Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis
Abstract
:1. Introduction
2. Patients and Methods
2.1. Patients
2.2. Definitions
2.2.1. Definition of Tick-Borne Encephalitis
2.2.2. Categorization of the Severity of Tick-Borne Encephalitis
2.2.3. Tick-Borne Encephalitis-Associated Symptoms
2.2.4. Sequelae of Tick-Borne Encephalitis, Post-Encephalitic Syndrome
2.3. Antibody Determinations
2.4. Statistical Analyses
3. Results
3.1. Presentation of Tick-Borne Encephalitis
3.1.1. Assessment of IgG Tick-Borne Encephalitis Virus Seronegativity with Clinical Course
3.1.2. Correlation with the Levels of Tick-Borne Encephalitis Virus IgG Antibodies
3.2. Long-Term Outcome of Tick-Borne Encephalitis
3.2.1. Tick-Borne Encephalitis Virus IgG Antibodies below or above Cut-Off Value
3.2.2. Levels of Tick-Borne Encephalitis Virus IgG Antibodies in Patients with Post-Encephalitic Syndrome
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Taba, P.; Schmutzhard, E.; Forsberg, P.; Lutsar, I.; Ljøstad, U.; Mygland, Å.; Levchenko, I.; Strle, F.; Steiner, I. EAN consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017, 24, 1214–1261. [Google Scholar] [CrossRef]
- Bogovic, P.; Strle, F. Tick-borne encephalitis: A review of epidemiology, clinical characteristics, and management. World J. Clin. Cases 2015, 3, 430–441. [Google Scholar] [CrossRef]
- Günther, G.; Haglund, M.; Lindquist, L.; Sköldenberg, B.; Forsgren, M. Intrathecal IgM, IgA and IgG antibody response in tick-borne encephalitis. Long-term follow-up related to clinical course and outcome. Clin. Diagn. Virol. 1997, 8, 17–29. [Google Scholar] [CrossRef]
- Holzmann, H. Diagnosis of tick-borne encephalitis. Vaccine 2003, 21 (Suppl. 1), 36–40. [Google Scholar] [CrossRef]
- Dörrbecker, B.; Dobler, G.; Spiegel, M.; Hufert, F.T. Tick-borne encephalitis virus and the immune response of the mammalian host. Travel Med. Infect. Dis. 2010, 8, 213–222. [Google Scholar] [CrossRef]
- Hofmann, H.; Frisch-Niggemeyer, W.; Kunz, C. Protection of mice against tick-borne encephalitis by different classes of immunoglobulins. Infection 1978, 6, 154–157. [Google Scholar] [CrossRef] [PubMed]
- Palus, M.; Vojtíšková, J.; Salát, J.; Kopecký, J.; Grubhoffer, L.; Lipoldová, M.; Demant, P.; Růžek, D. Mice with different susceptibility to tick-borne encephalitis virus infection show selective neutralizing antibody response and inflammatory reaction in the central nervous system. J. Neuroinflamm. 2013, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, R.; Holzmann, H. Laboratory findings in tick-borne encephalitis–correlation with clinical outcome. Infection 2000, 28, 78–84. [Google Scholar] [CrossRef] [PubMed]
- Bogovič, P.; Lotrič-Furlan, S.; Avšič-Županc, T.; Lusa, L.; Strle, F. Factors associated with severity of tick-borne encephalitis: A prospective observational study. Travel Med. Infect. Dis. 2018, 26, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Saksida, A.; Jakopin, N.; Jelovšek, M.; Knap, N.; Fajs, L.; Lusa, L.; Lotrič-Furlan, S.; Bogovič, P.; Arnež, M.; Strle, F.; et al. Virus RNA load in patients with tick-borne encephalitis, Slovenia. Emerg. Infect. Dis. 2018, 24, 1315–1323. [Google Scholar] [CrossRef] [Green Version]
- Bogovič, P.; Stupica, D.; Rojko, T.; Lotrič-Furlan, S.; Avšič-Županc, T.; Kastrin, A.; Lusa, L.; Strle, F. The long-term outcome of tick-borne encephalitis in Central Europe. Ticks Tick-Borne Dis. 2018, 9, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Bogovic, P.; Logar, M.; Avsic-Zupanc, T.; Strle, F.; Lotric-Furlan, S. Quantitative evaluation of the severity of acute illness in adult patients with tick-borne encephalitis. BioMed. Res. Internat. 2014, 2014, 841027. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: http://www.R-project.org/ (accessed on 15 July 2020).
- Lotrič-Furlan, S.; Bogovič, P.; Avšič-Županc, T.; Jelovšek, M.; Lusa, L.; Strle, F. Tick-borne encephalitis in patients vaccinated against this disease. J. Intern. Med. 2017, 282, 142–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, R. The clinical and epidemiological profile of tick-borne encephalitis in southern Germany 1994–98: A prospective study of 656 patients. Brain 1999, 122, 2067–2078. [Google Scholar] [CrossRef] [Green Version]
- Sumlivaia, O.N.; Vorob’eva, N.N.; Karakulova, I.V. Diagnostic value of determination of the blood concentrations of serotonin and high-sensitivity C-reactive protein in patients with tick-borne encephalitis. Med. Parazitol. 2014, 2, 25–29. [Google Scholar]
- Lenhard, T.; Ott, D.; Jakob, N.J.; Pham, M.; Bäumer, P.; Martinez-Torres, F.; Meyding-Lamadé, U. Predictors, neuroimaging characteristics and long-term outcome of severe European tick-borne encephalitis: A prospective cohort study. PLoS ONE 2016, 11, e0154143. [Google Scholar] [CrossRef] [Green Version]
- Gredmark-Russ, S.; Varnaite, R. Immunology of TBEV infection. In Tick-Borne Encephalitis, 2nd ed.; Dobler, G., Erber, W., Bröker, M., Schmitt, H.J., Eds.; Global Health Press: Singapore, 2019; pp. 161–180. ISBN 978-981-14-0914-1. [Google Scholar]
- Reusken, C.; Boonstra, M.; Rugebregt, S.; Scherbeijn, S.; Chandler, F.; Avšič-Županc, T.; Vapalahti, O.; Koopmans, M.; Geurtsvan Kessel, C.H. An evaluation of serological methods to diagnose tick-borne encephalitis from serum and cerebrospinal fluid. J. Clin. Virol. 2019, 120, 78–83. [Google Scholar] [CrossRef]
- Ackermann-Gäumann, R.; Eyer, C.; Leib, S.L.; Niederhauser, C. Comparison of four commercial IgG-enzyme-linked immunosorbent assays for the detection of tick-borne encephalitis virus antibodies. Vector Borne Zoonotic Dis. 2019, 19, 358–364. [Google Scholar] [CrossRef] [PubMed]
- Andersson, C.R.; Vene, S.; Insulander, M.; Lindquist, L.; Lundkvist, A.; Günther, G. Vaccine failures after active immunisation against tick-borne encephalitis. Vaccine 2010, 28, 2827–2831. [Google Scholar] [CrossRef] [PubMed]
- Remoli, M.E.; Marchi, A.; Fortuna, C.; Benedetti, E.; Minelli, G.; Fiorentini, C.; Mel, R.; Venturi, G.; Ciufolini, M.G. Anti-tick-borne encephalitis (TBE) virus neutralizing antibodies dynamics in natural infections versus vaccination. Pathog. Dis. 2015, 73, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Jarmer, J.; Zlatkovic, J.; Tsouchnikas, G.; Vratskikh, O.; Strauß, J.; Aberle, J.H.; Chmelik, V.; Kundi, M.; Stiasny, K.; Heinz, F.X. Variation of the specificity of the human antibody responses after tick-borne encephalitis virus infection and vaccination. J. Virol. 2014, 88, 13845–13857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleiter, I.; Jilg, W.; Bogdahn, U.; Steinbrecher, A. Delayed humoral immunity in a patient with severe tick-borne encephalitis after complete active vaccination. Infection 2007, 35, 26–29. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Patients (No = 691) | Patients with Positive IgG Levels to TBEV (No = 659) | Patients with Negative IgG Levels to TBEV (No = 32) |
---|---|---|---|
Number (%, 95% CI) or Median (IQR) | |||
Male sex | 391 (56.6, 52.8–60.3) | 369 (56.0, 52.1–59.8) | 22 (68.8, 50.0–83.4) |
Age (years) | 54 (41–64) | 53 (41–63) | 55.5 (40.75–65) |
Underlying illnesses | 300 (43.4, 39.7–47.2) | 285 (43.2, 39.4–47.1) | 15 (46.9, 29.1–65.3) |
Severe underlying immunocompromised condition a | 12 (1.7, 0.9–3.0) | 9 (1.4, 0.6–2.6) | 3 (9.4, 2.0–25.0) |
Duration of illness before hospitalization (days) b | 4 (3–6) (DA 631) | 4 (3–6.75) (DA 602) | 3 (2–3) (DA 29) |
Biphasic course of illness | 418/680 (61.5, 57.7–65.2) | 394/648 (60.8, 56.9–64.6) | 24 (75.0, 56.6–88.5) |
Clinical presentation | |||
Meningitis | 226 (32.7, 29.2–36.3) | 223 (33.8, 30.2–37.6) | 3 (9.4, 2.0–25.0) |
Meningoencephalitis | 428 (61.9, 58.2–65.6) | 408 (62.0, 58.1–65.6) | 20 (62.5, 43.7–78.9) |
Meningoencephalomyelitis | 37 (5.4, 3.8–7.3) | 28 (4.2, 2.8–6.1) | 9 (28.1, 13.8–46.8) |
Severity of illness (severity score) | 12 (5–18) (DA 449) | 11 (4–18) (DA 429) | 18 (13–22.75) (DA 20) |
Treatment in intensive care | |||
unit; number | 53 (7.7, 5.8–9.9) | 46 (7.0, 5.2–9.2) | 7 (21.9, 9.3–40.0) |
duration (days) | 8 (4–10) | 7 (4–9) | 17 (7.5–73) |
Artificial ventilation; number | 15 (2.2, 1.2–3.6) | 10 (1.5, 0.7–2.8) | 5 (15.6, 5.3–32.8) |
duration (days) | 7 (3.5–22.5) | 4.5 (3.25–7) | 35 (10–38) |
Hospitalization (days) | 8 (6–10) | 8 (6–10) | 13 (9–17.25) |
hospitalization > 4 weeks; number | 13 (1.9, 1.0–3.2) | 8 (1.2, 0.5–2.4) | 5 (15.6, 5.3–32.8) |
Death in acute phase of illness (during hospitalization) | 4 (0.6, 0.2–1.5) | 1 (0.2, 0–0.8) | 3 (9.4, 2.–25.0) |
Blood leukocyte count (×109 cells/L) | 10.2 (8.48–12.4) (DA 684) | 10.2 (8.5–12.4) (DA 652) | 9.45 (7.625–12.025) |
Serum CRP level (mg/L) | 7 (3–16) (DA 683) | 7 (3–16) (DA 651) | 4.5 (3–8.75) |
CSF laboratory findings | |||
Leukocyte count (×106 cells/L) | 85 (42–153) | 84 (42–149) | 184 (56.5–249.25) |
Protein concentration (g/L) | 0.69 (0.53–0.91) (DA 690) | 0.7 (0.5325–0.9175) (DA 658) | 0.65 (0.5375–0.805) |
Glucose concentration (mmol/L) | 3.0 (2.7–3.3) (DA 685) | 3.0 (2.7–3.3) (DA 653) | 2.9 (2.7–3.3) |
Level of TBEV IgG antibodies (U/mL) | 37.3 (19.7–64.2) | 38 (21.25–62.2) | NA |
Concomitant Lyme neuroborreliosis c | 21/635 (3.3, 2.1–5.0) | 21/605 (3.5, 2.2–5.3) | 0 (0, 0–10.9) |
Positive B. burgdorferi sensu lato IgG antibodies in serum d | 61/629 (9.7, 7.5–12.3) | 58/599 (9.7, 7.4–12.3) | 3/30 (10.0, 2.1–26.5) |
Covariate | Negative IgG Antibodies to TBEV | Levels of IgG Antibodies to TBEV | ||
---|---|---|---|---|
Univariate Analysis OR (95% CI); P | Multivariable Analysis OR (95% CI); P | Univariate Analysis EC a (95% CI); P | Multivariable Analysis EC a (95% CI); P | |
Age | 1.03 (0.83–1.29); 0.791 b | 0.89 (0.83–0.93); 0.284 b | 0.96 (0.92–1.01); 0.151 | 1.01 (0.95–1.06); 0.850 |
Male sex | 1.68 (0.82–3.71); 0.162 | 1.50 (1.26–1.72); 0.332 | 0.82 (0.69–0.95); 0.016 | 0.84 (0.72–0.97); 0.024 |
Underlying illnesses | 1.16 (0.57–2.35); 0.675 | 0.89 (0.72–1.02); 0.661 | 0.95 (0.80–1.10); 0.543 | 1.09 (0.91–1.26); 0.330 |
Duration of illness before hospitalization c | 0.65 (0.50–0.82); <0.001 | 0.59 (0.49–0.64); 0.019 | 1.58 (1.30–1.87); <0.001 b | 1.25 (1.03–1.47); <0.001 b |
Serum CRP level d | 0.82 (0.52–1.13); 0.256 | 0.58 (0.52–0.86); 0.001 | 1.53 (1.24–1.81); <0.001 b | 1.41 (1.16–1.66); <0.001 b |
CSF leukocyte count d | 1.58 (1.29–1.93); <0.001 | 1.65 (1.26–1.74); <0.001 | 1.03 (0.87–1.20); <0.001 b | 0.87 (0.73–1.01); 0.002 b |
CSF protein concentration d | 0.93 (0.60–1.33); 0.722 | 0.86 (0.77–0.93); 0.417 | 1.02 (0.93–1.10); 0.706 b | 1.03 (0.95–1.12); 0.466 b |
Severity of acute illness | ||||
Clinical assessment e | ||||
Meningoencephalitis | 3.20 (1.15–12.16); 0.024 | NA | 0.70 (0.59–0.82); <0.001 | NA |
Meningoencephalomyelitis | 21.29 (6.33–89.38); <0.001 | NA | 0.27 (0.17–0.36); <0.001 | NA |
Quantitative assessment f | 2.54 (1.75–3.71); <0.001 | 1.18 (1.02–1.30); 0.751 | 0.67 (0.61–0.73); <0.001 b | 0.89 (0.78–1.0); 0.063 b |
Duration of hospitalization | 10.42 (0–29.64); <0.001 | 8.51 (0.00–21.7); 0.018 | 0.63 (0.55–0.70); <0.001 b | 0.71 (0.60–0.82); <0.001 b |
Treated in ICU | 3.88 (1.53–8.86); 0.006 | 0.62 (0.43–0.77); 0.378 | 0.46 (0.32–0.59); <0.001 | 0.94 (0.62–1.26); 0.747 |
Artificially ventilated | 12.37 (3.84–36.17); <0.001 | 1.70 (1.09–2.62); 0.690 | 0.21 (0.10–0.33); <0.001 | 0.63 (0.23–1.04); 0.160 |
Characteristic | All Patients (No = 401) | Patients with Favorable Outcome (No = 267) | Patients with PES (No = 134) |
---|---|---|---|
Number (%, 95% CI) or Median (IQR) | |||
Age (years) | 55 (43–63) | 55 (40.5–64) | 54.5 (44–62) |
Male sex | 215 (53.6, 48.6–58.6) | 149 (55.8, 49.6–61.9) | 66 (49.3, 40.5–58.0) |
Underlying illnesses | 179 (44.6, 39.7–49.7) | 113 (42.3, 36.3–48.5) | 66 (49.3, 40.5–58.0) |
CSF leukocyte count (×106 cells/L) | 80 (40–139) | 80 (40–133) | 88.5 (39–153.5) |
CSF protein concentration (g/L) | 0.69 (0.54–0.92) | 0.68 (0.54–0.925) | 0.71 (0.55–0.92) |
Severity of acute illness | |||
Clinical presentation | |||
Meningitis | 126 (31.4, 26.9–36.2) | 90 (33.7, 28.1–39.7) | 36 (26.9, 19.6–35.2) |
Meningoencephalitis | 257 (64.1, 59.2–68.8) | 172 (64.4, 58.4–70.2) | 85 (63.4, 54.7–71.6) |
Meningoencephalomyelitis | 18 (4.5, 2.7–7.0) | 5 (1.9, 0.6–6.4) | 13 (9.7, 5.3–16.0) |
Quantitative assessment (severity score) | 12 (5–18) | 11 (4–17.75) | 13 (5.5–19.5) |
Level of TBEV IgG antibodies (U/mL) | 38.4 (19.6–62.8) | 41.9 (21.9–63.4) | 34.6 (17.2–61.15) |
Negative IgG antibodies to TBEV | 13 (3.2, 1.7–5.5) | 7 (2.6, 1.1–5.3) | 6 (4.5, 1.7–9.5) |
Concomitant Lyme neuroborreliosis a | 8/369 (2.2, 0.9–4.2) | 4/247 (1.6, 0.4–4.1) | 4/122 (3.3, 0.9–8.2) |
Covariate | Post-Encephalitic Syndrome a | |
---|---|---|
Univariate Analysis OR (95% CI); P b | Multivariable Analysis OR (95% CI); P b | |
Age c | 0.47 (0.18–0.76); 0.003 | 0.38 (0.12–0.64); 0.010 |
Male sex | 0.77 (0.51–1.16); 0.215 | 0.71 (0.46–1.10); 0.130 |
Underlying illnesses | 1.32 (0.87–2.00); 0.188 | 1.46 (0.90–2.39); 0.129 |
CSF leukocyte count d | 1.10 (0.90–1.34); 0.340 | 1.04 (0.83–1.30); 0.739 |
CSF protein concentration d | 1.16 (0.95–1.41); 0.148 | 1.09 (0.87–1.36); 0.470 |
Severity of acute illness | ||
Clinical presentation e | ||
Meningoencephalitis | 1.23 (0.78–1.97); 0.381 | NA |
Meningoencephalomyelitis | 6.09 (2.20–19.13); <0.001 | NA |
Quantitative assessment | 1.41 (1.09–1.83); 0.008 | 1.31 (0.99–1.75); 0.056 |
(severity score) | ||
Serum IgG antibodies to TBEV | ||
Levels d Log-IgG | 0.78 (0.61–0.98); 0.032 | 0.83 (0.64–1.06); 0.136 |
Negative IgG d | 1.75 (0.58–5.27); 0.308 | NA |
Concomitant LNB f | 2.02 (0.51–7.94); 0.303 | 1.94 (0.47–8.04); 0.350 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bogovič, P.; Lotrič-Furlan, S.; Avšič-Županc, T.; Korva, M.; Lusa, L.; Strle, K.; Strle, F. Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis. Microorganisms 2021, 9, 332. https://doi.org/10.3390/microorganisms9020332
Bogovič P, Lotrič-Furlan S, Avšič-Županc T, Korva M, Lusa L, Strle K, Strle F. Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis. Microorganisms. 2021; 9(2):332. https://doi.org/10.3390/microorganisms9020332
Chicago/Turabian StyleBogovič, Petra, Stanka Lotrič-Furlan, Tatjana Avšič-Županc, Miša Korva, Lara Lusa, Klemen Strle, and Franc Strle. 2021. "Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis" Microorganisms 9, no. 2: 332. https://doi.org/10.3390/microorganisms9020332
APA StyleBogovič, P., Lotrič-Furlan, S., Avšič-Županc, T., Korva, M., Lusa, L., Strle, K., & Strle, F. (2021). Low Virus-Specific IgG Antibodies in Adverse Clinical Course and Outcome of Tick-Borne Encephalitis. Microorganisms, 9(2), 332. https://doi.org/10.3390/microorganisms9020332