Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats
Abstract
:1. Introduction
2. Methods
2.1. Data Collection
2.2. Soil Analyses
2.3. Molecular Methods and Bioinformatics
2.4. Statistical Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maestre, F.T.; Delgado-Baquerizo, M.; Jeffries, T.C.; Eldridge, D.J.; Ochoa, V.; Gozalo, B.; Quero, J.L.; Garcia-Gomez, M.; Gallardo, A.; Ulrich, W.; et al. Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proc. Natl. Acad. Sci. USA. 2015, 112, 15684–15689. [Google Scholar] [PubMed] [Green Version]
- Feng, S.; Fu, Q. Expansion of global drylands under a warming climate. Atmos. Chem. Phys. Discuss. 2013, 13, 10081–10094. [Google Scholar] [CrossRef] [Green Version]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehman, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [PubMed] [Green Version]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2016, 6, 166–171. [Google Scholar] [CrossRef]
- Porembski, S.; Barthlott, W. Granitic and gneissic outcrops (inselbergs) as centers of diversity for desiccation-tolerant vascular plants. Plant Ecol. 2000, 151, 19–28. [Google Scholar]
- Bechtold, U. Plant Life in Extreme Environments: How Do You Improve Drought Tolerance? Front. Plant Sci. 2018, 9, 543. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Bahram, M.; Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 2020, 367, eaba1223. [Google Scholar] [CrossRef]
- Tedersoo, L.; Sánchez-Ramírez, S.; Kõljalg, U.; Bahram, M.; Döring, M.; Schigel, D.; May, T.; Ryberg, M.; Abarenkov, K. High-level classification of the Fungi and a tool for evolutionary ecological analyses. Fungal Divers. 2018, 90, 135–159. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Davison, J.; Moora, M.; Öpik, M.; Adholeya, A.; Ainsaar, L.; Bâ, A.; Burla, S.; Diedhiou, A.G.; Hiiesalu, I.; Jairus, T.; et al. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 2015, 349, 970–973. [Google Scholar]
- Al-Whaibi, M.H. Desert Plants and Mycorrhizae (A mini-review). J. Pure Appl. Microbiol. 2009, 3, 457–466. [Google Scholar]
- Apple, M. Aspects of Mycorrhizae in Desert Plants. In Desert Plants; Springer Nature: Berlin, Germany, 2009; pp. 121–134. [Google Scholar]
- Weber, S.E.; Diez, J.M.; Andrews, L.V.; Goulden, M.L.; Aronson, E.L.; Allen, M.F. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol. 2019, 40, 62–71. [Google Scholar] [CrossRef]
- Augé, R.M. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 2001, 11, 3–42. [Google Scholar] [CrossRef]
- Al-Karaki, G.N.; Al-Raddad, A. Effects of arbuscular mycorrhizal fungi and drought stress on growth and nutrient uptake of two wheat genotypes differing in drought resistance. Mycorrhiza 1997, 7, 83–88. [Google Scholar] [CrossRef]
- Brundrett, M.C. Mycorrhizal associations and other means of nutrition of vascular plants: Understanding the global diver-sity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 2009, 320, 37–77. [Google Scholar] [CrossRef]
- Brundrett, M.C. Global diversity and importance of mycorrhizal and nonmycorrhizal plants. In Biogeography of Mycorrhizal Symbiosis; Springer: Cham, Switzerland, 2017; pp. 533–556. [Google Scholar]
- Worchel, E.R.; Giauque, H.E.; Kivlin, S.N. Fungal symbionts alter plant drought response. Microb. Ecol. 2013, 65, 671–678. [Google Scholar] [CrossRef]
- Propster, J.R.; Johnson, N.C. Uncoupling the effects of phosphorus and precipitation on arbuscular mycorrhizas in the Serengeti. Plant Soil 2015, 388, 21–34. [Google Scholar] [CrossRef]
- Symanczik, S.; Courty, P.-E.; Boller, T.; Wiemken, A.; Al-Yahya’ei, M.N. Impact of water regimes on an experimental com-munity of four desert arbuscular mycorrhizal fungal (AMF) species, as affected by the introduction of a non-native AMF species. Mycorrhiza 2015, 25, 639–647. [Google Scholar] [CrossRef]
- Klironomos, J.N.; Hart, M.M.; Gurney, J.E.; Moutoglis, P. Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can. J. Botany 2001, 79, 1161–1166. [Google Scholar]
- Deveautour, C.; Power, S.A.; Barnett, K.L.; Ochoa-Hueso, R.; Donn, S.; Bennett, A.E.; Powell, J.R. Temporal dynamics of mycorrhizal fungal communities and co-associations with grassland plant communities following experimental manipulation of rainfall. J. Ecol. 2020, 108, 515–527. [Google Scholar] [CrossRef]
- Alpert, P. Constraints of tolerance: Why are desiccation-tolerant organisms so small or rare? J. Exp. Biol. 2006, 209, 1575–1584. [Google Scholar] [CrossRef] [Green Version]
- Aguilar-Trigueros, C.A.; Hempel, S.; Powell, J.R.; Cornwell, W.K.; Rillig, M.C. Bridging reproductive and microbial ecology: A case study in arbuscular mycorrhizal fungi. ISME J. 2019, 13, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Al-Yahya’ei, M.N.; Oehl, F.; Vallino, M.; Lumini, E.; Redecker, D.; Wiemken, A.; Bonfante, P. Unique arbuscular mycorrhizal fungal communities uncovered in date palm plantations and surrounding desert habitats of Southern Arabia. Mycorrhiza 2011, 21, 195–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; He, X.; Xie, L.; Zhao, L. Arbuscular mycorrhizal fungal community structure and diversity are affected by host plant species and soil depth in the Mu Us Desert, northwest China. Arid. Land Res. Manag. 2018, 32, 198–211. [Google Scholar] [CrossRef]
- Suleiman, M.K.; Dixon, K.; Commander, L.; Nevill, P.; Quoreshi, A.M.; Bhat, N.R.; Manuvel, A.J.; Sivadasan, M.T. Assessment of the diversity of fungal community composition associated with Vachellia pachyceras and its rhizosphere soil from Kuwait desert. Front. Microbiol. 2019, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- Talbot, J.M.; Bruns, T.D.; Taylor, J.W.; Smith, D.P.; Branco, S.; Glassman, S.I.; Erlandson, S.; Vilgalys, R.; Liao, H.-L.; Smith, M.E.; et al. Endemism and functional convergence across the North American soil mycobiome. Proc. Natl. Acad. Sci. USA 2014, 111, 6341–6346. [Google Scholar] [CrossRef] [Green Version]
- Glassman, S.I.; Peay, K.G.; Talbot, J.M.; Smith, D.P.; Chung, J.A.; Taylor, J.W.; Vilgalys, R.; BRUNS, T.D. A continental view of pine-associated ectomycorrhizal fungal spore banks: A quiescent functional guild with a strong biogeographic pattern. New Phytol. 2015, 205, 1619–1631. [Google Scholar] [CrossRef] [Green Version]
- Davison, J.; Moora, M.; Jairus, T.; Vasar, M.; Öpik, M.; Zobel, M. Hierarchical assembly rules in arbuscular mycorrhizal (AM) fungal communities. Soil Biol. Biochem. 2016, 97, 63–70. [Google Scholar] [CrossRef]
- Kivlin, S.N.; Winston, G.C.; Goulden, M.L.; Treseder, K.K. Environmental filtering affects soil fungal community composition more than dispersal limitation at regional scales. Fungal Ecol. 2014, 12, 14–25. [Google Scholar] [CrossRef] [Green Version]
- Egan, C.; Li, D.-W.; Klironomos, J. Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol. 2014, 12, 26–31. [Google Scholar] [CrossRef]
- Vernes, K.; Dunn, L. Mammal mycophagy and fungal spore dispersal across a steep environmental gradient in eastern Aus-tralia. Austral Ecol. 2009, 34, 69–76. [Google Scholar] [CrossRef]
- Correia, M.; Heleno, R.; da Silva, L.P.; Costa, J.M.; Rodríguez-Echeverría, S. First evidence for the joint dispersal of mycorrhizal fungi and plant diaspores by birds. New Phytol. 2019, 222, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Paz, C.; Öpik, M.; Bulascoschi, L.; Bueno, C.G.; Galetti, M. Dispersal of Arbuscular Mycorrhizal Fungi: Evidence and Insights for Ecological Studies. Microb. Ecol. 2020, 1–10. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.A.; Itoua, I.; Strand, H.E.; Morrison, J.C.; et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 2001, 51, 933. [Google Scholar] [CrossRef]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San Jose, Costa Rica, 1967. [Google Scholar]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osborne, C.P.; Salomaa, A.; Kluyver, T.A.; Visser, V.; Kellogg, E.A.; Morrone, O.; Vorontsova, M.S.; Clayton, W.D.; Simpson, D.A. A global database of C4photosynthesis in grasses. New Phytol. 2014, 204, 441–446. [Google Scholar] [CrossRef]
- EOL Encyclopedia of Life. Available online: http://eol.org (accessed on 13 January 2021).
- Kapralov, M.V.; Smith, J.A.C.; Filatov, D.A. Rubisco evolution in C4 eudicots: An analysis of Amaranthaceae sensu lato. PLoS ONE 2012, 7, e52974. [Google Scholar] [CrossRef] [Green Version]
- Blood, D.; Mitchell, A.; Bradley, J.; Addison, J. Field Guide to Common Grasses of the Southern Rangelands; Rangelands NRM: Perth, Australia, 2015. [Google Scholar]
- Kocacinar, F.; Sage, R.F. Photosynthetic pathway alters hydraulic structure and function in woody plants. Oecologia 2004, 139, 214–223. [Google Scholar] [CrossRef]
- Rudov, A.; Mashkour, M.; Djamali, M.; Akhani, H. A review of C4 plants in southwest Asia: An ecological, geographical and taxonomical analysis of a region with high diversity of C4 eudicots. Front. Plant Sci. 2020, 11, 546518. [Google Scholar] [CrossRef]
- Öpik, M.; Vanatoa, A.; Vanatoa, E.; Moora, M.; Davison, J.; Kalwij, J.M.; Reier, Ü.; Zobel, M. The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol. 2010, 188, 223–241. [Google Scholar] [CrossRef]
- Öpik, M.; Davison, J.; Moora, M.; Zobel, M. DNA-based detection and identification of Glomeromycota: The virtual taxonomy of environmental sequences. Botany 2014, 92, 135–147. [Google Scholar] [CrossRef]
- van Reeuwijk, L.P. Procedures for Soil Analysis; Technical Paper 9; International Soil Reference and Information Centre: Wa-geningen, The Netherlands, 1995. [Google Scholar]
- Vorobyova, L.A. Chemical Analysis of Soils; Moscow University Press: Moscow, Russia, 1998. [Google Scholar]
- Soil and Plant Analysis Council. Handbook on Reference Methods for Soil Analysis; CRC: London, UK, 1992. [Google Scholar]
- Gazol, A.; Zobel, M.; Cantero, J.J.; Davison, J.; Esler, K.J.; Jairus, T.; Öpik, M.; Vasar, M.; Moora, M. Impact of alien pines on local arbuscular mycorrhizal fungal communities—evidence from two continents. FEMS Microbiol. Ecol. 2016, 92, 073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiéry, O.; Vasar, M.; Jairus, T.; Davison, J.; Roux, C.; Kivistik, P.A.; Metspalu, A.; Milani, L.; Saks, Ü.; Moora, M.; et al. Sequence variation in nuclear ribosomal small subunit, internal transcribed spacer and large subunit regions of Rhizophagus irregularis and Gigaspora margarita is high and isolate-dependent. Mol. Ecol. 2016, 25, 2816–2832. [Google Scholar] [CrossRef] [PubMed]
- Lekberg, Y.; Vasar, M.; Bullington, L.; Sepp, S.; Antunes, P.M.; Bunn, R.A.; Larkin, B.G.; Öpik, M. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol. 2018, 220, 971–976. [Google Scholar] [CrossRef] [Green Version]
- Tedersoo, L.; Tooming-Klunderud, A.; Anslan, S. PacBio metabarcoding of Fungi and other eukaryotes: Errors, biases and perspectives. New Phytol. 2018, 217, 1370–1385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dumbrell, A.J.; Ashton, P.D.; Aziz, N.; Feng, G.; Nelson, M.; Dytham, C.; Fitter, A.H.; Helgason, T. Distinct seasonal assemblages of arbuscular mycorrhizal fungi revealed by massively parallel pyrosequencing. New Phytol. 2011, 190, 794–804. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Lee, S.; Young, J.P.W. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol. Ecol. 2008, 65, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasar, M.; Andreson, R.; Davison, J.; Jairus, T.; Moora, M.; Remm, M.; Young, J.P.W.; Zobel, M.; Öpik, M. Increased sequencing depth does not increase captured diversity of arbuscular mycorrhizal fungi. Mycorrhiza 2017, 27, 761–773. [Google Scholar] [CrossRef] [PubMed]
- Magoč, T.; Magoč, M.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinform. 2011, 27, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef] [PubMed]
- Camacho, C.; Coulouris, G.; Avagyan, V.; Ma, N.; Papadopoulos, J.; Bealer, K.; Madden, T.L. BLAST+: Architecture and ap-plications. BMC Bioinform. 2009, 10, 421. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; OHara, R.B.; Simpson, G.L.; Solymos, P.; et al. Vegan: Community Ecology Package, R package version 2.5-6; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Hsieh, T.C.; Ma, K.H.; Chao, A. iNEXT: An R package for rarefaction and extrapolation of species diversity (H ill numbers). Methods Ecol. Evol. 2016, 7, 1451–1456. [Google Scholar] [CrossRef]
- Paradis, E.; Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinform. 2018, 35, 526–528. [Google Scholar] [CrossRef] [PubMed]
- Öpik, M.; Zobel, M.; Cantero, J.J.; Davison, J.; Facelli, J.M.; Hiiesalu, I.; Jairus, T.; Kalwij, J.M.; Koorem, K.; Leal, M.E.; et al. Global sampling of plant roots expands the described molecular diversity of arbuscular mycorrhizal fungi. Mycorrhiza 2013, 23, 411–430. [Google Scholar] [CrossRef] [PubMed]
- Kembel, S.W.; Cowan, P.D.; Helmus, M.R.; Cornwell, W.K.; Morlon, H.; Ackerly, D.D.; Blomberg, S.P.; Webb, C.O. Pi-cante: R tools for integrating phylogenies and ecology. Bioinformatics 2010, 26, 1463–1464. [Google Scholar] [CrossRef] [Green Version]
- Legendre, P.; Anderson, M.J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 1999, 69, 1–24. [Google Scholar] [CrossRef]
- Pärtel, M.; Öpik, M.; Moora, M.; Tedersoo, L.; Szava-Kovats, R.; Rosendahl, S.; Rillig, M.C.; Lekberg, Y.; Kreft, H.; Helgason, T.; et al. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi. New Phytol. 2017, 216, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Glassman, S.I.; Wang, I.J.; Bruns, T.D. Environmental filtering by pH and soil nutrients drives community assembly in fungi at fine spatial scales. Mol. Ecol. 2017, 26, 6960–6973. [Google Scholar] [CrossRef] [Green Version]
- Tyler, G.; Olsson, T. Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant Soil 2001, 230, 307–321. [Google Scholar] [CrossRef]
- Neina, D. The Role of Soil pH in Plant Nutrition and Soil Remediation. Appl. Environ. Soil Sci. 2019, 2019, 1–9. [Google Scholar] [CrossRef]
- Tedersoo, L.; Bahram, M.; Põlme, S.; Kõljalg, U.; Yorou, N.S.; Wijesundera, R.L.C.; Ruiz, L.V.; Vasco-Palacios, A.M.; Thu, P.Q.; Suija, A.; et al. Global diversity and geography of soil fungi. Science 2014, 346, 1256688. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, V.B.; Rúa, M.A.; Antoninka, A.; Bever, J.D.; Cannon, J.; Craig, A.; Duchicela, J.; Frame, A.; Gardes, M.; Gehring, C.; et al. MycoDB, a global database of plant response to mycorrhizal fungi. Sci. Data 2016, 3, 160028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeksema, J.D.; Chaudhary, V.B.; Gehring, C.A.; Johnson, N.C.; Karst, J.; Koide, R.T.; Pringle, A.; Zabinski, C.; Bever, J.D.; Moore, J.C.; et al. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 2010, 13, 394–407. [Google Scholar] [CrossRef] [PubMed]
- Alguacil, M.D.M.; Roldán, A.; Torres, M.P. Assessing the diversity of AM fungi in arid gypsophilous plant communities. Environ. Microbiol. 2009, 11, 2649–2659. [Google Scholar] [CrossRef] [PubMed]
- Saks, Ü.; Davison, J.; Öpik, M.; Vasar, M.; Moora, M.; Zobel, M. Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Bot 2014, 92, 277–285. [Google Scholar] [CrossRef]
- Sikes, B.; Maherali, H.; Klironomos, J.N. Arbuscular mycorrhizal fungal communities change among three stages of primary sand dune succession but do not alter plant growth. Oikos 2012, 121, 1791–1800. [Google Scholar] [CrossRef] [Green Version]
- Martínez-García, L.B.; Richardson, S.J.; Tylianakis, J.M.; Peltzer, D.A.; Dickie, I.A. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol. 2014, 205, 1565–1576. [Google Scholar] [CrossRef]
- Moora, M.; Davison, J.; Öpik, M.; Metsis, M.; Saks, Ü.; Jairus, T.; Vasar, M.; Zobel, M. Anthropogenic land use shapes the composition and phylogenetic structure of soil arbuscular mycorrhizal fungal communities. FEMS Microbiol. Ecol. 2014, 90, 609–621. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Johnson, N.C.; Mao, L.; Shi, G.; Jiang, S.; Ma, X.; Du, G.; An, L.; Feng, H. Phylogenetic structure of arbuscular my-corrhizal community shifts in response to increasing soil fertility. Soil Biol. Biochem. 2015, 89, 196–205. [Google Scholar] [CrossRef] [Green Version]
- Chagnon, P.-L.; Bradley, R.L.; Maherali, H.; Klironomos, J.N. A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci. 2013, 18, 484–491. [Google Scholar] [CrossRef]
- García de León, D.; Davison, J.; Moora, M.; Öpik, M.; Feng, H.; Hiiesalu, I.; Jairus, T.; Koorem, K.; Liu, Y.; Phosri, C.; et al. Anthropogenic disturbance equalizes diversity levels in arbuscular mycorrhizal fungal communities. Glob. Chang. Biol. 2018, 24, 2649–2659. [Google Scholar] [CrossRef]
Site | Country, District and the Settlement Nearest to the Site | Ecoregion | Coordinates | MAT (°C) | MAP (mm) | pH | P (mg/100 g Soil) | N (%) | C (%) |
---|---|---|---|---|---|---|---|---|---|
ARG | Argentina, La Rioja, Los Colorados | Dry chaco | 29.58,11 S 67.5,29 W | 19.2 | 319 | 6.40 | 11.40 | 0.03 | 0.60 |
AUS | Australia, Northern territory, Alice Springs | Central Ranges xeric scrub | 23.46,01 S 133.52,32 E | 22.4 | 278 | 4.90 | 61.00 | 0.03 | 0.29 |
ISR | Israel, Southern district, Mitzpe Ramon | Mesopotamian shrub desert | 30.36,35 N 34.44,31 E | 17.1 | 113 | 7.47 | 0.38 | 0.09 | 0.62 |
KAZ | Kazakhstan, Zhambyl district, Taukum desert | Central Asian northern desert | 44.24,41 N 75.31,15 E | 10.6 | 192 | 7.59 | 1.98 | 0.03 | 0.42 |
SAU | Saudi Arabia, Riyadh, Arabian desert | Arabian desert | 24.58,58 N 46.50,60 E | 25.9 | 105 | 8.50 | 22.60 | 0.10 | 0.45 |
USA | United States of America, California, Boyd | Sonoran desert | 33.39,02 N 116.22,30 W | 21.2 | 141 | 7.35 | 6.51 | 0.05 | 0.37 |
Site | Life Zone | Vegetation Coverage (%) | Common Species | Growth Form | Photosynthetic Pathway |
---|---|---|---|---|---|
ARG | Warm temperate desert scrub | 20 | Larrea cuneifolia | Shrub | C3 |
Opuntia articulata | Forb | CAM | |||
Zuccagnia punctata | Shrub | C3 | |||
Atriplex lampa | Shrub | C4 | |||
Bouteloua aristidoides | Grass | C4 | |||
Cottea pappophoroides | Grass | C4 | |||
Cyclolepis genistoides | Shrub | C3 | |||
Gymnocalycium schickendantzii | Forb | C3 | |||
Neobouteloua lophostachya | Grass | C4 | |||
Pappophorum philippianum | Grass | C4 | |||
Porophyllum obscurum | Forb | C3 | |||
Prosopis chilensis | Tree | C3 | |||
AUS | Subtropical desert scrub | 60–80 | Cenchrus ciliaris | Grass | C3 and C4 |
Acacia spp | Tree | C3 | |||
Aristida contorta | Grass | C3 and C4 | |||
Triraphis mollis | Grass | C3 and C4 | |||
Eragrostis barrelieri | Grass | C4 | |||
Calocephalus platycephalus | Forb | C3 | |||
Wahlenbergia spp | Forb | C3 | |||
ISR | Warm temperate desert scrub | 10 | Asphodelus ramosus | Forb | C3 |
Erodium crassifolium | Forb | C3 | |||
Helianthemum viscarium | Forb | C3 | |||
Plantago afra | Forb | C3 | |||
Ballota undulata | Forb | C3 | |||
Pterocephalus brevis | Forb | C3 | |||
KAZ | Cool temperate desert scrub | 20 | Hordeum spontaneum | Grass | C3 |
Bassia prostrata | Shrub | C3 | |||
Heliotropium arguzioides | Forb | C3 | |||
Artemisia semiarida | Shrub | C3 | |||
Artemisia campestris | Forb | C3 | |||
Eremurus inderiensis | Forb | C3 | |||
Allium tulipifolium | Forb | C3 | |||
Ceratocarpus arenarius | Forb | C3 | |||
Astragalus maximowiczii | Shrub | C3 | |||
Ammodendron bifolium | Shrub | C3 | |||
Agropyron fragile | Grass | C3 | |||
Bromus tectorum | Grass | C3 | |||
Buglossoides arvensis | Forb | C3 | |||
Consolida camptocarpa | Forb | C3 | |||
Calligonum aphyllum | Shrub | C4 | |||
SAU | Subtropical desert | <5 | Stipagrostis plumosa | Grass | C4 |
Lasiurus scindicus | Grass | C4 | |||
USA | Warm temperate desert scrub | 30 | Larrea tridentata | Shrub | C3 |
Ferocactus cylindraceus | Stem succulent | C3 | |||
Opuntia littoralis | Stem succulent | C3 | |||
Parkinsonia florida | Tree | C3 | |||
Cylindropuntia bigelovii | Stem succulent | C3 | |||
Salvia apiana | Shrub | C3 | |||
Condea emoryi | Shrub | C3 |
ARG | AUS | ISR | KAZ | SAU | USA | ||
---|---|---|---|---|---|---|---|
Species richness | Observed | 13.0 | 17.0 | 36.0 | 13.0 | 3.0 | 4.0 |
Estimated | 17.5 | 18.0 | 37.6 | 13.0 | 3.0 | 4.0 | |
S.E. | 7.19 | 2.3 | 2.16 | 0.74 | 0.48 | 0.0 | |
LCL | 13.5 | 17.07 | 36.22 | 13.0 | 3.0 | 4.0 | |
UCL | 53.91 | 31.25 | 47.79 | 15.16 | 4.5 | 4.0 | |
Shannon diversity | Observed | 1.92 | 1.89 | 6.6 | 2.61 | 1.34 | 3.8 |
Estimated | 1.92 | 1.89 | 6.6 | 2.61 | 1.34 | 3.81 | |
S.E. | 0.03 | 0.01 | 0.02 | 0.02 | 0.05 | 0.03 | |
LCL | 1.92 | 1.89 | 6.6 | 2.61 | 1.34 | 3.8 | |
UCL | 1.98 | 1.91 | 6.64 | 2.66 | 1.43 | 3.87 | |
Simpson diversity | Observed | 1.46 | 1.51 | 4.52 | 1.9 | 1.18 | 3.62 |
Estimated | 1.46 | 1.51 | 4.52 | 1.9 | 1.18 | 3.63 | |
S.E. | 0.02 | 0.01 | 0.02 | 0.02 | 0.03 | 0.06 | |
LCL | 1.46 | 1.51 | 4.52 | 1.9 | 1.18 | 3.62 | |
UCL | 1.5 | 1.52 | 4.56 | 1.94 | 1.23 | 3.74 |
Scale | ARG | AUS | ISR | KAZ | SAU | USA |
All VT | 1.560 | 1.337 | 1.612 | 1.551 | −0.406 | −0.331 |
Continent VT | 3.217 | 3.088 | 2.970 | 2.427 | −0.554 | −0.166 |
Realm VT | 3.251 | 3.180 | 1.254 | 1.417 | −0.447 | −0.152 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasar, M.; Davison, J.; Sepp, S.-K.; Öpik, M.; Moora, M.; Koorem, K.; Meng, Y.; Oja, J.; Akhmetzhanova, A.A.; Al-Quraishy, S.; et al. Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms 2021, 9, 229. https://doi.org/10.3390/microorganisms9020229
Vasar M, Davison J, Sepp S-K, Öpik M, Moora M, Koorem K, Meng Y, Oja J, Akhmetzhanova AA, Al-Quraishy S, et al. Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms. 2021; 9(2):229. https://doi.org/10.3390/microorganisms9020229
Chicago/Turabian StyleVasar, Martti, John Davison, Siim-Kaarel Sepp, Maarja Öpik, Mari Moora, Kadri Koorem, Yiming Meng, Jane Oja, Asem A. Akhmetzhanova, Saleh Al-Quraishy, and et al. 2021. "Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats" Microorganisms 9, no. 2: 229. https://doi.org/10.3390/microorganisms9020229
APA StyleVasar, M., Davison, J., Sepp, S. -K., Öpik, M., Moora, M., Koorem, K., Meng, Y., Oja, J., Akhmetzhanova, A. A., Al-Quraishy, S., Onipchenko, V. G., Cantero, J. J., Glassman, S. I., Hozzein, W. N., & Zobel, M. (2021). Arbuscular Mycorrhizal Fungal Communities in the Soils of Desert Habitats. Microorganisms, 9(2), 229. https://doi.org/10.3390/microorganisms9020229