Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. P. cactorum Isolates
2.2. DNA Extraction
2.3. Species Identification
2.4. DNA Library Preparation for Genotyping by ddRADseq
2.5. Effector Genes Sequence Analysis
2.6. Data Processing—ddRADseq
2.7. Data Processing—Effector Genes (RXLR6, RXLR7 and SCR117)
3. Results
3.1. Analyses Based on ddRADseq Data
3.2. Analyses Based on Sequences of Effector Genes
3.3. Summary of Results—DdRADseq + Effector Genes: Relationship between C1, S and Other Groups
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
K | Mean LnP (K) | Standard Deviation of LnP (K) | Ln’ (K) | |Ln’’ (K)| | Delta K |
---|---|---|---|---|---|
1 | −2,847,681.08 | 18.7235 | / | / | / |
2 | −2,357,312.03 | 975.6982 | 490,369.05 | 352,173.92 | 360.945563 |
3 | −2,219,116.90 | 2730.3848 | 138,195.13 | 130,000.21 | 47.612413 |
4 | −2,210,921.98 | 27,897.9185 | 8194.92 | 24,848.99 | 0.890711 |
5 | −2,177,878.07 | 19,420.4556 | 33,043.91 | 13,158,329.00 | 677.549964 |
6 | −15,303,163.16 | 25,446,335.2133 | −13,125,285.09 | 13,924,243.00 | 0.547200 |
7 | −14,504,205.25 | 12,966,509.3833 | 798,957.91 | 27,142,589.45 | 2.093284 |
8 | −40,847,836.79 | 45,589,265.4895 | −26,343,631.54 | / | / |
References
- Erwin, D.C.; Ribeiro, O.K. Phytophthora Diseases Worldwide; APS Press: St. Paul, MN, USA, 1996. [Google Scholar]
- Jung, T.; Orlikowski, L.; Henricot, B.; Abad-Campos, P.; Aday, A.G.; Aguín Casal, O.; Bakonyi, J.; Cacciola, S.O.; Cech, T.; Chavarriaga, D.; et al. Widespread Phytophthora infestations in European nurseries put forest, semi-natural and horticultural ecosystems at high risk of Phytophthora diseases. For. Pathol. 2016, 46, 134–163. [Google Scholar] [CrossRef] [Green Version]
- Eikemo, H.; Klemsdal, S.S.; Riisberg, I.; Bonants, P.; Stensvand, A.; Tronsmo, A.M. Genetic variation between Phytophthora cactorum isolates differing in their ability to cause crown rot in strawberry. Mycol. Res. 2004, 108, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Hantula, J.; Lilja, A.; Parikka, P. Genetic variation and host specificity of Phytophthora cactorum isolated in Europe. Mycol. Res. 1997, 101, 565–572. [Google Scholar] [CrossRef]
- Lilja, A.; Reijo, K.; Päivi, P.; Kari, K.; Heikki, N. Pathogenicity and genetic variation of Phytophthora cactorum from silver birch and strawberry. Eur. J. Plant Pathol. 1998, 104, 529–535. [Google Scholar] [CrossRef]
- Becktell, M.C.; Smart, C.D.; Haney, C.H.; Fry, W.E. Host-pathogen interactions between Phytophthora infestans and the solanaceous hosts Calibrachoa x hybridus, Petunia x hybrida, and Nicotiana benthamiana. Plant Dis. 2006, 90, 24–32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haque, M.M.; Casero, J.J. Susceptibility of common alder (Alnus glutinosa) seeds and seedlings to Phytophthora alni and other Phytophthora species. For. Syst. 2012, 21, 313–322. [Google Scholar] [CrossRef] [Green Version]
- Van Der Scheer, H.A.T. Isolation of Phytophthora cactorum from soil in orchards and strawberry fields and differences in pathogenicity to apple. Neth. J. Plant Pathol. 1971, 77, 65–72. [Google Scholar] [CrossRef]
- Bhat, R.G.; Colowit, P.M.; Tai, T.H.; Aradhya, M.K.; Browne, G.T. Genetic and pathogenic variation in Phytophthora cactorum affecting fruit and nut crops in California. Plant Dis. 2006, 90, 161–169. [Google Scholar] [CrossRef] [Green Version]
- Cooke, D.E.L.; Kennedy, D.M.; Guy, D.C.; Russell, J.; Unkles, S.E.; Duncan, J.M. Relatedness of Group I species of Phytophthora as assessed by randomly amplified polymorphic DNA (RAPDs) and sequences of ribosomal DNA. Mycol. Res. 1996, 100, 297–303. [Google Scholar] [CrossRef]
- Hantula, J.; Lilja, A.; Nuorteva, H.; Parikka, P.; Werres, S. Isolation and Pathogenicity of Phytophthora cactorum from Forest and Ginseng Garden Soils in Wisconsin. Plant Dis. 1991, 75, 610–612. [Google Scholar]
- Oudemans, P.; Coffey, M.D. Isozyme comparison within and among worldwide sources of three morphologically distinct species of Phytophthora. Mycol. Res. 1991, 95, 19–30. [Google Scholar] [CrossRef]
- Pánek, M.; Fér, T.; Mráček, J.; Tomšovský, M. Evolutionary relationships within the Phytophthora cactorum species complex in Europe. Fungal Biol. 2016, 120, 836–851. [Google Scholar] [CrossRef]
- de Cock, A.W.A.M.; Lévesque, C.A. New species of Pythium and Phytophthora. Stud. Mycol. 2004, 50, 481–487. [Google Scholar]
- Man in’t Veld, W.A.; De Cock, A.W.A.M.; Summerbell, R.C. Natural hybrids of resident and introduced Phytophthora species proliferating on multiple new hosts. Eur. J. Plant Pathol. 2007, 117, 25–33. [Google Scholar] [CrossRef]
- Man in ’t Veld, W.A.; Rosendahl, K.C.H.M.; Hong, C. Phytophthora xserendipita sp. nov. and P. xpelgrandis, two destructive pathogens generated by natural hybridization. Mycologia 2012, 104, 1390–1396. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Duan, S.; Mei, X.; Huang, H.; Chen, W.; Liu, Y.; Guo, C.; Yang, T.; Wei, W.; Liu, X.; et al. The Phytophthora cactorum genome provides insights into the adaptation to host defense compounds and fungicides. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Armitage, A.D.; Lysøe, E.; Nellist, C.F.; Lewis, L.A.; Cano, L.M.; Harrison, R.J.; Brurberg, M.B. Bioinformatic characterisation of the effector repertoire of the strawberry pathogen Phytophthora cactorum. PLoS ONE 2018, 13, e0202305. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.R.; Zhang, B.Y.; Xing, Y.P.; Li, Q.Y.; Li, Y.P.; Tong, Y.H.; Xu, J.Y. Transcriptomic analysis of the phytopathogenic oomycete Phytophthora cactorum provides insights into infection-related effectors. BMC Genom. 2014, 15, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Xu, L.; Jia, Q.; Pan, R.; Oelmüller, R.; Zhang, W.; Wu, C. Arms race: Diverse effector proteins with conserved motifs. Plant Signal. Behav. 2019, 14, e1557008-1–e1557008-18. [Google Scholar] [CrossRef] [PubMed]
- Förster, H.; Coffey, M.D. Approaches to the taxonomy of Phytophthora using polymorphisms in mitochondrial and nuclear DNA. In Phytophthora; Lucas, J.A., Shattock, R.C., Shaw, D.S., Cooke, D.E.L., Eds.; Cambridge University Press: Cambridge, UK, 1991; pp. 164–183. [Google Scholar]
- Goodwin, S.B. The Population Genetics Phytophthora. Phytopathology 1997, 87, 448–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, W.H. Hormonal regulation of sexual reproduction in Phytophthora. Bot. Stud. 2007, 48, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Vettraino, A.M.; Cech, T.L.; Vanini, A. The impact of invasive 667 Phytophthora species on European forests. In Phytophthora: A Global Perspective; Lamour, K., Ed.; CABI: Wllington, New Zealand, 2013; Volume 668, pp. 146–158. [Google Scholar] [CrossRef]
- Ko, W.H. Hormonal Heterothallism and Homothallism in Phytophthora. Ann. Rev. Phytopathol. 1988, 679, 57–73. [Google Scholar] [CrossRef]
- Orona, C.A.L.; Martínez, A.R.; Arteaga, T.; García, H.G.; Palermo, D.; Ruiz, C.A. First Report of Homothallic Isolates of Phytophthora infestans in Commercial Potato Crops (Solanum tuberosum) in the Toluca Valley, Mexico. Plant Dis. 2013, 97, 1112. [Google Scholar] [CrossRef]
- Ko, W.H. Heterothallic Phytophthora: Evidence for hormonal regulation of sexual reproduction, J. Gen. Microbiol. 1978, 107, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Tomura, T.; Molli, S.D.; Murata, R.; Ojika, M. Universality of the Phytophthora mating hormones and diversity of their production profile. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Judelson, H.S. Sexual reproduction in oomycetes: Biology, diversity, and contributions to fitness. In Oomycete Genetics and Genomics; Lamour, K., Kamoun, S., Eds.; Willey-Blackwell: Hoboken, NJ, USA, 2009; pp. 121–138. [Google Scholar]
- Fry, W.E.; Goodwin, S.B.; Matuszak, J.M.; Spielman, L.J.; Milgroom, M.G.; Drenth, A. Population genetics and intercontinental migrations of Phytophthora infestans. Annu. Rev. Phytopathol. 1992, 30, 107–129. [Google Scholar] [CrossRef]
- Maurice, S.; Montes, M.S.; Nielsen, B.J.; Bødker, L.; Martin, M.D.; Jønck, C.G.; Kjøller, R.; Rosendahl, S. Population genomics of an outbreak of the potato late blight pathogen, Phytophthora infestans, reveals both clonality and high genotypic diversity. Mol. Plant Pathol. 2019, 20, 1134–1146. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.P.; Xie, J.H.; Wu, E.J.; Yahuza, L.; Duan, G.H.; Shen, L.L.; Liu, H.; Zhou, S.H.; Nkurikiyimfura, O.; Andersson, B.; et al. Lack of gene flow between Phytophthora infestans populations of two neighboring countries with the largest potato production. Evol. Appl. 2019, 13, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eyre, C.A.; Kozanitas, M.; Garbelotto, M. Population dynamics of aerial and terrestrial populations of Phytophthora ramorum in a California forest under different climatic conditions. Phytopathology 2013, 103, 1141–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, R.G.; Mc Blain, B.A.; Schmitthenner, A.F. The inheritance of resistance to metalaxyl and to fluorophenylalanine in matings of homothallic Phytophthora sojae. Mycol. Res. 1993, 97, 865–870. [Google Scholar] [CrossRef]
- Declercq, B.; Van Buyten, E.; Claeys, S.; Cap, N.; De Nies, J.; Pollet, S.; Höfte, M. Molecular characterization of Phytophthora porri and closely related species and their pathogenicity on leek (Allium porrum). Eur. J. Plant Pathol. 2010, 127, 341–350. [Google Scholar] [CrossRef]
- Leitz, R.A.; Hartman, G.L.; Pedersen, W.L.; Nickell, C.D. Races of Phytophthora sojae on Soybean in Illinois. Plant Health Prog. 2000, 1, 487. [Google Scholar] [CrossRef]
- Whisson, S.C.; Drenth, A.; Maclean, D.J.; Irwin, J.A.G. Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Curr. Genet. 1994, 27, 77–82. [Google Scholar] [CrossRef]
- Fry, W. Phytophthora infestans: The plant (and R gene) destroyer, Mol. Plant Pathol. 2008, 9, 385–402. [Google Scholar] [CrossRef]
- Tsao, P.H. Factors affecting isolation and quantitation of Phytophthora from soil. In Phytophthora, Its Biology, Taxonomy, Ecology and Pathology; Erwin, D.C., Bartnicki-Garcia, S., Tsao, P.H., Eds.; APS Press: Sant Paul, MN, USA, 1983; pp. 219–236. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.R.; Huang, S.X.; Zhang, Y.; Sheng, G.L.; Zhang, B.Y.; Li, Q.Y.; Zhu, F.; Xu, J.Y. Transcription profiling and identification of infection-related genes in Phytophthora cactorum. Mol. Genet. Genomics 2018, 293, 541–555. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. 2010. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 9 February 2021).
- Catchen, J.; Amores, A.; Hohenlohe, P.; Cresko, W.; Postlethwait, J.H. Stacks: Building and genotyping loci de novo from short-read sequences. Genes Genomes Genet. 2011, 1, 171–182. [Google Scholar] [CrossRef] [Green Version]
- Catchen, J.; Hohenlohe, P.A.; Bassham, S.; Amores, A.; Cresko, W.A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 2013, 22, 3124–3140. [Google Scholar] [CrossRef] [Green Version]
- Excoffier, L.; Smouse, P.E.; Quattro, J.M. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 1992, 131, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Meirmans, P.G. Using the Amova Framework To Estimate a Standardized Genetic Differentiation Measure. Evolution 2006, 60, 2399–2402. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Jost, L. GST and its relatives do not measure differentiation. Mol. Ecol. 2008, 17, 4015–4026. [Google Scholar] [CrossRef]
- Balloux, F.; Lehmann, L.; De Meeûs, T. The population genetics of clonal and partially clonal diploids. Genetics 2003, 164, 1635–1644. [Google Scholar] [CrossRef]
- Stoeckel, S.; Masson, J.P. The exact distributions of FIS under partial asexuality in small finite populations with mutation. PLoS ONE 2014, 9, e85228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlund, S. Zusammens etzung von populationen und korrelationserscheinungen vom standpunkt der vererbungslehre aus betrachtet. Hereditas 1928, 11, 65–106. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Wigginton, J.E.; Cutler, D.J.; Abecasis, G.R. A note on exact tests of Hardy-Weinberg equilibrium. Am. J. Hum. Genet. 2005, 76, 887–893. [Google Scholar] [CrossRef] [Green Version]
- Manichaikul, A.; Mychaleckyj, J.C.; Rich, S.S.; Daly, K.; Sale, M.; Chen, W.M. Robust relationship inference in genome-wide association studies. Bioinformatics 2010, 26, 2867–2873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanfear, R.; Frandsen, P.; Wright, A.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2016, 34, 772–773. [Google Scholar] [CrossRef] [Green Version]
- Kozlov, A.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [Green Version]
- Pattengale, N.; Alipour, M.; Bininda-Emonds, O.; Moret, B.; Stamatakis, A. How Many Bootstrap Replicates Are Necessary? J. Comput. Biol. 2010, 17, 337–354. [Google Scholar] [CrossRef]
- Lemoine, F.; Domelevo Entfellner, J.; Wilkinson, E.; Correia, D.; Dávila Felipe, M.; De Oliveira, T.; Gascuel, O. Renewing Felsenstein’s phylogenetic bootstrap in the era of big data. Nature 2018, 556, 452–456. [Google Scholar] [CrossRef]
- Bouckaert, R.; Heled, J.; Kühnert, D.; Vaughan, T.; Wu, C.; Xie, D.; Suchard, M.; Rambaut, A.; Drummond, A. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comput. Biol. 2014, 10, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Bouckaert, R.; Drummond, A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 2017, 17, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rambaut, A.; Drummond, A.; Xie, D.; Baele, G.; Suchard, M. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018, 67, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, F. Evolutionary relationship of DNA sequences in finite populations. Genetics 1983, 105, 437–460. [Google Scholar] [CrossRef]
- Excoffier, L.; Laval, G.; Schneider, S. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinform. 2005, 1, 47–50. [Google Scholar] [CrossRef] [Green Version]
- Slatkin, M. Estimating levels of gene flow in natural populations. Genetics 1981, 99, 323–335. [Google Scholar] [PubMed]
- Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 1977, 41, 225–233. [Google Scholar] [CrossRef]
- Huang, H.; Jeffers, S.N.; Layne, D.R.; Schnabel, G. AFLP analysis of Phytophthora cactorum isolates from strawberry and other hosts: Implications for identifying the primary source of inoculum. Plant Dis. 2004, 88, 714–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergot, M.; Cloppet, E.; Pérarnaud, V.; Déqué, M.; Marçais, B.; Desprez-Loustau, M.L. Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob. Chang. Biol. 2004, 10, 1539–1552. [Google Scholar] [CrossRef] [Green Version]
- Grünwald, N.J.; Goss, E.M.; Press, C.M. Phytophthora ramorum: A pathogen with a remarkably wide host range causing sudden oak death on oaks and ramorum blight on woody ornamentals. Mol. Plant Pathol. 2008, 9, 729–740. [Google Scholar] [CrossRef]
- de Cara, M.; Palmero, D.; Durán, C.; Lacasa, C.; Santos, M.; Coffey, M.D.; Tello, J.C. Phytophthora parasitica showing host specificity and pathogenic ability on tomato and sweet pepper. In Microorganisms in Industry and Environment; Méndez-Vilas, A., Ed.; World Sci. Publ. Co. Pte. Ltd.: Singapore, 2010; pp. 101–105. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, Y.; Zhang, M.; Tong, X.; Wang, Q.; Sun, Y.; Quan, J.; Govers, F.; Shan, W. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 2011, 12, 187–201. [Google Scholar] [CrossRef]
- Suassuna, N.D.; Maffia, L.A.; Mizubuti, E.S.G. Aggressiveness and host specificity of Brazilian isolates of Phytophthora infestans. Plant Pathol. 2004, 53, 405–413. [Google Scholar] [CrossRef] [Green Version]
- LaFave, M.C.; Sekelsky, J. Mitotic recombination: Why? when? how? where? PLoS Genet. 2009, 5, e1000411. [Google Scholar] [CrossRef] [Green Version]
- Hulvey, J.; Young, J.; Finley, L.; Lamour, K. Loss of heterozygosity in Phytophthora capsici after N-ethyl-nitrosourea mutagenesis. Mycologia 2010, 102, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Gonzales, O.P.; Lamour, K.H. Evidence for inbreeding and apomixis in close crosses of Phytophthora capsici. Plant Pathol. 2009, 58, 715–722. [Google Scholar] [CrossRef]
- Coelho, A.S.G.; Vencovsky, R. Intrapopulation fixation index dynamics in finite populations with variable outcrossing rates. Sci. Agric. 2003, 60, 305–313. [Google Scholar] [CrossRef] [Green Version]
- Oliva Pérez, R.C. Occurence of Sympatric Phytophthora Species in the Highland of Ecuador. Ph.D. Thesis, Swiss Federal Institute of Technology, Zurich, Switzerland, 2009. [Google Scholar] [CrossRef]
- Brasier, C.M. The biosecurity threat to the UK and global environment from international trade in plants. Plant Pathol. 2008, 57, 792–808. [Google Scholar] [CrossRef]
- Felsenstein, J.; Yokoyama, S. The evolutionary advantage of recombination. II. Individual selection for recombination. Genetics 1976, 83, 845–859. [Google Scholar]
- Carlson, M.O.; Gazave, E.; Gore, M.A.; Smart, C.D. Temporal genetic dynamics of an experimental, biparental field population of Phytophthora capsici. Front. Genet. 2017, 8, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Drenth, A.; McTaggart, A.R.; Wingfield, B.D. Fungal clones win the battle, but recombination wins the war. IMA Fungus 2019, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Diao, Y.; Zhou, Y.; Lin, D.; Bi, Y.; Pang, Z.; Fryxell, R.T.; Liu, X.; Lamour, K. Loss of heterozygosity drives clonal diversity of Phytophthora capsici in China. PLoS ONE 2013, 8, e82691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linde, C.; Drenth, A.; Wingfield, M.J. Gene and genotypic diversity of Phytophthora cinnamomi in South Africa and Australia revealed by DNA polymorphisms. Eur. J. Plant Pathol. 1999, 105, 667–680. [Google Scholar] [CrossRef]
- Bhat, R.G.; Schmithenner, F. Genetic crosses between physiologic races of Phytophthora sojae. Exp. Mycol. 1993, 17, 122–129. [Google Scholar] [CrossRef]
- Nieuwenhuis, B.P.S.; James, T.Y. The frequency of sex in fungi. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, B.K.; Leibler, S. Benefits of phenotypic plasticity for population growth in varying environments. Proc. Natl. Acad. Sci. USA 2018, 115, 12745–12750. [Google Scholar] [CrossRef] [Green Version]
- Grenville-Briggs, L.J.; Kushwaha, S.K.; Cleary, M.R.; Witzell, J.; Savenkov, E.I.; Whisson, S.C.; Chawade, A.; Vetukuri, R.R. Draft genome of the oomycete pathogen Phytophthora cactorum strain LV007 isolated from European beech (Fagus sylvatica). Genomics Data 2017, 12, 155–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goss, E.M.; Press, C.M.; Grünwald, N.J. Evolution of RXLR-class effectors in the oomycete plant pathogen Phytophthora ramorum. PLoS ONE 2013, 8, e79347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.H.Y.; Tripathy, S.; Govers, F.; Tyler, B.M. RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving superfamily with more than 700 members. Proc. Natl. Acad. Sci. USA 2008, 105, 4874–4879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyler, B.M.; Tripathy, S.; Zhang, X.; Dehal, P.; Jiang, R.H.Y.; Aerts, A.; Arredondo, F.D.; Baxter, L.; Bensasson, D.; Beynon, J.L.; et al. Phytophthora Genome Sequences Uncover Evolutionary Origins and Mechanisms of Pathogenesis. Science 2006, 313, 1261–1266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinn, L.; O’Neill, P.A.; Harrison, J.; Paskiewicz, K.H.; McCracken, A.R.; Cooke, L.R.; Grant, M.R.; Studholme, D.J. Genome-wide sequencing of Phytophthora lateralis reveals genetic variation among isolates from Lawson cypress (Chamaecyparis lawsoniana) in Northern Ireland. FEMS Microbiol. Lett. 2013, 344, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Goodwin, S.B.; Fry, W.E. Genetic analyses of interspecific hybrids between Phytophthora infestans and Phytophthora mirabilis. Exp. Mycol. 1994, 18, 20–32. [Google Scholar] [CrossRef]
- Pánek, M.; Tomšovský, M. In vitro growth response of Phytophthora cactorum, P. nicotianae and P. × pelgrandis to antibiotics and fungicides. Folia Microbiol. 2017, 62, 269–277. [Google Scholar] [CrossRef]
- Utkhede, R.S.; Gupta, V.K. In vitro selection of strains of Phytophthora cactorum resistant to metalaxyl. J. Phytopathol. 1988, 122, 35–44. [Google Scholar] [CrossRef]
- Utkhede, R.S.S.; Smith, E.M.M. Long-term effects of chemical and biological treatments on crown and root rot of apple trees caused by Phytophthora cactorum. Soil Biol. Biochem. 1993, 25, 383–386. [Google Scholar] [CrossRef]
- Chang, T.T.; Ko, W.H. Resistance to fungicides and antibiotics in Phytophthora parasitica: Genetic nature and use in hybrid determination. Phytopathology 1990, 80, 1414–1421. [Google Scholar] [CrossRef]
Isolate ID | Host Species/Country of Origin | Locality ID | Assignment to Genetic Group | GenBank Accession Number of DNA Sequences | ||
---|---|---|---|---|---|---|
RXLR6 | RXLR7 | SCR113 | ||||
18_02_3 | Fragaria CR | 02 | S | – | – | – |
18_02_1b | Fragaria CR | 02 | S | – | – | – |
17_03_13 | Fragaria CR | 03 | S | – | – | – |
17_03_23 | Fragaria CR | 03 | S | – | – | – |
17_03_23a | Fragaria CR | 03 | S | – | – | – |
17_03_5 | Fragaria CR | 03 | S | – | – | – |
17_03_11 | Fragaria CR | 03 | S | MT896953 | MT896979 | MT896909 |
17_03_12 | Fragaria CR | 03 | S | – | – | – |
17_03_10 | Fragaria CR | 03 | S | – | – | – |
17_03_24 | Fragaria CR | 03 | S | – | – | – |
17_04_1a | Fragaria CR | 04 | S | – | – | – |
17_04_9 | Fragaria CR | 04 | S | – | – | – |
17_04_8 | Fragaria CR | 04 | S | – | – | – |
17_04_12 | Fragaria CR | 04 | S | – | – | – |
17_04_2 | Fragaria CR | 04 | S | MT896940 | MT896980 | MT896910 |
17_04_10 | Fragaria CR | 04 | S | – | – | – |
17_04_5 | Fragaria CR | 04 | S | MT896946 | MT896978 | MT896900 |
17_04_7 | Fragaria CR | 04 | S | – | – | – |
17_04_7b | Fragaria CR | 04 | S | – | – | – |
17_04_3 | Fragaria CR | 04 | S | – | – | – |
18_07_6 | Fragaria CR | 07 | S | – | – | – |
17_07_27a | Fragaria CR | 07 | S | – | – | – |
18_07_2S5 | Fragaria CR | 07 | S | – | – | – |
17_07_25 | Fragaria CR | 07 | S | – | – | – |
18_07_2S1 | Fragaria CR | 07 | S | – | – | – |
18_07_14 | Fragaria CR | 07 | S | – | – | – |
17_07_12a | Fragaria CR | 07 | S | – | – | – |
17_07_23 | Fragaria CR | 07 | S | MT896941 | MT896981 | MT896911 |
17_07_25 | Fragaria CR | 07 | S | – | – | – |
17_08_6 | Fragaria CR | 08 | S | MT896948 | MT896987 | MT896901 |
17_08_17b | Fragaria CR | 08 | S | – | – | – |
17_08_10 | Fragaria CR | 08 | S | MT896947 | MT896988 | MT896915 |
17_09_12 | Fragaria CR | 09 | S | – | – | – |
17_09_14a | Fragaria CR | 09 | S | MT896942 | MT896982 | MT896921 |
17_09_14b | Fragaria CR | 09 | S | – | – | – |
18_10_17a | Fragaria CR | 10 | S | – | – | – |
18_10_11 | Fragaria CR | 10 | S | – | – | – |
18_10_16 | Fragaria CR | 10 | S | – | – | – |
18_10_14a | Fragaria CR | 10 | S | – | – | – |
18_10_18c | Fragaria CR | 10 | S | – | – | – |
17_11_3 | Fragaria CR | 11 | S | – | – | – |
17_11_16 | Fragaria CR | 11 | S | – | – | – |
17_11_19 | Fragaria CR | 11 | S | – | – | – |
17_11_17 | Fragaria CR | 11 | S | MT896950 | MT896984 | MT896906 |
17_12_30 | Fragaria CR | 12 | S | MT896954 | MT896991 | MT896917 |
17_12_17b | Fragaria CR | 12 | S | MT896955 | MT896993 | MT896920 |
17_12_26 | Fragaria CR | 12 | S | – | – | – |
17_12_18b | Fragaria CR | 12 | S | – | – | – |
17_12_5c | Fragaria CR | 12 | S | – | – | – |
17_12_8a | Fragaria CR | 12 | S | – | – | – |
17_12_1b | Fragaria CR | 12 | S | – | – | – |
17_12_7 | Fragaria CR | 12 | S | – | – | – |
17_12_18a | Fragaria CR | 12 | S | – | – | – |
17_12_5a | Fragaria CR | 12 | S | – | – | – |
17_12_20 | Fragaria CR | 12 | S | – | – | – |
17_12_9 | Fragaria CR | 12 | S | – | – | – |
17_12_4 | Fragaria CR | 12 | S | – | – | – |
17_12_17a | Fragaria CR | 12 | S | – | – | – |
17_12_28 | Fragaria CR | 12 | S | – | – | – |
17_12_24 | Fragaria CR | 12 | S | – | – | – |
17_12_31 | Fragaria CR | 12 | S | – | – | – |
17_12_16 | Fragaria CR | 12 | S | – | – | – |
17_12_25 | Fragaria CR | 12 | S | – | – | – |
17_12_3 | Fragaria CR | 12 | S | – | – | – |
17_12_6c | Fragaria CR | 12 | S | – | – | – |
17_12_12 | Fragaria CR | 12 | S | MT896951 | MT896986 | MT896905 |
17_12_28b | Fragaria CR | 12 | S | – | – | – |
17_12_6a | Fragaria CR | 12 | S | – | – | – |
17_12_6b | Fragaria CR | 12 | S | – | – | – |
17_12_27 | Fragaria CR | 12 | S | – | – | – |
17_12_23 | Fragaria CR | 12 | S | – | – | – |
17_15_1 | Fragaria CR | 15 | S | MT896963 | MT896995 | MT896922 |
17_15_10b | Fragaria CR | 15 | S | MT896957 | MT896992 | MT896913 |
17_23_7 | Fragaria CR | 23 | S | – | – | – |
17_23_8 | Fragaria CR | 23 | S | – | – | – |
17_23_19 | Fragaria CR | 23 | S | – | – | – |
17_23_1d | Fragaria CR | 23 | S | MT896949 | MT896983 | MT896908 |
17_23_3a | Fragaria CR | 23 | S | – | – | – |
17_23_9 | Fragaria CR | 23 | S | – | – | – |
17_23_4a | Fragaria CR | 23 | S | – | – | – |
17_24_8a | Fragaria CR | 24 | S | – | – | – |
17_24_4b | Fragaria CR | 24 | S | – | – | – |
17_24_8c | Fragaria CR | 24 | S | – | – | – |
17_24_3a | Fragaria CR | 24 | S | – | – | – |
17_24_26 | Fragaria CR | 24 | S | – | – | – |
17_24_12 | Fragaria CR | 24 | S | – | – | – |
17_24_20 | Fragaria CR | 24 | S | MT896952 | MT896985 | MT896903 |
17_24_5c | Fragaria CR | 24 | S | – | – | – |
17_24_4 | Fragaria CR | 24 | S | – | – | – |
17_24_4a | Fragaria CR | 24 | S | – | – | – |
17_26_14 | Fragaria CR | 26 | S | – | – | – |
19_28_2 | Fragaria CR | 28 | S | – | – | – |
19_28_10 | Fragaria CR | 28 | S | MT896956 | MT896989 | MT896907 |
17_30_18 | Fragaria CR | 30 | S | MT896959 | MT896994 | MT896912 |
17_30_8 | Fragaria CR | 30 | S | – | – | – |
17_30_6 | Fragaria CR | 30 | S | – | – | – |
17_30_3 | Fragaria CR | 30 | S | – | – | – |
17_30_13 | Fragaria CR | 30 | S | – | – | – |
17_30_12b | Fragaria CR | 30 | S | – | – | – |
17_30_12a | Fragaria CR | 30 | S | – | – | – |
17_30_9 | Fragaria CR | 30 | S | – | – | – |
18_33_3 | Fragaria CR | 33 | S | – | – | – |
17_34_7 | Fragaria CR | 34 | S | MT896958 | MT896990 | MT896914 |
17_37_11 | Fragaria CR | 37 | S | – | – | – |
17_37_15 | Fragaria CR | 37 | S | – | – | – |
17_37_7a | Fragaria CR | 37 | S | – | – | – |
17_37_7c | Fragaria CR | 37 | S | – | – | – |
17_37_13 | Fragaria CR | 37 | S | – | – | – |
19_42_2 | Fragaria CR | 42 | S | – | – | – |
17_44_12 | Fragaria CR | 44 | S | – | – | – |
17_45_1b | Fragaria CR | 45 | – | MT896966 | MT896997 | MT896916 |
17_45_1a | Fragaria CR | 45 | – | MT896967 | MT896998 | MT896924 |
17_53_3 | Fragaria CR | 53 | S | – | – | – |
17_57_F1 | Fragaria CR | 57 | S | – | – | – |
17_60_25 | Fragaria CR | 60 | S | – | – | – |
17_60_26 | Fragaria CR | 60 | S | – | – | – |
M5620 | Nursery soil CH | – | C1 | MT896971 | MT896996 | MT896918 |
M/05/0011 | Malus BG | – | C1 | MT896965 | MT897001 | MT896898 |
272/09 | Aesculus CR | – | C1 | MT896972 | MT896999 | MT896919 |
M5652 | Nursery soil CH | – | C1 | MT896968 | MT897003 | MT896904 |
ICMP11853 | Malus NZ | – | C1 | MT896964 | MT897000 | MT896897 |
503/11 | Malus CR | – | C1 | MT896970 | MT897002 | MT896902 |
634/13 * | Malus CR | – | C1 | MT896937 | MT896977 | MT896923 |
M/06/0001 | Fragaria BG | – | C1 | MT896969 | MT897016 | MT896899 |
426/10 | Tilia CR | – | C2 | MT896943 | MT897013 | MT896928 |
PD95/5111 | Idesia NL | – | C2 | MT896939 | MT897009 | MT896931 |
1383 | Arbutus E | – | C2 | MT896938 | MT897008 | MT896926 |
PD20017401 | Penstemon NL | – | C2 | MT896945 | MT897006 | MT896930 |
549/11 | Rhododendron CR | – | C2 | MT896944 | MT897014 | MT896929 |
421 | water FL | – | F | MT896975 | MT897012 | MT896927 |
Ph8 | Betula FL | – | F | MT896962 | MT897010 | MT896925 |
415 | Betula FL | – | F | MT896961 | MT897011 | MT896933 |
451 | Sorbus FL | – | F | MT896960 | MT897015 | MT896932 |
CBS111725 | Viburnum NL | – | H | MT896973 | MT897007 | MT896934 |
P13 | Quercus SK | – | H | MT896974 | MT897005 | MT896936 |
578/12 | Fragaria CR | – | H | MT896976 | MT897004 | MT896935 |
Amplified DNA Region | Primer Name | Primer Sequence 5′ to 3′ | Published By |
---|---|---|---|
RXLR6 | PcRXLR6snpF | TCTTCTGAGCCCCCAGTATC | Chen et al., 2014 [19] |
PcRXLR6snpR | CAGGAACACTCCTTGCCTGT | Chen et al., 2014 [19] | |
RXLR7 | PcRXLR7snpF | GGGCACTCACATTTCCATCT | Chen et al., 2014 [19] |
PcRXLR7snpR | GACTGCTTCGAGTGTCACCA | Chen et al., 2014 [19] | |
SCR113 | 16448F_F | ATGAATCCGTCTTTTGAAG | Chen et al., 2018 [42] |
16448F_R | TCATGACTTCCTGGATGAAT | Chen et al., 2018 [42] |
Population ID | Genetic Group | Number of Private Alleles | Proportion (%) of Polymorphic Loci | Mean Frequency of th Most Frequent Allele (P) | Heteroygosity (H) | An Estimate of Nucleotide Diversity (Π) | Population Inbreeding Coefficient (Fis) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
P | Variance | Standard Error | Mean Observed H | Variance | Standard Error | Mean Expected H | Variance | Standard Error | Π | Variance | Standard Error | Fis | Variance | Standard Error | ||||
2 | S | 7 | 0.0255 | 0.9585 | 0.0188 | 0.0016 | 0.0817 | 0.0739 | 0.0032 | 0.0421 | 0.0191 | 0.0016 | 0.0776 | 0.0668 | 0.0030 | −0.0061 | 0.0051 | 0.0041 |
3 | S | 49 | 0.0199 | 0.9642 | 0.0153 | 0.0010 | 0.0671 | 0.0580 | 0.0020 | 0.0384 | 0.0167 | 0.0011 | 0.0568 | 0.0400 | 0.0016 | −0.0171 | 0.0190 | 0.0108 |
4 | S | 27 | 0.0196 | 0.9685 | 0.0138 | 0.0009 | 0.0614 | 0.0540 | 0.0017 | 0.0334 | 0.0149 | 0.0009 | 0.0489 | 0.0345 | 0.0014 | −0.0207 | 0.0157 | 0.0100 |
7 | S | 37 | 0.0165 | 0.9679 | 0.0139 | 0.0008 | 0.0611 | 0.0534 | 0.0017 | 0.0343 | 0.0151 | 0.0009 | 0.0484 | 0.0327 | 0.0013 | −0.0211 | 0.0191 | 0.0095 |
8 | S | 9 | 0.0232 | 0.9612 | 0.0174 | 0.0013 | 0.0768 | 0.0691 | 0.0026 | 0.0397 | 0.0180 | 0.0013 | 0.0688 | 0.0566 | 0.0024 | −0.0123 | 0.0077 | 0.0052 |
9 | S | 3 | 0.0188 | 0.9681 | 0.0145 | 0.0010 | 0.0633 | 0.0575 | 0.0020 | 0.0328 | 0.0150 | 0.0010 | 0.0540 | 0.0429 | 0.0017 | −0.0146 | 0.0085 | 0.0053 |
10 | S | 9 | 0.0259 | 0.9614 | 0.0172 | 0.0016 | 0.0755 | 0.0673 | 0.0031 | 0.0399 | 0.0179 | 0.0016 | 0.0671 | 0.0540 | 0.0028 | −0.0138 | 0.0110 | 0.0105 |
11 | S | 4 | 0.0216 | 0.9634 | 0.0165 | 0.0013 | 0.0722 | 0.0649 | 0.0025 | 0.0377 | 0.0170 | 0.0013 | 0.0661 | 0.0552 | 0.0023 | −0.0096 | 0.0071 | 0.0060 |
12 | S | 54 | 0.0193 | 0.9667 | 0.0137 | 0.0008 | 0.0630 | 0.0524 | 0.0016 | 0.0370 | 0.0157 | 0.0009 | 0.0439 | 0.0236 | 0.0011 | −0.0341 | 0.0336 | 0.0284 |
15 | S | 0 | 0.0139 | 0.9621 | 0.0175 | 0.0018 | 0.0754 | 0.0697 | 0.0036 | 0.0379 | 0.0175 | 0.0018 | 0.0754 | 0.0694 | 0.0036 | 0.0000 | 0.0006 | 0.0016 |
23 | S | 7 | 0.0171 | 0.9665 | 0.0149 | 0.0010 | 0.0654 | 0.0583 | 0.0019 | 0.0350 | 0.0157 | 0.0010 | 0.0551 | 0.0421 | 0.0017 | −0.0169 | 0.0130 | 0.0088 |
24 | S | 35 | 0.0226 | 0.9653 | 0.0151 | 0.0010 | 0.0658 | 0.0575 | 0.0020 | 0.0369 | 0.0162 | 0.0011 | 0.0555 | 0.0400 | 0.0016 | −0.0171 | 0.0174 | 0.0116 |
26 | S | 2 | 0.0218 | 0.9645 | 0.0165 | 0.0017 | 0.0711 | 0.0661 | 0.0033 | 0.0356 | 0.0165 | 0.0017 | 0.0711 | 0.0661 | 0.0033 | 0.0000 | 0.0000 | 0.0000 |
28 | S | 9 | 0.0086 | 0.8628 | 0.0498 | 0.0075 | 0.2745 | 0.1994 | 0.0150 | 0.1372 | 0.0498 | 0.0075 | 0.2745 | 0.1994 | 0.0150 | 0.0000 | 0.0000 | 0.0000 |
30 | S | 31 | 0.0205 | 0.9688 | 0.0137 | 0.0010 | 0.0600 | 0.0531 | 0.0019 | 0.0331 | 0.0148 | 0.0010 | 0.0493 | 0.0356 | 0.0015 | −0.0176 | 0.0155 | 0.0101 |
33 | S | 1 | 0.0205 | 0.9664 | 0.0157 | 0.0017 | 0.0672 | 0.0627 | 0.0034 | 0.0336 | 0.0157 | 0.0017 | 0.0672 | 0.0627 | 0.0034 | 0.0000 | 0.0000 | 0.0000 |
34 | S | 0 | 0.0519 | 0.9377 | 0.0274 | 0.0087 | 0.1247 | 0.1094 | 0.0174 | 0.0623 | 0.0274 | 0.0087 | 0.1247 | 0.1094 | 0.0174 | 0.0000 | 0.0000 | 0.0000 |
37 | S | 6 | 0.0236 | 0.9639 | 0.0159 | 0.0013 | 0.0709 | 0.0627 | 0.0026 | 0.0378 | 0.0169 | 0.0014 | 0.0622 | 0.0490 | 0.0023 | −0.0142 | 0.0104 | 0.0087 |
42 | S | 2 | 0.0293 | 0.9517 | 0.0218 | 0.0027 | 0.0965 | 0.0872 | 0.0054 | 0.0483 | 0.0218 | 0.0027 | 0.0965 | 0.0872 | 0.0054 | 0.0000 | 0.0000 | 0.0000 |
44 | S | 2 | 0.0360 | 0.9455 | 0.0243 | 0.0046 | 0.1091 | 0.0973 | 0.0092 | 0.0545 | 0.0243 | 0.0046 | 0.1091 | 0.0973 | 0.0092 | 0.0000 | 0.0000 | 0.0000 |
45 | / | 403 | 0.0226 | 0.9622 | 0.0170 | 0.0021 | 0.0751 | 0.0674 | 0.0042 | 0.0388 | 0.0175 | 0.0021 | 0.0710 | 0.0609 | 0.0040 | −0.0061 | 0.0038 | 0.0052 |
53 | S | 2 | 0.0250 | 0.9615 | 0.0178 | 0.0021 | 0.0771 | 0.0712 | 0.0042 | 0.0385 | 0.0178 | 0.0021 | 0.0771 | 0.0712 | 0.0042 | 0.0000 | 0.0000 | 0.0000 |
57 | S | 0 | 0.0403 | 0.9415 | 0.0259 | 0.0050 | 0.1171 | 0.1035 | 0.0101 | 0.0585 | 0.0259 | 0.0050 | 0.1171 | 0.1035 | 0.0101 | 0.0000 | 0.0000 | 0.0000 |
60 | S | 3 | 0.0253 | 0.9599 | 0.0180 | 0.0016 | 0.0791 | 0.0713 | 0.0032 | 0.0409 | 0.0185 | 0.0016 | 0.0745 | 0.0636 | 0.0030 | −0.0069 | 0.0049 | 0.0043 |
C1 | 1320 | 0.0261 | 0.9649 | 0.0154 | 0.0013 | 0.0604 | 0.0535 | 0.0025 | 0.0370 | 0.0164 | 0.0014 | 0.0614 | 0.0486 | 0.0024 | 0.0014 | 0.0156 | 0.0068 | |
C2 | 728 | 0.1253 | 0.8185 | 0.0548 | 0.0030 | 0.3562 | 0.2179 | 0.0059 | 0.1875 | 0.0564 | 0.0030 | 0.3366 | 0.1955 | 0.0056 | −0.0309 | 0.0278 | 0.0107 | |
F | 8962 | 0.1649 | 0.7439 | 0.0511 | 0.0016 | 0.4647 | 0.2052 | 0.0032 | 0.2788 | 0.0532 | 0.0016 | 0.4511 | 0.1654 | 0.0029 | −0.0206 | 0.0861 | 0.0057 | |
H | 3700 | 0.0571 | 0.9165 | 0.0312 | 0.0017 | 0.1205 | 0.0924 | 0.0030 | 0.0907 | 0.0344 | 0.0018 | 0.1483 | 0.0999 | 0.0031 | 0.0428 | 0.0482 | 0.0051 |
Population ID | Population ID | Population ID | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
12 | 60 | 24 | 7 | 37 | 11 | 15 | 3 | 8 | C1 | F | 4 | 30 | 53 | 44 | 10 | 23 | H | 2 | 33 | 28 | 45 | C2 | 42 | 34 | 9 | 57 | 26 | ||
12 | 0.04 | 0.07 | 0.04 | 0.06 | 0.04 | 0.03 | 0.07 | 0.04 | 0.68 | 0.47 | 0.04 | 0.09 | 0.03 | 0.03 | 0.05 | 0.03 | 0.84 | 0.04 | 0.03 | 0.12 | 0.61 | 0.49 | 0.06 | 0.09 | 0.03 | 0.03 | 0.03 | 12 | |
60 | 0.08 | 0.08 | 0.10 | 0.09 | 0.11 | 0.09 | 0.09 | 0.60 | 0.34 | 0.08 | 0.10 | 0.10 | 0.10 | 0.08 | 0.08 | 0.80 | 0.11 | 0.11 | 0.19 | 0.54 | 0.38 | 0.11 | 0.16 | 0.10 | 0.08 | 0.08 | 60 | ||
24 | 0.09 | 0.08 | 0.09 | 0.08 | 0.09 | 0.09 | 0.66 | 0.38 | 0.11 | 0.09 | 0.07 | 0.07 | 0.09 | 0.09 | 0.81 | 0.08 | 0.09 | 0.09 | 0.60 | 0.43 | 0.06 | 0.10 | 0.09 | 0.05 | 0.09 | 24 | |||
7 | 0.09 | 0.06 | 0.06 | 0.10 | 0.07 | 0.70 | 0.42 | 0.06 | 0.12 | 0.06 | 0.07 | 0.08 | 0.06 | 0.84 | 0.07 | 0.06 | 0.15 | 0.65 | 0.46 | 0.09 | 0.11 | 0.06 | 0.04 | 0.06 | 7 | ||||
37 | 0.09 | 0.11 | 0.09 | 0.09 | 0.62 | 0.35 | 0.10 | 0.10 | 0.09 | 0.08 | 0.10 | 0.10 | 0.80 | 0.10 | 0.11 | 0.08 | 0.57 | 0.40 | 0.08 | 0.13 | 0.10 | 0.08 | 0.10 | 37 | |||||
11 | 0.08 | 0.08 | 0.08 | 0.64 | 0.35 | 0.07 | 0.10 | 0.09 | 0.10 | 0.09 | 0.07 | 0.81 | 0.09 | 0.08 | 0.09 | 0.60 | 0.40 | 0.11 | 0.08 | 0.07 | 0.07 | 0.08 | 11 | ||||||
15 | 0.08 | 0.08 | 0.59 | 0.33 | 0.07 | 0.11 | 0.11 | 0.11 | 0.10 | 0.07 | 0.77 | 0.09 | 0.07 | 0.10 | 0.58 | 0.37 | 0.13 | 0.18 | 0.08 | 0.06 | 0.08 | 15 | |||||||
3 | 0.09 | 0.66 | 0.38 | 0.09 | 0.11 | 0.08 | 0.07 | 0.09 | 0.10 | 0.81 | 0.08 | 0.09 | 0.13 | 0.60 | 0.43 | 0.08 | 0.11 | 0.10 | 0.07 | 0.09 | 3 | ||||||||
8 | 0.64 | 0.36 | 0.07 | 0.12 | 0.08 | 0.11 | 0.11 | 0.08 | 0.81 | 0.09 | 0.09 | 0.15 | 0.60 | 0.41 | 0.11 | 0.13 | 0.08 | 0.07 | 0.08 | 8 | |||||||||
C1 | 0.39 | 0.70 | 0.68 | 0.59 | 0.39 | 0.59 | 0.68 | 0.79 | 0.63 | 0.63 | 0.40 | 0.34 | 0.46 | 0.52 | 0.29 | 0.71 | 0.39 | 0.60 | C1 | ||||||||||
F | 0.40 | 0.38 | 0.32 | 0.31 | 0.34 | 0.38 | 0.48 | 0.34 | 0.33 | 0.28 | 0.38 | 0.29 | 0.32 | 0.24 | 0.38 | 0.30 | 0.33 | F | |||||||||||
4 | 0.12 | 0.07 | 0.07 | 0.09 | 0.06 | 0.83 | 0.07 | 0.08 | 0.12 | 0.64 | 0.45 | 0.11 | 0.12 | 0.06 | 0.06 | 0.06 | 4 | ||||||||||||
30 | 0.10 | 0.10 | 0.10 | 0.12 | 0.82 | 0.10 | 0.11 | 0.12 | 0.62 | 0.43 | 0.07 | 0.09 | 0.13 | 0.07 | 0.13 | 30 | |||||||||||||
53 | 0.08 | 0.08 | 0.08 | 0.79 | 0.08 | 0.11 | 0.10 | 0.54 | 0.36 | 0.11 | 0.12 | 0.09 | 0.09 | 0.07 | 53 | ||||||||||||||
44 | 0.08 | 0.09 | 0.70 | 0.11 | 0.12 | 0.18 | 0.36 | 0.30 | 0.07 | 0.08 | 0.11 | 0.10 | 0.08 | 44 | |||||||||||||||
10 | 0.08 | 0.78 | 0.09 | 0.11 | 0.10 | 0.55 | 0.39 | 0.08 | 0.13 | 0.10 | 0.06 | 0.10 | 10 | ||||||||||||||||
23 | 0.82 | 0.07 | 0.07 | 0.16 | 0.63 | 0.43 | 0.11 | 0.14 | 0.06 | 0.06 | 0.07 | 23 | |||||||||||||||||
H | 0.79 | 0.79 | 0.64 | 0.76 | 0.44 | 0.76 | 0.56 | 0.82 | 0.69 | 0.79 | H | ||||||||||||||||||
2 | 0.10 | 0.09 | 0.58 | 0.38 | 0.12 | 0.19 | 0.08 | 0.08 | 0.08 | 2 | |||||||||||||||||||
33 | 0.12 | 0.58 | 0.39 | 0.15 | 0.20 | 0.07 | 0.09 | 0.10 | 33 | ||||||||||||||||||||
28 | 0.39 | 0.26 | 0.07 | 0.08 | 0.20 | 0.09 | 0.17 | 28 | |||||||||||||||||||||
45 | 0.43 | 0.47 | 0.37 | 0.66 | 0.39 | 0.57 | 45 | ||||||||||||||||||||||
C2 | 0.35 | 0.22 | 0.44 | 0.29 | 0.37 | C2 | |||||||||||||||||||||||
42 | 0.11 | 0.12 | 0.09 | 0.13 | 42 | ||||||||||||||||||||||||
34 | 0.22 | 0.06 | 0.18 | 34 | |||||||||||||||||||||||||
9 | 0.10 | 0.07 | 9 | ||||||||||||||||||||||||||
57 | 0.11 | 57 |
Category | Range of Kinship Coefficient (Φ) | Relative Frequencies of Kinship Coefficient (Φ) Values Falling into Categories A–E | |
---|---|---|---|
Among Samples of All Groups | Among Samples of S Group | ||
A | 0.5 ≥ Φ ≥ 0.25 | 0.9 | 1.2 |
B | 0.25 ≥ Φ ≥ 0.125 | 40.0 | 54.4 |
C | 0.125 ≥ Φ ≥ 0.0625 | 24.5 | 33.2 |
D | 0.0625 ≥ Φ ≥ 0 | 7.5 | 7.6 |
E | Φ ≤ 0 | 27.1 | 3.6 |
RxLR6 | ||||||
Fst total | C1 | C2 | F | H | S | |
0.38 | C1 | 0.00 | ||||
C2 | 0.33 | 0.00 | ||||
F | 0.27 | 0.45 | 0.00 | |||
H | 0.19 | 0.44 | 0.21 | 0.00 | ||
S | 0.42 | −0.04 | 0.55 | 0.55 | 0.00 | |
RxLR7 | ||||||
Fst total | C1 | C2 | F | H | S | |
0.16 | C1 | 0.00 | ||||
C2 | 0.14 | 0.00 | ||||
F | 0.15 | 0.00 | 0.00 | |||
H | 0.16 | 0.00 | 0.00 | 0.00 | ||
S | 0.20 | 0.16 | 0.17 | 0.18 | 0.00 | |
SCR113 | ||||||
Fst total | C1 | C2 | F | H | S | |
0.66 | C1 | 0.00 | ||||
C2 | 0.69 | 0.00 | ||||
F | 0.72 | 0.18 | 0.00 | |||
H | 0.73 | 0.12 | 0.09 | 0.00 | ||
S | 0.00 | 0.83 | 0.86 | 0.87 | 0.00 |
Genetic Group | Gene Locus | |||||
---|---|---|---|---|---|---|
RXLR6 | RXLR7 | SCR113 | ||||
Gene Diversity | Variance | Gene Diversity | Variance | Gene Diversity | Variance | |
C1 | 0.7500 | 0.1391 | 0.7500 | 0.1319 | 0.0000 | 0.0000 |
C2 | 0.4000 | 0.2373 | 1.0000 | 0.1265 | 0.8000 | 0.1640 |
F | 0.7000 | 0.2184 | 1.0000 | 0.1768 | 0.8333 | 0.2224 |
H | 1.0000 | 0.5000 | 1.0000 | 0.2722 | 1.0000 | 0.2722 |
S | 0.3526 | 0.1227 | 0.0016 | 0.0012 | 0.0000 | 0.0000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pánek, M.; Střížková, I.; Zouhar, M.; Kudláček, T.; Tomšovský, M. Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms 2021, 9, 345. https://doi.org/10.3390/microorganisms9020345
Pánek M, Střížková I, Zouhar M, Kudláček T, Tomšovský M. Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms. 2021; 9(2):345. https://doi.org/10.3390/microorganisms9020345
Chicago/Turabian StylePánek, Matěj, Ivana Střížková, Miloslav Zouhar, Tomáš Kudláček, and Michal Tomšovský. 2021. "Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data" Microorganisms 9, no. 2: 345. https://doi.org/10.3390/microorganisms9020345
APA StylePánek, M., Střížková, I., Zouhar, M., Kudláček, T., & Tomšovský, M. (2021). Mixed-Mating Model of Reproduction Revealed in European Phytophthora cactorum by ddRADseq and Effector Gene Sequence Data. Microorganisms, 9(2), 345. https://doi.org/10.3390/microorganisms9020345