel web tool for WGS-based detection of antimicrobial resistance associated with chromosomal point mutations in bacterial pathogens. J. Antimicrob. Chemother. 2017, 72, 2764–2768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yang, J.; Yu, J.; Yao, Z.; Sun, L.; Shen, Y.; Jin, Q. VFDB: A reference database for bacterial virulence factors. Nucleic Acids Res. 2005, 33, D325–D328. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef] [Green Version]
- Barrero, R.A.; Napier, K.R.; Cunnington, J.; Liefting, L.; Keenan, S.; Frampton, R.A.; Szabo, T.; Bulman, S.; Hunter, A.; Ward, L.; et al. An internet-based bioinformatics toolkit for plant biosecurity diagnosis and surveillance of viruses and viroids. BMC Bioinform. 2017, 18, 26. [Google Scholar] [CrossRef] [Green Version]
- Wick, R.R.; Holt, K.E. Benchmarking of long-read assemblers for prokaryote whole genome sequencing. F1000Research 2019, 8, 2138. [Google Scholar] [CrossRef] [Green Version]
- Murigneux, V.; Rai, S.K.; Furtado, A.; Bruxner, T.J.C.; Tian, W.; Harliwong, I.; Wei, H.; Yang, B.; Ye, Q.; Anderson, E.; et al. Comparison of long-read methods for sequencing and assembly of a plant genome. GigaScience 2020, 9, giaa146. [Google Scholar] [CrossRef]
- Jung, H.; Jeon, M.S.; Hodgett, M.; Waterhouse, P.; Eyun, S.I. Comparative Evaluation of Genome Assemblers from Long-Read Sequencing for Plants and Crops. J. Agric. Food Chem. 2020, 68, 7670–7677. [Google Scholar] [CrossRef] [PubMed]
- Vasudevan, K.; Devanga Ragupathi, N.K.; Jacob, J.J.; Veeraraghavan, B. Highly accurate-single chromosomal complete genomes using IonTorrent and MinION sequencing of clinical pathogens. Genomics 2020, 112, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Miller, D.E.; Staber, C.; Zeitlinger, J.; Hawley, R.S. Highly Contiguous Genome Assemblies of 15 Drosophila Species Generated Using Nanopore Sequencing. G3 Genes Genomes Genet. 2018, 8, 3131–3141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Erickson, D.L.; Meng, J. Benchmarking hybrid assembly approaches for genomic analyses of bacterial pathogens using Illumina and Oxford Nanopore sequencing. BMC Genom. 2020, 21, 631. [Google Scholar] [CrossRef] [PubMed]
- Sahlin, K.; Medvedev, P. Error correction enables use of Oxford Nanopore technology for reference-free transcriptome analysis. Nat. Commun. 2021, 12, 2. [Google Scholar] [CrossRef]
- George, S.; Pankhurst, L.; Hubbard, A.; Votintseva, A.; Stoesser, N.; Sheppard, A.E.; Mathers, A.; Norris, R.; Navickaite, I.; Eaton, C.; et al. Resolving plasmid structures in Enterobacteriaceae using the MinION nanopore sequencer: Assessment of MinION and MinION/Illumina hybrid data assembly approaches. Microb. Genom. 2017, 3, e000118. [Google Scholar] [CrossRef] [Green Version]
- Sydenham, T.V.; Overballe-Petersen, S.; Hasman, H.; Wexler, H.; Kemp, M.; Justesen, U.S. Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb. Genom. 2019, 5, e000312. [Google Scholar] [CrossRef]
- De Maio, N.; Shaw, L.P.; Hubbard, A.; George, S.; Sanderson, N.D.; Swann, J.; Wick, R.; AbuOun, M.; Stubberfield, E.; Hoosdally, S.J.; et al. Comparison of long-read sequencing technologies in the hybrid assembly of complex bacterial genomes. Microb. Genom. 2019, 5, e000294. [Google Scholar] [CrossRef]
- Mattrasingh, D.; Hinz, A.; Phillips, L.; Carroll, A.C.; Wong, A. Hybrid Nanopore-Illumina Assemblies for Five Extraintestinal Pathogenic Escherichia coli Isolates. Microbiol. Resour. Announc. 2021, 10, e01027-20. [Google Scholar] [CrossRef]
- NORM/NORM-VET. Usage of Antimicrobial Agents and Occurrence of Antimicrobial Resistance in Norway; Norwegian Institute of Public Health: Tromsø/Oslo, Norway, 2019. [Google Scholar]
- Gonzalez-Escalona, N.; Allard, M.A.; Brown, E.W.; Sharma, S.; Hoffmann, M. Nanopore sequencing for fast determination of plasmids, phages, virulence markers, and antimicrobial resistance genes in Shiga toxin-producing Escherichia coli. PLoS ONE 2019, 14, e0220494. [Google Scholar] [CrossRef] [Green Version]
- Udaondo, Z.; Sittikankaew, K.; Uengwetwanit, T.; Wongsurawat, T.; Sonthirod, C.; Jenjaroenpun, P.; Pootakham, W.; Karoonuthaisiri, N.; Nookaew, I. Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon. Life 2021, 11, 862. [Google Scholar] [CrossRef]
- Weirather, J.; de Cesare, M.; Wang, Y.; Piazza, P.; Sebastiano, V.; Wang, X.; Buck, D.; Au, K. Comprehensive comparison of Pacific Biosciences and Oxford Nanopore Technologies and their applications to transcriptome analysis. F1000Research 2017, 6, 100. [Google Scholar] [CrossRef] [PubMed]
- Loit, K.; Adamson, K.; Bahram, M.; Puusepp, R.; Anslan, S.; Kiiker, R.; Drenkhan, R.; Tedersoo, L.; Druzhinina, I.S. Relative Performance of MinION (Oxford Nanopore Technologies) versus Sequel (Pacific Biosciences) Third-Generation Sequencing Instruments in Identification of Agricultural and Forest Fungal Pathogens. Appl. Environ. Microbiol. 2019, 85, e01368-19. [Google Scholar] [CrossRef]
- Khezri, A.; Avershina, E.; Ahmad, R. Plasmid Identification and Plasmid-Mediated Antimicrobial Gene Detection in Norwegian Isolates. Microorganisms 2020, 9, 52. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.H.; Zhao, C.; Hofstaedter, C.; Tebas, P.; Glaser, L.; Baldassano, R.; Bittinger, K.; Mattei, L.M.; Bushman, F.D. Investigating hospital Mycobacterium chelonae infection using whole genome sequencing and hybrid assembly. PLoS ONE 2020, 15, e0236533. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Z.; Wu, J.; Chen, H.; Draz, M.S.; Xu, J.; He, F. Hybrid Genome Assembly and Annotation of a Pandrug-Resistant Klebsiella pneumoniae Strain Using Nanopore and Illumina Sequencing. Infect. Drug Resist. 2020, 13, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Neal-McKinney, J.M.; Liu, K.C.; Lock, C.M.; Wu, W.-H.; Hu, J. Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Sci. Rep. 2021, 11, 5676. [Google Scholar] [CrossRef]
- Goldstein, S.; Beka, L.; Graf, J.; Klassen, J.L. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. BMC Genom. 2019, 20, 23. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Kuang, D.; Xu, X.; González-Escalona, N.; Erickson, D.L.; Brown, E.; Meng, J. Genomic analyses of multidrug-resistant Salmonella Indiana, Typhimurium, and Enteritidis isolates using MinION and MiSeq sequencing technologies. PLoS ONE 2020, 15, e0235641. [Google Scholar] [CrossRef]
MinION Long Reads | Illumina Short Reads | |||||||
---|---|---|---|---|---|---|---|---|
Read Length N50 (bp) | Mean Read Quality (Q) | Number of Reads | Total bp | Coverage (X) | Number of Reads | Total bp | Coverage (X) | |
E. coli 1 | 2520 | 11.4 | 63,036 | 92,626,571 | 17.4 | 670,985 | 91,989,902 | 17.2 |
E. coli 2 | 1466 | 11.3 | 67,331 | 88,553,163 | 16.6 | 597,154 | 141,802,031 | 26.6 |
E. coli 3 | 1384 | 11.5 | 41,103 | 39,979,342 | 7.5 | 1,786,471 | 396,985,933 | 74.4 |
E. coli 4 | 5956 | 9.8 | 81,317 | 256,369,935 | 48.0 | 1,419,582 | 353,790,894 | 66.3 |
E. coli (mean ± SD) | 2832 ± 2147 | 11 ± 0.8 | 63,197 ± 16,669 | 119,382,253 ± 94,404,708 | 22.4 ± 18 | 1,118,548 ± 579,915 | 246,142,190 ± 151,648,580 | 46.1 ± 28 |
K. pneumoniae 1 | 1428 | 11.3 | 13,694 | 25,125,702 | 4.5 | 889,410 | 222,836,627 | 39.8 |
K. pneumoniae 2 | 7302 | 11.5 | 199,822 | 859,067,656 | 153.5 | 559,060 | 131,573,009 | 23.5 |
K. pneumoniae 3 | 4250 | 11.5 | 51,624 | 136,843,964 | 24.5 | 744,422 | 111,911,073 | 20.0 |
K. pneumoniae 4 | 2044 | 9.9 | 329,042 | 375,495,020 | 67.1 | 1,302,920 | 313,973,441 | 56.1 |
K. pneumoniae 5 | 3941 | 9.3 | 48,463 | 64,316,017 | 11.5 | 712,218 | 178,050,866 | 31.8 |
K. pneumoniae (mean ± SD) | 3793 ± 2302 | 11 ± 1 | 128,529 ± 133,041 | 292,169,672 ± 344,844,995 | 52.2 ± 62 | 841,606 ± 283,335 | 191,669,003 ± 80,759,064 | 34.2 ± 14 |
Mixed culture sample | 4200 | 9.8 | 143,076 | 387,311,832 | 35.4 | 2,131,800 | 531,841,759 | 48.7 |
Number of Dead Ends | Number of Contigs | Total Length (bp) | N50 (bp) | ||
---|---|---|---|---|---|
E. coli | IllumASM | 4 ± 4 | 138 ± 90 | 5,232,982 ± 335,084 | 225,244 ± 82,435 |
MinIONASM | 77 ± 94 | 49 ± 47 | 3,870,499 ± 2,664,510 | 343,234 ± 504,598 | |
HybASM | 4 ± 2 | 50 ± 28 | 5,317,286 ± 426,129 | 1,005,273 ± 476,961 | |
K. pneumoniae | IllumASM | 10 ± 7 | 78 ± 13 | 5,577,253 ± 181,931 | 247,095 ± 138,114 |
MinIONASM | 44 ± 48 | 35 ± 32 | 4,694,978 ± 2,235,357 | 1,996,101 ± 2,279,327 | |
HybASM | 1 ± 3 | 20 ± 17 | 5,648,111 ± 211,443 | 3,880,248 ± 2,149,256 | |
Mixed culture sample | IllumASM | 2 | 371 | 11,193,506 | 147,235 |
MinIONASM | 65 | 120 | 11,827,293 | 344,695 | |
HybASM | 0 | 117 | 11,495,693 | 1,245,846 |
CDS | rRNA | tRNA | tmRNA | ||
---|---|---|---|---|---|
E. coli | IllumASM | 4952 ± 392 | 5 ± 1 | 83 ± 5 | 1 ± 0 |
MinIONASM | 6715 ± 4615 | 12 ± 10 | 63 ± 44 | 1 ± 1 | |
HybASM | 5042 ± 532 | 15 ± 9 | 88 ± 11 | 1 ± 0 | |
K. pneumoniae | IllumASM | 5201 ± 185 | 4 ± 1 | 79 ± 1 | 1 ± 0 |
MinIONASM | 8120 ± 3933 | 20 ± 10 | 67 ± 36 | 1 ± 1 | |
HybASM | 5261 ± 217 | 21 ± 8 | 84 ± 4 | 1 ± 0 | |
Mixed culture sample | IllumASM | 10,660 | 8 | 164 | 2 |
MinIONASM | 20,158 | 47 | 181 | 2 | |
HybASM | 10,995 | 44 | 184 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezri, A.; Avershina, E.; Ahmad, R. Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms 2021, 9, 2560. https://doi.org/10.3390/microorganisms9122560
Khezri A, Avershina E, Ahmad R. Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms. 2021; 9(12):2560. https://doi.org/10.3390/microorganisms9122560
Chicago/Turabian StyleKhezri, Abdolrahman, Ekaterina Avershina, and Rafi Ahmad. 2021. "Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates" Microorganisms 9, no. 12: 2560. https://doi.org/10.3390/microorganisms9122560
APA StyleKhezri, A., Avershina, E., & Ahmad, R. (2021). Hybrid Assembly Provides Improved Resolution of Plasmids, Antimicrobial Resistance Genes, and Virulence Factors in Escherichia coli and Klebsiella pneumoniae Clinical Isolates. Microorganisms, 9(12), 2560. https://doi.org/10.3390/microorganisms9122560