Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Escherichia coli Isolation and Counting
2.3. Antibiotic Susceptibility
2.4. DNA Isolation and PCR for ESβL and AmpC Genes Identification
2.5. Statistical Analysis
3. Results
3.1. Isolation of E. coli from Pork and Wild Boar Meat Products
3.2. Antibiotic Resistance (ESβL and AmpC)
3.3. Colistin Resistance
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeineldin, M.; Aldridge, B.; Lowe, J. Antimicrobial Effects on Swine Gastrointestinal Microbiota and Their Accompanying Antibiotic Resistome. Front. Microbiol. 2019, 10, 1035. [Google Scholar] [CrossRef]
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IACG. No Time to Wait: Securing the Future from Drug-Resistant Infections; IACG 2019, Report to the Secretary-General of the United Nations: New York, NY, USA, 2019. [Google Scholar]
- Cheng, G.; Ning, J.; Ahmed, S.; Huang, J.; Ullah, R.; An, B.; Hao, H.; Dai, M.; Huang, L.; Wang, X.; et al. Selection and dissemination of antimicrobial resistance in Agri-food production. Antimicrob. Resist. Infect. Control. 2019, 8, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Organisation For Animal Health. Terrestrial Animal Health Code, 20th ed.; World Organisation For Animal Health (Oie): Paris, France, 2011; pp. 265–276. ISBN 978-92-9044-825-9. [Google Scholar]
- Paterson, D.L.; Bonomo, R.A. Extended-Spectrum β-Lactamases: A Clinical Update. Clin. Microbiol. Rev. 2005, 18, 657–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Biological Hazards (BIOHAZ). Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals. EFSA J. 2011, 9, 2322. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Global Antimicrobial Resistance Surveillance System (GLASS) Report: Early Implementation 2017–2018; WHO: Geneva, Swizterland, 2018. [Google Scholar]
- Rhouma, M.; Beaudry, F.; Letellier, A. Resistance to colistin: What is the fate for this antibiotic in pig production? Int. J. Antimicrob. Agents 2016, 48, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Zahedi-Bialvaei, A.; Samadi-Kafil, H. Colistin, mechanisms and prevalence of resistance. Curr. Med Res. Opin. 2015, 31, 707–721. [Google Scholar] [CrossRef]
- Osei-Sekyere, J. Mcr colistin resistance gene: A systematic review of current diagnostics and detection methods. Microbiology 2019, 8, e682. [Google Scholar] [CrossRef] [Green Version]
- Elżbieta, M.; Stefaniuk, S.T. Colistin Resistance in Enterobacterales Strains—A Current View. Pol. J. Microbiol. 2019, 68, 417–427. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Zeng, M.; Xu, J.; Zhou, H.; Gu, B.; Li, Z.; Jin, H.; Wang, X.; Zhang, W.; Hu, Y.; et al. Epidemiologic and genomic insights on mcr-1-harbouring Salmonella from diarrhoeal outpatients in Shanghai, China, 2006–2016. EBioMedicine 2019, 42, 133–144. [Google Scholar] [CrossRef] [Green Version]
- Mateus-Vargas, R.H.; Atanassova, V.; Reich, F.; Klein, G. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat. Food Microbiol. 2017, 63, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Abubakar, R.H.; Madoroba, E.; Adebowale, O.; Fasanmi, O.G.; Fasina, F.O. Antimicrobial usage in pig production: Effects on Escherichia coli virulence profiles and antimicrobial resistance. Onderstepoort J. Vet. Res. 2019, 86, 1743. [Google Scholar] [CrossRef]
- Literak, M.; Dolejska, T.; Radimersky, J.; Klimes, M.; Friedman, F.M.; Aarestrup, H.; Hasman, A.; Cizek, I. Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: Multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. J. Appl. Microbiol. 2010, 108, 1702–1711. [Google Scholar] [CrossRef]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [Green Version]
- Singer, A.C.; Shaw, H.; Rhodes, V.; Hart, A. Review of Antimicrobial Resistance in the Environment and Its Relevance to Environmental Regulators. Front Microbiol. 2016, 7, 1728. [Google Scholar] [CrossRef] [Green Version]
- Darwich, L.; Vidal, A.; Seminati, C.; Albamonte, A.; Casado, A.; López, F.; Molina-López, R.A.; Migura-Garcia, L. High prevalence and diversity of extended-spectrum b-lactamase and emergence of OXA-48 producing Wnterobacteriales in wildlife in Catalonia. PLoS ONE 2019, 11, e0210686. [Google Scholar] [CrossRef] [Green Version]
- Bonardi, S.; Bolzoni, L.; Zanoni, R.G.; Morganti, M.; Corradi, M.; Gilioli, S.; Pongolini, S. Limited Exchange of Salmonella Among Domestic Pigs and Wild Boars in Italy. EcoHealth 2019, 16, 420–428. [Google Scholar] [CrossRef]
- Feng, C.; Wen, P.; Xu, H.; Chi, X.; Li, S.; Yu, X.; Lin, X.; Wu, S.; Zheng, B. Emergence and Comparative Genomics Analysis of Extended-Specrum b-Lactamase-Producing Escherichia coli carrying mcr-1 in Fennec fox imported from Sudan to China. mSphere 2019, 4, e00732-19. [Google Scholar] [CrossRef] [Green Version]
- Zurfluh, K.; Albini, S.; Mattmann, P.; Kindle, P.; Nüesch-Inderbinen, M.; Stephan, R.; Vogler, B.R. Antimicrobial resistant and extended-spectrum β-lactamase producing Escherichia coli in common wild bird species in Switzerland. Microbiology 2019, 8, e845. [Google Scholar] [CrossRef] [Green Version]
- Pietsch, M.; RESET Study Group; Irrgang, A.; Roschanski, N.; Michael, G.B.; Hamprecht, A.; Rieber, H.; Käsbohrer, A.; Schwarz, S.; Rösler, U.; et al. Whole genome analyses of CMY-2-producing Escherichia coli isolates from humans, animals and food in Germany. BMC Genom. 2018, 19, 601. [Google Scholar] [CrossRef]
- Huis in’t Veld, J.H.J.; Mulder, R.W.A.W.; Snijders, J.M.A. Impact of animal husbandry and slaughter technologies on microbial contamination of meat: Monitoring and control. Meat Sci. 1994, 36, 123–154. [Google Scholar] [CrossRef]
- Alpigiani, I.; Abrahantes, J.C.; Michel, V.; Huneau-Salaun, A.; Chemaly, M.; Keeling, L.J.; Gervelmeyer, A.; Bacci, C.; Brindani, F.; Bonarsi, S.; et al. Associationis between animal welfare indicators and Campylobacter s in broiler chickens under commercial settings: A case study. Prev. Vet. Med. 2017, 147, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The European Committee on Antimicrobial Susceptibility Testing (EUCAST). Breakpoint Tables For Interpretation Of Mics And Zone Diameters, Version 8.1. 2018. Available online: http://www.eucast.org (accessed on 15 January 2018).
- Roschansky, N.; Fischer, J.; Guerra, B.; Roesler, U. Development of a Multiplex Real-Time PCR for the Rapid Detection of the Predominant Beta-Lactamase Genes CTX-M, SHV, TEM and CITType AmpCs in Enterobacteriaceae. PLoS ONE 2014, 9, e100956. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC -Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.-Y.; Wang, Y.; Walsh, T.R.; Yi, L.-X.; Zhang, R.; Spencer, J.D.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.L.; Okoh, A.I. Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EFSA J. 2020, 18, 6007. [Google Scholar] [CrossRef] [Green Version]
- EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, 5598. [Google Scholar] [CrossRef]
- Barilli, E.; Vismarra, A.; Villa, Z.; Bonilauri, P.; Bacci, C. ESβL E. coli isolated in pig’s chain: Genetic analysis associated to the phenotype and biofilm synthesis evaluation. Int. J. Food Microbiol. 2019, 289, 162–167. [Google Scholar] [CrossRef]
- Barilli, E.; Vismarra, A.; Frascolla, V.; Rega, M.; Bacci, C. Escherichia coli Strains Isolated from Retail Meat Products: Evaluation of Biofilm Formation Ability, Antibiotic Resistance, and Phylogenetic Group Analysis. J. Food Prot. 2020, 83, 233–240. [Google Scholar] [CrossRef]
- Bengtsson-Palme, J.; Kristiansson, E.; Larsson, D.G.J. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol. Rev. 2018, 42. [Google Scholar] [CrossRef] [PubMed]
- Eguenther, S.; Ewers, C.; Wieler, L.H. Extended-Spectrum Beta-Lactamases Producing E. coli in Wildlife, yet Another Form of Environmental Pollution? Front. Microbiol. 2011, 2, 246. [Google Scholar] [CrossRef] [Green Version]
- Hernández, J.; González-Acuña, D. Anthropogenic antibiotic resistance genes mobilization to the polar regions. Infect. Ecol. Epidemiol. 2016, 12, 6:32112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramey, A.M.; Hernandez, J.; Tyrlöv, V.; Uher-Koch, B.D.; Schmutz, J.A.; Atterby, C.; Järhult, J.D.; Bonnedahl, J. Antibiotic-Resistant Escherichia coli in Migratory Birds Inhabiting Remote Alaska. EcoHealth 2018, 15, 72–81. [Google Scholar] [CrossRef] [PubMed]
- Dolejska, M.; Papagiannitsis, C.C. Plasmid-mediated resistance is going wild. Plasmid 2018, 99, 99–111. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Z.B.; Zeng, Z.L.; Yang, X.W.; Huang, Y.; Liu, J.H. The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool Res. 2017, 18, 55–80. [Google Scholar] [CrossRef] [Green Version]
- Tack, J. Wild Boar (Sus Scrofa) Populations in Europe: A Scientific Review of Population Trends and Implications for Management; European Landowners’ Organization: Brussels, Swzierland, 2018; p. 56. [Google Scholar]
- Cristóvão, F.; Alonso, C.A.; Igrejas, G.; Sousa, M.; Silva, V.; Pereira, J.E.; Lozano, C.; Cortés-Cortés, G.; Torres, C.; Poeta, P. Clonal diversity of extended-spectrum beta-lactamase producing Escherichia coli isolates in fecal samples of wild animals. FEMS Microbiol. Lett. 2017, 364. [Google Scholar] [CrossRef] [Green Version]
- Greig, J.; Rajić, A.; Young, I.; Mascarenhas, M.; Waddell, L.; Lejeune, J. A Scoping Review of the Role of Wildlife in the Transmission of Bacterial Pathogens and Antimicrobial Resistance to the Food Chain. Zoonoses Public Heal. 2015, 62, 269–284. [Google Scholar] [CrossRef]
- Torres, R.T.; Fernandes, J.; Carvalho, J.; Cunha, M.V.; Caetano, T.; Mendo, S.; Serrano, E.; Fonseca, C. Wild boar as a reservoir of antimicrobial resistance. Sci. Total. Environ. 2020, 717, 135001. [Google Scholar] [CrossRef]
- Zając, M.; Sztromwasser, P.; Bortolaia, V.; Leekitcharoenphon, P.; Cavaco, L.M.; Ziȩtek-Barszcz, A.; Hendriksen, R.S.; Wasyl, D. Occurrence and Characterization of mcr-1-Positive Escherichia coli Isolated From Food-Producing Animals in Poland, 2011–2016. Front. Microbiol. 2019, 10, 1753. [Google Scholar] [CrossRef] [Green Version]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L. Extended-spectrum β-lactamase-producing and AmpC-producing Escherichia coli from livestock and companion animals, and their putative impact on public health: A global perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aguirre, L.; Vidal, A.; Seminati, C.; Tello, M.; Redondo, N.; Darwich, L.; Martín, M. Antimicrobial resistance profile and prevalence of extended-spectrum beta-lactamases (ESBL), AmpC beta-lactamases and colistin resistance (mcr) genes in Escherichia coli from swine between 1999 and 2018. Porc. Heal. Manag. 2020, 6, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kola, A.; Kohler, C.; Pfeifer, Y.; Schwab, F.; Kuhn, K.; Schulz, K.; Balau, V.; Breitbach, K.; Bast, A.; Witte, W.; et al. High prevalence of extended-spectrum- -lactamase-producing Enterobacteriaceae in organic and conventional retail chicken meat, Germany. J. Antimicrob. Chemother. 2012, 67, 2631–2634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarfel, G.E.; Galler, H.; Luxner, J.; Petternel, C.; Reinthaler, F.F.; Haas, D.; Kittinger, C.; Grisold, A.; Pless, P.; Feierl, G. Multiresistant Bacteria Isolated from Chicken Meat in Austria. Int. J. Environ. Res. Public Health 2014, 11, 12582–12593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMA; CVMP; CHMP. Updated Advice on the Use of Colistin Products in Animals within the European Union: Development of Resistance and Possible Impact on Human and Animal Health; EMA: London, UK, 2016. [Google Scholar]
- Min, K.L.; Son, E.S.; Kim, J.S.; Kim, S.H.; Jung, S.M.; Chang, M.J. Risk factors of colistin safety according to administration routes: Intravenous and aerosolized colistin. PLoS ONE. 2018, 13, e0207588. [Google Scholar] [CrossRef]
- Bacci, C.; Boni, E.; Alpigiani, I.; Lanzoni, E.; Bonardi, S.; Brindani, F. Phenotypic and genotypic features of antibiotic resistance in Salmonella enterica isolated from chicken meat and chicken and quail carcasses. Int. J. Food Microbiol. 2012, 160, 16–23. [Google Scholar] [CrossRef] [PubMed]
β-Lactamase Genes (ESβL and AmpC) | N° of E. coli Isolates from Pork Meat Product | N° of E. coli Isolates from Fresh Wild Boar Meat |
---|---|---|
blaCTX-M1 | 2 (13.3%) | 13 (76.4%) |
blaTEM + blaCTX-M1 | 1 (6.7%) | - |
blaSHV + blaCTX-M1 | 3 (20%) | - |
blaCTX-M1 + blaCTX-M2 | - | 1 (5.9%) |
blaTEM | - | 1 (5.9%) |
blaTEM + blaSHV + blaCTX-M1 | 1 (6.7%) | - |
blaSHV + blaCTX-M1 + blaCTX-M2 | 3 (20%) | - |
blaTEM + blaSHV + blaCTX-M1 + blaCTX-M2 | 4 (26.6%) | - |
blaTEM + blaSHV + blaCTX-M1 + FOX + CMY (AmpC) | 1 (6.7%) | - |
No genes | - | 2 (11.8%) |
TOTAL | 15 (100%) | 17 (100%) |
β-Lactamase Genes (ESβL and AmpC) | N° of E. coli Isolates from Pork Meat Product | N° of E. coli Isolates from Fresh Wild Boar Meat |
---|---|---|
blaCTX-M1 | 7 (35%) | - |
blaTEM | 4 (20%) | - |
blaTEM + blaCTX-M1 | 7 (35%) | - |
blaTEM + blaCTX-M1 + blaCTX-M2 | 2 (10%) | - |
No genes | - | 26 (100%) |
TOTAL | 20 (100%) | 26 (100%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rega, M.; Carmosino, I.; Bonilauri, P.; Frascolla, V.; Vismarra, A.; Bacci, C. Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar. Microorganisms 2021, 9, 214. https://doi.org/10.3390/microorganisms9020214
Rega M, Carmosino I, Bonilauri P, Frascolla V, Vismarra A, Bacci C. Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar. Microorganisms. 2021; 9(2):214. https://doi.org/10.3390/microorganisms9020214
Chicago/Turabian StyleRega, Martina, Ilaria Carmosino, Paolo Bonilauri, Viviana Frascolla, Alice Vismarra, and Cristina Bacci. 2021. "Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar" Microorganisms 9, no. 2: 214. https://doi.org/10.3390/microorganisms9020214
APA StyleRega, M., Carmosino, I., Bonilauri, P., Frascolla, V., Vismarra, A., & Bacci, C. (2021). Prevalence of ESβL, AmpC and Colistin-Resistant E. coli in Meat: A Comparison between Pork and Wild Boar. Microorganisms, 9(2), 214. https://doi.org/10.3390/microorganisms9020214