Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population and Settings
2.2. Data Collection
2.3. Ethics
2.4. Statistical Analysis
3. Results
3.1. Clinical Characteristics of the Study Population
3.2. Comparison and Correlation according to the Severity of Disease
3.3. Comparison and Correlation according to Survival
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Ethics
References
- Guan, W.J.; Ni, Z.Y.; Hu, Y.; Liang, W.H.; Ou, C.Q.; He, J.X.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef]
- Wang, D.; Hu, B.; Hu, C.; Zhu, F.; Liu, X.; Zhang, J.; Wang, B.; Xiang, H.; Cheng, Z.; Xiong, Y.; et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020, 323, 1061–1069. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Fan, B.E.; Chong, V.C.L.; Chan, S.S.W.; Lim, G.H.; Lim, K.G.E.; Tan, G.B.; Mucheli, S.S.; Kuperan, P.; Ong, K.H. Hematologic parameters in patients with COVID-19 infection. Am. J. Hematol. 2020, 95, E131–E134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Ding, X.; Xia, G.; Chen, H.-G.; Chen, F.; Geng, Z.; Xu, L.; Lei, S.; Pan, A.; Wang, L.; et al. Eosinopenia and elevated C-reactive protein facilitate triage of COVID-19 patients in fever clinic: A retrospective case-control study. EClinicalMedicine 2020, 23, 100375. [Google Scholar] [CrossRef] [PubMed]
- Słomka, A.; Kowalewski, M.; Żekanowska, E. Coronavirus Disease 2019 (COVID-19): A Short Review on Hematological Manifestations. Pathogens 2020, 9, 493. [Google Scholar] [CrossRef]
- Lavoignet, C.E.; Le Borgne, P.; Chabrier, S.; Slimani, H.; Chevrolet-Lavoignet, J.; Lefebvre, F.; Jebri, R.; Sengler, L.; Bilbault, P. White blood cell count and eosinopenia as valuable tools for the diagnosis of bacterial infections in the ED. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 1523–1532. [Google Scholar] [CrossRef] [PubMed]
- Abidi, K.; Belayachi, J.; Derras, Y.; Khayari, M.E.; Dendane, T.; Madani, N.; Khoudri, I.; Zeggwagh, A.A.; Abouqal, R. Eosinopenia, an early marker of increased mortality in critically ill medical patients. Intensive Care Med. 2011, 37, 1136–1142. [Google Scholar] [CrossRef]
- Yip, B.; Ho, K.M. Eosinopenia as a predictor of unexpected re-admission and mortality after intensive care unit discharge. Anaesth Intensive Care 2013, 41, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merino, C.A.; Martínez, F.T.; Cardemil, F.; Rodríguez, J.R. Absolute eosinophils count as a marker of mortality in patients with severe sepsis and septic shock in an intensive care unit. J Crit Care 2012, 27, 394–399. [Google Scholar] [CrossRef]
- Alkhalil, M.; Kearney, A.; Hegarty, M.; Stewart, C.; Devlin, P.; Owens, C.G.; Spence, M.S. Eosinopenia as an Adverse Marker of Clinical Outcomes in Patients Presenting with Acute Myocardial Infarction. Am. J. Med. 2019, 132, e827–e834. [Google Scholar] [CrossRef] [PubMed]
- Hori, Y.S.; Kodera, S.; Sato, Y.; Shiojiri, T. Eosinopenia as a Predictive Factor of the Short-Term Risk of Mortality and Infection after Acute Cerebral Infarction. J. Stroke Cerebrovasc. Dis. 2016, 25, 1307–1312. [Google Scholar] [CrossRef] [PubMed]
- Formica, V.; Minieri, M.; Bernardini, S.; Ciotti, M.; D’Agostini, C.; Roselli, M.; Andreoni, M.; Morelli, C.; Parisi, G.; Federici, M.; et al. Complete blood count might help to identify subjects with high probability of testing positive to SARS-CoV-2. Clin. Med. 2020, 20, e114–e119. [Google Scholar] [CrossRef]
- Liao, D.; Zhou, F.; Luo, L.; Xu, M.; Wang, H.; Xia, J.; Gao, Y.; Cai, L.; Wang, Z.; Yin, P.; et al. Haematological characteristics and risk factors in the classification and prognosis evaluation of COVID-19: A retrospective cohort study. Lancet Haematol. 2020, 7, e671–e678. [Google Scholar] [CrossRef]
- Zhang, J.J.; Dong, X.; Cao, Y.Y.; Yuan, Y.-D.; Yang, Y.-B.; Yan, Y.-Q.; Akdis, C.A.; Gao, Y.-D. Clinical characteristics of 140 patients infected with SARS-CoV-2 in Wuhan, China. Allergy 2020, 75, 1730–1741. [Google Scholar] [CrossRef] [PubMed]
- Naoum, F.A.; Ruiz, A.L.Z.; Martin, F.H.O.; Gomes Brito, T.H.; Hassem, V.; de Lucca Oliveira, M.G. Diagnostic and prognostic utility of WBC counts and cell population data in patients with COVID-19. Int. J. Lab. Hematol. 2020, 15. [Google Scholar] [CrossRef]
- Roca, E.; Ventura, L.; Zattra, C.M.; Lombardi, C. EOSINOPENIA: An early, effective, and relevant COVID-19 biomarker? published online ahead of print, 2020 Sep 2. QJM 2020, 259. [Google Scholar] [CrossRef]
- Ghahramani, S.; Tabrizi, R.; Lankarani, K.B.; Amin Kashani, S.M.; Rezaei, S.; Zeidi, N.; Akbari, M.; Heydari, S.T.; Akbari, H.; Nowrouzi-Sohrabi, P.; et al. Laboratory features of severe vs. non-severe COVID-19 patients in Asian populations: A systematic review and meta-analysis. Eur. J. Med. Res. 2020, 25, 30. [Google Scholar] [CrossRef]
- Knaus, W.A.; Zimmerman, J.E.; Wagner, D.P.; Draper, E.A.; Lawrence, D.E. APACHE-acute physiology and chronic health evaluation: A physiologically based classification system. Crit. Care Med. 1981, 9, 591–597. [Google Scholar] [CrossRef]
- Song, L.; Liang, E.Y.; Wang, H.M.; Shen, Y.; Kang, C.-M.; Xiong, Y.-J.; He, M.; Fu, W.-J.; Ke, P.-F.; Huang, X.-Z. Differential diagnosis and prospective grading of COVID-19 at the early stage with simple hematological and biochemical variables. Diagn. Microbiol. Infect Dis. 2020, 99, 115169. [Google Scholar] [CrossRef]
- Henry, B.M.; de Oliveira, M.H.S.; Benoit, S.; Plebani, M.; Lippi, G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): A meta-analysis. Clin. Chem. Lab. Med. 2020, 58, 1021–1028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, T.; Yi, Z.; Wang, M.; Wang, J.; Zhang, C.; Chen, H.; Bai, M.; Jiang, L.; Zhang, Y. Expression of eosinophil in peripheral blood of patients with COVID-19 and its clinical significance. J. Clin. Lab. Anal. 2020, 29, e23620. [Google Scholar] [CrossRef]
- Xie, G.; Ding, F.; Han, L.; Yin, D.; Lu, H.; Zhang, M. The role of peripheral blood eosinophil counts in COVID-19 patients. Allergy 2020, 20. [Google Scholar] [CrossRef]
- Hogan, S.P.; Rosenberg, H.F.; Moqbel, R.; Phipps, S.; Foster, P.S.; Lacy, P.; Kay, A.B.; Rothenberg, M.E. Eosinophils: Biological properties and role in health and disease. Clin. Exp. Allergy 2008, 38, 709–750. [Google Scholar] [CrossRef] [PubMed]
- Bass, D.A.; Gonwa, T.A.; Szejda, P.; Cousart, M.S.; DeChatelet, L.R.; McCall, C.E. Eosinopenia of acute infection: Production of eosinopenia by chemotactic factors of acute inflammation. J. Clin. Investig. 1980, 65, 1265–1271. [Google Scholar] [CrossRef]
- Jesenak, M.; Brndiarova, M.; Urbancikova, I.; Rennerova, Z.; Vojtkova, J.; Bobcakova, A.; Ostro, R.; Banovcin, P. Immune Parameters and COVID-19 Infection—Associations with Clinical Severity and Disease Prognosis. Front. Cell Infect. Microbiol. 2020, 10, 364. [Google Scholar] [CrossRef] [PubMed]
- Lindsley, A.W.; Schwartz, J.T.; Rothenberg, M.E. Eosinophil responses during COVID-19 infections and coronavirus vaccination. J. Allergy Clin. Immunol. 2020, 146, 1–7. [Google Scholar] [CrossRef]
- Rodrigo-Muñoz, J.M.; Sastre, B.; Cañas, J.A.; Gil-Martínez, M.; Redondo, N.; Del Pozo, V. Eosinophil Response Against Classical and Emerging Respiratory Viruses: COVID-19. J. Investig. Allergol. Clin. Immunol. 2020, 16. [Google Scholar] [CrossRef]
- Sun, D.W.; Zhang, D.; Tian, R.H.; Li, Y.; Wang, Y.; Cao, J.; Tang, Y.; Zhang, N.; Zan, T.; Gao, L.; et al. The underlying changes and predicting role of peripheral blood inflammatory cells in severe COVID-19 patients: A sentinel? Clin. Chim. Acta 2020, 508, 122–129. [Google Scholar] [CrossRef] [PubMed]
Total Patients n = 1035 | Moderate Severity n = 789 | Severe (ICU) Patients n = 246 | p Value | |
---|---|---|---|---|
Demographics | ||||
Age | 69.0 [58.0–79.0] | 70.0 [58.0–81.0] | 66.0 [57.3–72.0] | <0.001 * |
Gender (male) | 609 (58.8) | 433 (54.9) | 176 (71.5) | <0.001 * |
Obesity (BMI > 30) | 259 (34.0) | 178 (32.3) | 81 (38.6) | 0.100 |
Comorbidities | ||||
Hypertension | 587 (56.7) | 453 (57.4) | 134 (54.5) | 0.416 |
Diabetes mellitus | 275 (26.6) | 202 (25.6) | 73 (29.7) | 0.207 |
Pre-existing renal failure | 237 (23.2) | 199 (25.5) | 38 (15.8) | 0.002 * |
Cardio-vascular diseases | 357 (34.5) | 291 (36.9) | 66 (26.8) | 0.004 * |
Total autonomy | 796 (77.2) | 569 (72.4) | 227 (92.7) | <0.001 * |
Presentation in the ED | ||||
Saturation with O2 (%) | 92.0 [88.0–95.0] | 93.0 [89.0–96.0] | 88.0 [80.0–91.0] | <0.001 * |
O2 requirement (L/min) | 2.0 [0.0–4.0] | 2.0 [0.0–3.0] | 4.5 [2.0–9.3] | <0.001 * |
Time form symptom onset (days) | 7.0 [3.0–9.0] | 6.0 [3.0–9.0] | 7.0 [4.0–9.0] | 0.014 * |
Laboratory findings | ||||
Creatinine (μmol/L) | 93.4 ± 70.9 | 93.3 ± 77.4 | 93.9 ± 44.2 | 0.882 |
C-reactive protein (mg/L) | 99.9 ± 79.4 | 86.3 ± 68.8 | 143.8 ± 94.3 | <0.001 * |
Lactate (mmol/L) | 1.4 ± 0.9 | 1.3 ± 0.9 | 1.6 ± 1.0 | <0.001 * |
Lymphocytes (/mm3) | 969.1 ± 540.4 | 981.1 ± 478.7 | 930.9 ± 701.2 | 0.297 |
Neutrophils (/mm3) | 5617.7 ± 3261.8 | 5390.7 ± 3059.7 | 6335.8 ± 3749.1 | <0.001 * |
Eosinophils (/mm3) | 19.9 ± 48.7 | 22.6 ± 52.3 | 11.2 ± 33.7 | <0.001 * |
Eosinophils H-24 (/mm3) | 38.3 ± 78.6 | 44.0 ± 84.9 | 22.4 ± 54.4 | <0.001 * |
Delta eosino + (H-24) | 352 (43.2) | 293 (48.8) | 59 (27.6) | <0.001 * |
Hospital stay | ||||
Antibiotics | 457 (44.2) | 336 (42.6) | 121 (49.4) | 0.061 |
O2 requirement (days) | 7.0 [3.0–13.0] | 5.0 [1.0–8.0] | 20.0 [13.0–30.0] | <0.001 * |
Outcome | ||||
Thrombo-embolic events | 68 (6.6) | 26 (3.3) | 42 (17.4) | <0.001 * |
In hospital LOS (days) | 10.0 [7.0–17.3] | 8.0 [6.0–12.0] | 24.0 [17.0–38.0] | <0.001 * |
In hospital mortality | 139 (13.6) | 82 (10.4) | 57 (24.1) | <0.001 * |
Characteristics | Odds Ratio | 95%CI | p Value |
---|---|---|---|
Age | 0.975 | 0.959 0.990 | 0.001 * |
Obesity (BMI > 30) | 1.266 | 0.832 1.927 | 0.271 |
Gender (men) | 1.554 | 1.018 2.374 | 0.041 * |
Comorbidities | |||
Pre-existing renal failure | 0.840 | 0.494 1.428 | 0.519 |
Hypertension | 1.071 | 0.665 1.725 | 0.777 |
Diabetes mellitus | 1.082 | 0.684 1.712 | 0.735 |
Laboratory findings | |||
Creatinine > 100 μmol/L | 1.339 | 0.813 2.206 | 0.251 |
CRP > 100 mg/L | 2.941 | 1.946 4.447 | <0.001 * |
Lymphopenia < 500/mm3 | 1.008 | 0.584 1.739 | 0.978 |
Neutrophils > 10000/mm3 | 1.658 | 0.871 3.158 | 0.124 |
Eosinophils = 0/mm3 | 1.769 | 1.152 2.717 | 0.009 * |
Delta Eosinophils + (H-24) | 0.273 | 0.178 0.418 | <0.001 * |
Total Patients n = 1023 | Survivors n = 884 | Non-Survivors n = 139 | p Value | |
---|---|---|---|---|
Demographics | ||||
Age | 69.0 [58.0–79.0] | 67.0 [56.0–77.0] | 78.0 [70.0–86.0] | <0.001 * |
Gender (male) | 602 (58.9) | 517 (58.5) | 85 (61.2) | 0.553 |
Obesity (BMI > 30) | 258 (34.1) | 227 (33.9) | 31 (36.1) | 0.690 |
Comorbidities | ||||
Hypertension | 580 (56.7) | 477 (54.0) | 103 (74.1) | <0.001 * |
Diabetes mellitus | 269 (26.3) | 227 (25.7) | 42 (30.2) | 0.259 |
Pre-existing renal failure | 236 (23.4) | 189 (21.6) | 47 (35.3) | <0.001 * |
Cardio-vascular Disease | 355 (34.7) | 283 (32.1) | 72 (51.8) | <0.001 * |
Total autonomy | 785 (77.0) | 702 (79.6) | 83 (60.6) | <0.001 * |
Presentation ED | ||||
Saturation with O2 (%) | 92.0 [88.0–95.0] | 92.0 [88.0–95.0] | 88.0 [80.0–93.0] | <0.001 * |
O2 requirement (L/min) | 2.0 [0.0; 4.0] | 2.0 [0.0–3.0] | 3.0 [2.0–6.0] | <0.001 * |
Time form symptom onset(days) | 7.0 [3.0; 9.0] | 7.0 [3.0–9.0] | 3.0 [2.0–7.0] | <0.001 * |
Laboratory findings | ||||
Creatinine (μmol/L) | 93.4 ± 71.1 | 89.1 ± 71.0 | 120.3 ± 65.5 | <0.001 * |
C-reactive protein (mg/L) | 99.3 ± 79.1 | 96.7 ± 77.0 | 116.6 ± 89.4 | 0.014 * |
Lactate (mmol/L) | 1.4 ± 0.9 | 1.3 ± 0.9 | 1.7 ± 1.0 | 0.001 * |
Lymphocytes (/mm3) | 968.2 ± 539.5 | 986.5 ± 524.6 | 849.6 ± 616.9 | 0.016 * |
Neutrophils (/mm3) | 5601.2 ± 3263.1 | 5505.0 ± 3177.4 | 6223.5 ± 3724.7 | 0.035 * |
Eosinophils (/mm3) | 19.8 ± 48.6 | 19.0 ± 46.9 | 24.4 ± 58.3 | 0.306 |
Eosinophils H-24 (/mm3) | 38.4 ± 78.8 | 40.8 ± 81.2 | 22.2 ± 59.0 | 0.005 * |
Delta eosino + (H-24) | 349 (43.4) | 315 (45.1) | 34 (32.1) | 0.012 * |
Hospital stay | ||||
Antibiotics | 450 (44.0) | 376 (42.6) | 74 (53.2) | 0.019 * |
O2 requirement (days) | 7.0 [3.0–13.0] | 6.0 [2.0–13.0] | 8.0 [5.0–16.0] | <0.001 * |
Outcome | ||||
Thrombo-embolic events | 67 (6.6) | 55 (6.2) | 12 (8.6) | 0.285 |
In hospital LOS (days) | 10.0 [7.0–17.5] | 10.0 [7.0–18.0] | 9.0 [5.0–16.5] | 0.064 |
Characteristics | Odds Ratio | 95%CI | p Value |
---|---|---|---|
Age | 1.046 | 1.020 1.073 | <0.001 * |
Obesity (BMI > 30) | 1.366 | 0.740 2.520 | 0.318 |
Gender (male) | 1.604 | 0.881 2.919 | 0.122 |
Comorbidities | |||
Pre-existing renal failure | 1.268 | 0.672 2.394 | 0.464 |
Hypertension | 1.101 | 0.561 2.161 | 0.780 |
Diabetes mellitus | 0.698 | 0.368 1.326 | 0.272 |
Laboratory findings | |||
Creatinine > 100 μmol/L | 1.358 | 0.724 2.547 | 0.340 |
CRP > 100 mg/L | 1.294 | 0.723 2.317 | 0.385 |
Lymphopenia < 500/mm3 | 1.955 | 1.027 3.723 | 0.041 * |
Neutrophils > 10000/mm3 | 1.674 | 0.753 3.722 | 0.206 |
Eosinophils = 0/mm3 | 0.892 | 0.504 1.580 | 0.696 |
Delta Eosinophils + (H-24) | 0.696 | 0.391 1.239 | 0.218 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Le Borgne, P.; Abensur Vuillaume, L.; Alamé, K.; Lefebvre, F.; Chabrier, S.; Bérard, L.; Haessler, P.; Gennai, S.; Bilbault, P.; Lavoignet, C.-E. Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study. Microorganisms 2021, 9, 334. https://doi.org/10.3390/microorganisms9020334
Le Borgne P, Abensur Vuillaume L, Alamé K, Lefebvre F, Chabrier S, Bérard L, Haessler P, Gennai S, Bilbault P, Lavoignet C-E. Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study. Microorganisms. 2021; 9(2):334. https://doi.org/10.3390/microorganisms9020334
Chicago/Turabian StyleLe Borgne, Pierrick, Laure Abensur Vuillaume, Karine Alamé, François Lefebvre, Sylvie Chabrier, Lise Bérard, Pauline Haessler, Stéphane Gennai, Pascal Bilbault, and Charles-Eric Lavoignet. 2021. "Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study" Microorganisms 9, no. 2: 334. https://doi.org/10.3390/microorganisms9020334
APA StyleLe Borgne, P., Abensur Vuillaume, L., Alamé, K., Lefebvre, F., Chabrier, S., Bérard, L., Haessler, P., Gennai, S., Bilbault, P., & Lavoignet, C.-E. (2021). Do Blood Eosinophils Predict in-Hospital Mortality or Severity of Disease in SARS-CoV-2 Infection? A Retrospective Multicenter Study. Microorganisms, 9(2), 334. https://doi.org/10.3390/microorganisms9020334