Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA and DAT) and Clinical Signs Evaluation, for the Diagnosis of Canine Leishmaniasis in Experimentally Infected Dogs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Samples Collection
2.3. Clinical Signs Assessment
2.4. Serological Analysis
2.5. Real-Time Quantitative Polymerase Chain Reaction (qPCR) Evaluation
2.6. Statistical Analysis
3. Results
3.1. Real Time PCR Results
3.2. Clinical Evaluation and Correlation with qPCR Results
3.3. Serological Evaluation and Correlation with qPCR Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Burza, S.; Croft, S.L.; Boelaert, M. Leishmaniasis. Lancet 2018, 392, 951–970. [Google Scholar] [CrossRef]
- Gramiccia, M.; Gradoni, L. The current status of zoonotic leishmaniases and approaches to disease control. Int. J. Parasitol. 2005, 35, 1169–1180. [Google Scholar] [CrossRef]
- Koutinas, A.F.; Koutinas, C.K. Pathologic mechanisms underlying the clinical findings in canine leishmaniasis due to Leishmania infantum/chagasi. Vet. Pathol. 2014, 51, 527–538. [Google Scholar] [CrossRef] [PubMed]
- Solano-Gallego, L.; Miró, G.; Koutinas, A.F.; Cardoso, L.; Pennisi, M.G.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. LeishVet guidelines for the practical management of canine leishmaniasis. Parasites Vectors 2011, 4, 86. [Google Scholar] [CrossRef] [Green Version]
- Baneth, G.; Aroch, I. Canine leishmaniasis: A diagnostic and clinical challenge. Vet. J. 2008, 175, 14–15. [Google Scholar] [CrossRef]
- Ferreira, E.D.C.; de Lana, M.; Carneiro, M.; Reis, A.B.; Paes, D.V.; da Silva, E.S.; Schallig, H.; Gontijo, C.M.F. Comparison of serological assays for the diagnosis of canine visceral leishmaniasis in animals presenting different clinical manifestations. Vet. Parasitol. 2007, 146, 235–241. [Google Scholar] [CrossRef]
- Porrozzi, R.; da Costa, M.V.S.; Teva, A.; Falqueto, A.; Ferreira, A.L.; dos Santos, C.D.; Fernandes, A.P.; Gazzinelli, R.; Campos-Neto, A.; Grimaldi, G. Comparative Evaluation of Enzyme-Linked Immunosorbent Assays Based on Crude and Recombinant Leishmanial Antigens for Serodiagnosis of Symptomatic and Asymptomatic Leishmania infantum Visceral Infections in Dogs. Clin. Vaccine Immunol. 2007, 14, 544–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, E.G.; Sevá, A.P.; Ferreira, F.; Nunes, C.M.; Keid, L.B.; Hiramoto, R.M.; Ferreira, H.L.; Oliveira, T.M.F.S.; Bigotto, M.F.D.; Galvis-Ovallos, F.; et al. Serological and molecular diagnostic tests for canine visceral leishmaniasis in Brazilian endemic area: One out of five seronegative dogs are infected. Epidemiology Infect. 2017, 145, 2436–2444. [Google Scholar] [CrossRef] [Green Version]
- Silva, R.C.; Pereira, V.; Kikuti, M.; Marson, P.M.; Langoni, H. Detection of Leishmania (L.) infantum in stray dogs by molecular techniques with sensitive species-specific primers. Vet. Q. 2016, 37, 23–30. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Rodriguez-Cortes, A.; Trotta, M.; Zampieron, C.; Razia, L.; Furlanello, T.; Caldin, M.; Roura, X.; Alberola, J. Detection of Leishmania infantum DNA by fret-based real-time PCR in urine from dogs with natural clinical leishmaniosis. Vet. Parasitol. 2007, 147, 315–319. [Google Scholar] [CrossRef]
- Alcolea, P.J.; Alonso, A.; Esteban, A.; Peris, P.; Cortés, A.; Castillo, J.A.; Larraga, V. IL12 p35 and p40 subunit genes administered as pPAL plasmid constructs do not improve protection of pPAL-LACK vaccine against canine leishmaniasis. PLoS ONE 2019, 14, e0212136. [Google Scholar] [CrossRef] [Green Version]
- Manna, L.; Reale, S.; Vitale, F.; Gravino, A.E. Evidence for a relationship between Leishmania load and clinical manifestations. Res. Vet. Sci. 2009, 87, 76–78. [Google Scholar] [CrossRef]
- Solano-Gallego, L.; Villanueva-Saz, S.; Carbonell, M.; Trotta, M.; Furlanello, T.; Natale, A. Serological diagnosis of canine leishmaniosis: Comparison of three commercial ELISA tests (Leiscan®, ID Screen® and Leishmania 96®), a rapid test (Speed Leish K®) and an in-house IFAT. Parasites Vectors 2014, 7, 111. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Ochoa, P.; Castillo, J.A.; Lucientes, J.; Gascón, M.; Zarate, J.J.; Arbea, J.I.; Larraga, V.; Rodriguez, C. Modified Direct Agglutination Test for Simplified Serologic Diagnosis of Leishmaniasis. Clin. Vaccine Immunol. 2003, 10, 967–968. [Google Scholar] [CrossRef]
- World Health Organization & TDR Disease Reference Group on Chagas Disease, Human African Trypanosomiasis and Leishmaniasis. Research Priorities for Chagas Disease, Human African Trypanosomiasis and Leishmaniasis; World Health Organization: Geneva, Switzerland, 2012; Available online: https://apps.who.int/iris/handle/10665/77472 (accessed on June 2019).
- Nicolas, L.; Prina, E.; Lang, T.; Milon, G. Real-Time PCR for Detection and Quantitation of Leishmania in Mouse Tissues. J. Clin. Microbiol. 2002, 40, 1666–1669. [Google Scholar] [CrossRef] [Green Version]
- Solano-Gallego, L.; Morell, P.; Arboix, M.; Alberola, J.; Ferrer, L. Prevalence of Leishmania infantum Infection in Dogs Living in an Area of Canine Leishmaniasis Endemicity Using PCR on Several Tissues and Serology. J. Clin. Microbiol. 2001, 39, 560–563. [Google Scholar] [CrossRef] [Green Version]
- Momo, C.; Jacintho, A.P.P.; Moreira, P.R.R.; Munari, D.; Machado, G.F.; Vasconcelos, R. Morphological Changes in the Bone Marrow of the Dogs with Visceral Leishmaniasis. Vet. Med. Int. 2014, 2014, 150582. [Google Scholar] [CrossRef]
- Hernández, L.; Montoya, A.; Checa, R.; Dado, D.; Gálvez, R.; Otranto, D.; Latrofa, M.S.; Baneth, G.; Miró, G. Course of experimental infection of canine leishmaniosis: Follow-up and utility of noninvasive diagnostic techniques. Vet. Parasitol. 2015, 207, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Chagas, Ú.M.R.; de Avelar, D.M.; Marcelino, A.P.; Paz, G.F.; Gontijo, C.M.F. Correlations between tissue parasite load and common clinical signs in dogs naturally infected by Leishmania infantum. Vet. Parasitol. 2021, 291, 109368. [Google Scholar] [CrossRef] [PubMed]
- Marcelino, A.P.; Filho, J.A.S.; Bastos, C.V.E.; Ribeiro, S.R.; Medeiros, F.A.C.; Reis, I.A.; Lima, A.C.V.M.D.R.; Barbosa, J.R.; Paz, G.F.; Gontijo, C.M.F. Comparative PCR-based diagnosis for the detection of Leishmania infantum in naturally infected dogs. Acta Trop. 2020, 207, 105495. [Google Scholar] [CrossRef] [PubMed]
- Miró, G.; Cardoso, L.; Pennisi, M.G.; Oliva, G.; Baneth, G. Canine leishmaniosis—new concepts and insights on an expanding zoonosis: Part two. Trends Parasitol. 2008, 24, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Lachaud, L.; Chabbert, E.; Dubessay, P.; Dereure, J.; Lamothe, J.; Dedet, J.-P.; Bastien, P. Value of two PCR methods for the diagnosis of canine visceral leishmaniasis and the detection of asymptomatic carriers. Parasitology 2002, 125, 197–207. [Google Scholar] [CrossRef] [PubMed]
- Aschar, M.; de Oliveira, E.T.B.; Laurenti, M.D.; Marcondes, M.; Tolezano, J.E.; Hiramoto, R.M.; Corbett, C.E.P.; da Matta, V.L.R. Value of the oral swab for the molecular diagnosis of dogs in different stages of infection with Leishmania infantum. Vet. Parasitol. 2016, 225, 108–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borja, L.S.; de Sousa, O.M.F.; Solcà, M.D.S.; Bastos, L.A.; Bordoni, M.; Magalhães, J.T.; Larangeira, D.F.; Barrouin-Melo, S.M.; Fraga, D.B.M.; Veras, P.S.T. Parasite load in the blood and skin of dogs naturally infected by Leishmania infantum is correlated with their capacity to infect sand fly vectors. Vet. Parasitol. 2016, 229, 110–117. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, S.D.A.; Leite, R.S.; Ituassu, L.T.; Almeida, G.; Souza, D.M.; Fujiwara, R.; De Andrade, A.S.R.; Melo, M.N. Canine Skin and Conjunctival Swab Samples for the Detection and Quantification of Leishmania infantum DNA in an Endemic Urban Area in Brazil. PLOS Negl. Trop. Dis. 2012, 6, e1596. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Cotrina, J.; Iniesta, V.; Belinchón-Lorenzo, S.; Muñoz-Madrid, R.; Serrano, F.; Parejo, J.C.; Gómez-Gordo, L.; Soto, M.; Alonso, C.; Gómez-Nieto, L.C. Experimental model for reproduction of canine visceral leishmaniosis by Leishmania infantum. Vet. Parasitol. 2013, 192, 118–128. [Google Scholar] [CrossRef] [Green Version]
- Manzillo, V.F.; Di Muccio, T.; Cappiello, S.; Scalone, A.; Paparcone, R.; Fiorentino, E.; Gizzarelli, M.; Gramiccia, M.; Gradoni, L.; Oliva, G. Prospective Study on the Incidence and Progression of Clinical Signs in Naïve Dogs Naturally Infected by Leishmania infantum. PLoS Negl. Trop. Dis. 2013, 7, e2225. [Google Scholar] [CrossRef]
- Gradoni, L.; Gramiccia, M. Leishmaniosis. In OIE Manual of Diagnostic Tests and Vaccines for Terrestrial Animals (Mammals, Birds and Bees), 6th ed.; Office International des Epizooties: Paris, France, 2008; pp. 240–250. [Google Scholar]
- Solano-Gallego, L.; Koutinas, A.; Miró, G.; Cardoso, L.; Pennisi, M.; Ferrer, L.; Bourdeau, P.; Oliva, G.; Baneth, G. Directions for the diagnosis, clinical staging, treatment and prevention of canine leishmaniosis. Vet. Parasitol. 2009, 165, 1–18. [Google Scholar] [CrossRef]
Name | Sequences | Lenth (nt) | Reference |
---|---|---|---|
Leish-F | 5′-CAAACCTATGCTCACTATC-3′ | 96 | This article |
Leish-R | 5′-GGTATGGGTATTCTTTATGG-3′ | ||
Leish-Probe | 5′-FAM-CAACCACCACCATCAAATCC-3′-IABkFQ | ||
Jw11-F | 5′-CCTATTTTACACCAACCCCCAGT-3′ | 116 | [16] |
Jw12-R | 5′-GGGTAGGGGCGTTCTGCGAAA-3′ |
TaqMan-qPCR | Sybr-qPCR | |
---|---|---|
Bone marrow | 25.1 (17.2-ND) | 24.8 (17.7–33.9) |
Popliteal lymph node | 25 (17.5-ND) | 25.1 (19.1–33.6) |
Peripheral blood | ND (31.3-ND) | 33.3 (27.4–35.6) |
Conjunctival swabs | 29.6 (24-ND) | 30.8 (24.1–35.3) |
Bone Marrow 1 | Popliteal Lymphnode 2 | Peripheral Blood 3 | Conjunctival Swab 4 | |
---|---|---|---|---|
Group 1 | 22.4 (20.3–28.6) a | 22.9 (17.8–36.6) | N/D a | 30.3 (27.1-ND) a |
Group 2 | ND (18.2-ND) b | 25.6 (17.5-ND) | ND (32.2-ND) a | 30.4 (26.4-ND) a |
Group 3 | 24.2 (17.2–28.2) a | 26.1 (21.2–27.1) | ND (31.3-ND) b | 27 (24-ND) b |
Bone Marrow 1 | Popliteal Lymph Node 2 | Peripheral Blood 3 | Conjunctival Swab 4 | |
---|---|---|---|---|
Group 1 | 23.1 (19.5–28.7) a | 23.2 (19.1–25.4) | 33.8 (32.1–35) | 32.1 (27.8–35.3) a |
Group 2 | 25.9 (20.8–33.9) b | 25.7 (21–33.6) | 33.1 (32.3–35.4) | 31.7 (27.28–35.1) a |
Group 3 | 24.7 (17.7–28.2) | 27.4 (22.2–29.7) | 32.4 (27.4–35.6) | 28.1 (24.1–33.2) b |
Technique | Result | Bone Marrow 1 | Popliteal Lymph Node 2 | Peripheral Blood 3 | Conjunctival Swab 4 |
---|---|---|---|---|---|
DAT | Positive | 25.2 (18.2-ND) | 25.2 (21.2–27.4) | 32.2 (ND-ND) | 28.2 (24-ND) |
Doubtful | 22.6 (17.2–26.7) a | 22.9 (17.8–26.1) | ND (31.3-ND) | 29.9 (27-ND) | |
Negative | ND (20-ND) b | 32.1 (17.5-ND) | ND (32.2-ND) | 36.2 (24.2-ND) | |
IFA | Positive | 24.1 (17.2-ND) a | 24.4 (17.8-ND) | 31.38 (ND-ND) | 29.2 (24-ND) |
Doubtful | ND (28.6-ND) b | 36.2 (17.5-ND) | ND (32.2-ND) | ND (28.4-ND) | |
Negative | ND | ND | ND | ND | |
ELISA | Positive | 24.1 (17.2-ND) a | 24.7 (17.8-ND) | ND (31.3-ND) | 29.2 (24-ND) a |
Doubtful | - | - | - | - | |
Negative | ND (26.7-ND) b | 33.9 17.5-ND) | ND (32.2-ND) | 36.2 (28.4-ND) b |
Technique | Result | Bone Marrow 1 | Popliteal Lymph Node 2 | Peripheral Blood 3 | Conjunctival Swab 4 |
---|---|---|---|---|---|
DAT | Positive | 24.7 (20.8–32.2) | 26.4 (22.4–29.9) | 34.3 (32.2–35.6) | 28.8 (26.2–34.2) |
Doubtful | 23.4 (17.7–25.9) a | 24 (19.1–28.2) | 33.1 (27.4–35) | 31.07 (27.8–33.6) | |
Negative | 29.8 (20.2–33.9) b | 33 (32.4–35.4) | 25.9 (21–33.6) | 32.24 (24.1–35.3) | |
IFA | Positive | 23.9 (17.7–32.2) a | 24.8 (19.1–29.9) | 33.2 (27.4–35.6) | 30.4 (24.1–34.2) |
Doubtful | 31.7 (25.4–32.7) b | 29.7 (21–33.6) | 33 (32.5–34.1) | 33.5 (29.1–35.3) | |
Negative | 33.9 (33.9–33.9) | 33.2 (33.2–33.2) | 33.4 (33.4–33.4) | 33 (33 -33) | |
ELISA | Positive | 23.9 (17.7–32.2) a | 24.8 (19.1–29.9) | 33.1 (27.4–35.6) | 30.4 (24.1–35.3) |
Doubtful | - | - | - | - | |
Negative | 31.8 (24.9–33.9) b | 30.4 (21–33.6) | 33.2 (32.5–35) | 32.5 (29.1- 35.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peris, M.P.; Esteban-Gil, A.; Ortega-Hernández, P.; Morales, M.; Halaihel, N.; Castillo, J.A. Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA and DAT) and Clinical Signs Evaluation, for the Diagnosis of Canine Leishmaniasis in Experimentally Infected Dogs. Microorganisms 2021, 9, 2627. https://doi.org/10.3390/microorganisms9122627
Peris MP, Esteban-Gil A, Ortega-Hernández P, Morales M, Halaihel N, Castillo JA. Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA and DAT) and Clinical Signs Evaluation, for the Diagnosis of Canine Leishmaniasis in Experimentally Infected Dogs. Microorganisms. 2021; 9(12):2627. https://doi.org/10.3390/microorganisms9122627
Chicago/Turabian StylePeris, María Paz, Adriana Esteban-Gil, Paula Ortega-Hernández, Mariano Morales, Nabil Halaihel, and Juan Antonio Castillo. 2021. "Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA and DAT) and Clinical Signs Evaluation, for the Diagnosis of Canine Leishmaniasis in Experimentally Infected Dogs" Microorganisms 9, no. 12: 2627. https://doi.org/10.3390/microorganisms9122627
APA StylePeris, M. P., Esteban-Gil, A., Ortega-Hernández, P., Morales, M., Halaihel, N., & Castillo, J. A. (2021). Comparative Study of Real-Time PCR (TaqMan Probe and Sybr Green), Serological Techniques (ELISA, IFA and DAT) and Clinical Signs Evaluation, for the Diagnosis of Canine Leishmaniasis in Experimentally Infected Dogs. Microorganisms, 9(12), 2627. https://doi.org/10.3390/microorganisms9122627