Streptococcal Infections in Marine Mammals
Abstract
:1. Introduction
2. Streptococcal Findings in Marine Mammals
2.1. Streptococcus agalactiae
2.2. Streptococcus bovis
2.3. Streptococcus canis
2.4. Streptococcus dysgalactiae
2.5. Streptococcus equi
2.6. Streptococcus halichoeri
2.7. Streptococcus iniae
2.8. Streptococcus marimammalium
2.9. Streptococcus mitis
2.10. Streptococcus phocae
2.11. Streptococcus viridans Group
2.12. One-Time Only Detections of Streptococcal Species from Marine Mammals
3. Streptococcal Infections in Marine Mammals: Virulence and Mechanims of Pathogenicity
4. Adaptation of Streptococci to Marine Mammals
5. Epidemiology and Possible Transmission Routes of Streptococci Species in Marine Mammals
6. Conclusions and Outlook
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shuval, H. Estimating the global burden of thalassogenic diseases: Human infectious diseases caused by wastewater pollution of the marine environment. J. Water Health 2003, 1, 53–64. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Dorsch, D.E.; Bay, S.M.; Maruya, K.; Snyder, S.A.; Trenholm, R.A.; Vanderford, B.J. Contaminants of emerging concern in municipal wastewater effluents and marine receiving water. Environ. Toxicol. Chem. 2012, 31, 2674–2682. [Google Scholar] [CrossRef] [PubMed]
- Nelms, S.E.; Barnett, J.; Brownlow, A.; Davison, N.J.; Deaville, R.; Galloway, T.S.; Lindeque, P.K.; Santillo, D.; Godley, B.J. Microplastics in marine mammals stranded around the British coast: Ubiquitous but transitory? Sci. Rep. 2019, 9, 1075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tornero, V.; Hanke, G. Chemical contaminants entering the marine environment from sea-based sources: A review with a focus on European seas. Mar. Pollut. Bull. 2016, 112, 17–38. [Google Scholar] [CrossRef] [PubMed]
- Desforges, J.-P.; Hall, A.; McConnell, B.; Rosing-Asvid, A.; Barber, J.L.; Brownlow, A.; Guise, S.D.; Eulaers, I.; Jepson, P.D.; Letcher, R.J.; et al. Predicting global killer whale population collapse from PCB pollution. Science 2018, 361, 1373–1376. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.J.; Soto, N.A.; Baldwin, A.L.; Bateson, M.; Beale, C.M.; Clark, C.; Deak, T.; Edwards, E.F.; Fernández, A.; Godinho, A.; et al. Do marine mammals experience stress related to anthropogenic noise? Int. J. Comp. Psychol. 2007, 20. Available online: https://escholarship.org/uc/item/6t16b8gw (accessed on 12 August 2020).
- La Cruz, D.B.-D.; DeRango, E.; Johnson, S.P.; Simeone, C.A. Evidence of anthropogenic trauma in marine mammals stranded along the central California coast, 2003–2015. Mar. Mammal Sci. 2018, 34, 330–346. [Google Scholar] [CrossRef]
- Bearzi, G.; Politi, E.; Agazzi, S.; Azzellino, A. Prey depletion caused by overfishing and the decline of marine megafauna in eastern Ionian Sea coastal waters (central Mediterranean). Biol. Conserv. 2006, 127, 373–382. [Google Scholar] [CrossRef]
- Rolland, R.M.; McLellan, W.A.; Moore, M.J.; Harms, C.A.; Burgess, E.A.; Hunt, K.E. Fecal glucocorticoids and anthropogenic injury and mortality in North Atlantic right whales Eubalaena glacialis. Endanger. Species Res. 2017, 34, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Bexton, S.; Thompson, D.; Brownlow, A.; Barley, J.; Milne, R.; Bidewell, C. Unusual mortality of pinnipeds in the United Kingdom associated with helical (corkscrew) injuries of anthropogenic origin. Aquat. Mamm. 2012, 38, 229–240. [Google Scholar] [CrossRef]
- Fire, S.E.; Wang, Z.; Byrd, M.; Whitehead, H.R.; Paternoster, J.; Morton, S.L. Co-occurrence of multiple classes of harmful algal toxins in bottlenose dolphins (Tursiops truncatus) stranding during an unusual mortality event in Texas, USA. Harmful Algae 2011, 10, 330–336. [Google Scholar] [CrossRef]
- Fire, S.E.; Dolah, F.V. Marine Biotoxins: Emergence of Harmful Algal Blooms as Health Threats to Marine Wildlife Publications, Agencies and Staff of the U.S. Department of Commerce. 2012. Available online: https://digitalcommons.unl.edu/usdeptcommercepub/553 (accessed on 12 August 2020).
- Hofmann, G.E.; Barry, J.P.; Edmunds, P.J.; Gates, R.D.; Hutchins, D.A.; Klinger, T.; Sewell, M.A. The effect of ocean acidification on calcifying organisms in marine ecosystems: An organism-to-ecosystem perspective. Annu. Rev. Ecol. Evol. Syst. 2010, 41, 127–147. [Google Scholar] [CrossRef]
- Brewer, P.G.; Hester, K. Ocean acidification and the increasing transparency of the ocean to low-frequency sound. Oceanography 2009, 22, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Kawaguchi, S.; Ishida, A.; King, R.; Raymond, B.; Waller, N.; Constable, A.; Nicol, S.; Wakita, M.; Ishimatsu, A. Risk maps for Antarctic krill under projected Southern Ocean acidification. Nat. Clim. Chang. 2013, 3, 843–847. [Google Scholar] [CrossRef]
- Moore, S.E.; Huntington, H.P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 2008, 18, S157–S165. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.E. Marine mammals as ecosystem sentinels. J. Mammal 2008, 89, 534–540. [Google Scholar] [CrossRef]
- Ross, P.S. Marine mammals as sentinels in ecological risk assessment. Hum. Ecol. Risk Assess. Int. J. 2000, 6, 29–46. [Google Scholar] [CrossRef]
- Desforges, J.-P.W.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Kakuschke, A.; Prange, A. The influence of metal pollution on the immune system a potential stressor for marine mammals in the North Sea. Int. J. Comp. Psychol. 2007, 20. Available online: https://escholarship.org/uc/item/55p4w9tj (accessed on 6 July 2020).
- Ross, P.S. The role of immunotoxic environmental contaminants in facilitating the emergence of infectious diseases in marine mammals. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 277–292. [Google Scholar] [CrossRef]
- Mos, L.; Morsey, B.; Jeffries, S.J.; Yunker, M.B.; Raverty, S.; Guise, S.D.; Ross, P.S. Chemical and biological pollution contribute to the immunological profiles of free-ranging harbor seals. Environ. Toxicol. Chem. 2006, 25, 3110–3117. [Google Scholar] [CrossRef] [PubMed]
- Hall, A.J.; Hugunin, K.; Deaville, R.; Law, R.J.; Allchin, C.R.; Jepson, P.D. The Risk of infection from polychlorinated biphenyl exposure in the harbor porpoise (Phocoena phocoena): A case–control approach. Environ. Health Perspect. 2006, 114, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, J.C.; Ridgway, S.H. Common diseases of small cetaceans. J. Am. Vet. Med. Assoc. 1975, 167, 533–540. [Google Scholar]
- Stroud, R.K.; Roffe, T.J. Causes of death in marine mammals stranded along the oregon coast. J. Wildl. Dis. 1979, 15, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Harwood, J.; Hall, A. Mass mortality in marine mammals: Its implications for population dynamics and genetics. Trends Ecol. Evol. 1990, 5, 254–257. [Google Scholar] [CrossRef]
- Bogomolni, A.L.; Pugliares, K.R.; Sharp, S.M.; Patchett, K.; Harry, C.T.; LaRocque, J.M.; Touhey, K.M.; Moore, M. Mortality trends of stranded marine mammals on Cape Cod and southeastern Massachusetts, USA, 2000 to 2006. Dis. Aquat. Organ. 2010, 88, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Siebert, U.; Wohlsein, P.; Lehnert, K.; Baumgärtner, W. Pathological findings in harbour seals (Phoca vitulina): 1996–2005. J. Comp. Pathol. 2007, 137, 47–58. [Google Scholar] [CrossRef]
- Siebert, U.; Wünschmann, A.; Weiss, R.; Frank, H.; Benke, H.; Frese, K. Post-mortem findings in harbour porpoises (Phocoena phocoena) from the German North and Baltic Seas. J. Comp. Pathol. 2001, 124, 102–114. [Google Scholar] [CrossRef]
- Huggins, J.L.; Leahy, C.L.; Calambokidis, J. Causes and patterns of harbor seal (Phoca vitulina) pup mortality at Smith Island, Washington, 2004–2010. Northwest Nat. 2013, 94, 198–208. [Google Scholar] [CrossRef]
- Lair, S.; Martineau, D.; Measures, L.N. Causes of Mortality in St. Lawrence Estuary Beluga (Delphinapterus leucas), from 1983 to 2012; Canadian Science Advisory Secretariat: Ottawa, ON, Canada, 2014. [Google Scholar]
- Skaar, I.; Gaustad, P.; Tønjum, T.; Holm, B.; Stenwig, H. Streptococcus phocae sp. nov., a new species isolated from clinical specimens from seals. Int. J. Syst. Evol. Microbiol. 1994, 44, 646–650. [Google Scholar] [CrossRef] [PubMed]
- Higgins, R.; Claveau, R.; Roy, R. Bronchopneumonia caused by Streptococcus equi in a North Atlantic pilot whale (Globicephala melaena). J. Wildl. Dis. 1980, 16, 319–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swenshon, M.; Lämmler, C.; Siebert, U. Identification and molecular characterization of beta-hemolytic streptococci isolated from harbor porpoises (Phocoena phocoena) of the North and Baltic Seas. J. Clin. Microbiol. 1998, 36, 1902–1906. [Google Scholar] [CrossRef] [Green Version]
- Johnson, S.; Lowenstine, L.; Gulland, F.; Jang, S.; Imai, D.; Almy, F.; DeLong, R.; Gardner, I. Aerobic bacterial flora of the vagina and prepuce of California sea lions (Zalophus californianus) and investigation of associations with urogenital carcinoma. Vet. Microbiol. 2006, 114, 94–103. [Google Scholar] [CrossRef]
- Hardie, J.M.; Whiley, R.A. The genus Streptococcus. In The Genera of Lactic Acid Bacteria; Wood, B.J.B., Holzapfel, W.H., Eds.; Springer: Boston, MA, USA, 1995; pp. 55–124. [Google Scholar] [CrossRef]
- du Toit, M.; Huch, M.; Cho, G.-S.; Franz, C.M.A.P. The genus Streptococcus. In The Lactic Acid Bacteria; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1995; pp. 457–505. [Google Scholar] [CrossRef]
- Tagg, J.R.; Wescombe, P.A.; Burton, J.P.; Wescombe, P.A. Streptococcus: A brief update on the current taxonomic status of the genus. In Lactic Acid Bacteria; Lahtinen, S., Ouwehand, A.C., Salminen, S., von Wright, A., Eds.; CRC Press: Boca Raton, FI, USA, 2011. [Google Scholar] [CrossRef]
- Facklam, R. What happened to the streptococci: Overview of taxonomic and nomenclature changes. Clin. Microbiol. Rev. 2002, 15, 613–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellen, R.P.; Gibbons, R.J. M protein-associated adherence of Streptococcus pyogenes to epithelial surfaces: Prerequisite for Virulence. Infect. Immun. 1972, 5, 826–830. [Google Scholar] [CrossRef] [Green Version]
- Horstmann, R.D.; Sievertsen, H.J.; Knobloch, J.; Fischetti, V.A. Antiphagocytic activity of streptococcal M protein: Selective binding of complement control protein factor H. Proc. Natl. Acad. Sci. USA 1988, 85, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.Y.H.; Nizet, V. Extracellular virulence factors of group B streptococci. Front. Biosci. 2004, 9, 1794–1802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díaz-Delgado, J.; Sierra, E.; Vela, A.I.; Arbelo, M.; Zucca, D.; Groch, K.R.; Fernández, A. Coinfection by Streptococcus phocae and Cetacean morbillivirus in a short-beaked common dolphin Delphinus delphis. Dis. Aquat. Organ. 2017, 124, 247–252. [Google Scholar] [CrossRef]
- Iwao, H.; Yanagisawa, M.; Kino, S.; Takamori, J.; Okamoto, M. Two beta-hemolytic streptococci Streptococcus canis and S. phocae isolated from a northern fur seal with septicemia from Niigata, Japan. In Proceedings of the 46th Annual Conference of the International Association for Aquatic Animal Medicine, Chicago, IL, USA, 6–10 April 2015; Available online: https://www.vin.com/doc/?id=7009572 (accessed on 6 July 2020).
- Kuiken, T.; Kennedy, S.; Barrett, T.; Van de Bildt, M.W.G.; Borgsteede, F.H.; Brew, S.D.; Codd, G.A.; Duck, C.; Deaville, R.; Eybatov, T.; et al. The 2000 canine distemper epidemic in caspian seals (Phoca caspica): Pathology and analysis of contributory factors. Vet. Pathol. 2006, 43, 321–338. [Google Scholar] [CrossRef] [Green Version]
- Raverty, S.A.; Gaydos, J.K.; Nielsen, O.; Ross, P.S. Pathologic and clinical implications of Streptococcus phocae isolated from pinnipeds along coastal Washington State, British Columbia and Arctic Canada. In Proceedings of the 35th Annual Conference of the International Association of Aquatic Animal Medicine, Galveston, TX, USA, 4–9 April 2004; Available online: https://www.vin.com/doc/?id=6696240 (accessed on 6 July 2020).
- Baker, J.R. The pathology of the grey seal (Haliochoerus grypus). II. Juveniles and adults. Br. Vet. J. 1980, 136, 443–447. [Google Scholar] [CrossRef]
- Lawson, P.A.; Foster, G.; Falsen, E.; Davison, N.; Collins, M.D. Streptococcus halichoeri sp. nov., isolated from grey seals (Halichoerus grypus). Int. J. Syst. Evol. Microbiol. 2004, 54, 1753–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, P.A.; Foster, G.; Falsen, E.; Collins, M.D. Streptococcus marimammalium sp. nov., isolated from seals. Int. J. Syst. Evol. Microbiol. 2005, 55, 271–274. [Google Scholar] [CrossRef] [PubMed]
- Fulde, M.; Valentin-Weigand, P. Epidemiology and pathogenicity of zoonotic streptococci. In Host-Pathogen Interactions in Streptococcal Diseases; Current Topics in Microbiology and Immunology; Chhatwal, G.S., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 49–81. [Google Scholar] [CrossRef]
- Minces, L.R.; Brown, P.J.; Veldkamp, P.J. Human meningitis from Streptococcus equi subsp. zooepidemicus acquired as zoonoses. Epidemiol. Infect. 2011, 139, 406–410. [Google Scholar] [CrossRef] [Green Version]
- Strangmann, E.; Fröleke, H.; Kohse, K.P. Septic shock caused by Streptococcus suis: Case report and investigation of a risk group. Int. J. Hyg. Environ. Health 2002, 205, 385–392. [Google Scholar] [CrossRef]
- Yu, H.; Jing, H.; Chen, Z.; Zheng, H.; Zhu, X.; Wang, H.; Wang, S.; Liu, L.; Zu, R.; Luo, L.; et al. Human Streptococcus suis outbreak, Sichuan, China. Emerg. Infect. Dis. 2006, 12, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Galpérine, T.; Cazorla, C.; Blanchard, E.; Boineau, F.; Ragnaud, J.-M.; Neau, D. Streptococcus canis infections in humans: Retrospective study of 54 patients. J. Infect. 2007, 55, 23–26. [Google Scholar] [CrossRef]
- Bert, F.; Lambert-Zechovsky, N. Septicemia caused by streptococcus canis in a human. J. Clin. Microbiol. 1997, 35, 777–779. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, M.R.; Litt, M.; Kertesz, D.A.; Wyper, P.; Rose, D.; Coulter, M.; McGeer, A.; Facklam, R.; Ostach, C.; Willey, B.M.; et al. Invasive infections due to a fish pathogen, Streptococcus iniae. N. Engl. J. Med. 1997, 337, 589–594. [Google Scholar] [CrossRef] [Green Version]
- Anthony, B.F.; Okada, D.M. The emergence of group B streptococci in infections of the newborn infant. Annu. Rev. Med. 1977, 28, 355–369. [Google Scholar] [CrossRef] [PubMed]
- Musser, J.M.; Mattingly, S.J.; Quentin, R.; Goudeau, A.; Selander, R.K. Identification of a high-virulence clone of type III Streptococcus agalactiae (group B Streptococcus) causing invasive neonatal disease. Proc. Natl. Acad. Sci. USA 1989, 86, 4731–4735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keefe, G.P. Streptococcus agalactiae mastitis: A review. Can. Vet. J. 1997, 38, 429–437. [Google Scholar]
- Baker, J.R. Further studies on grey seal (Halichoerus grypus) pup mortality on North Rona. Br. Vet. J. 1988, 144, 497–506. [Google Scholar] [CrossRef]
- Baker, J.R.; McCann, T.S. Pathology and bacteriology of adult male antarctic fur seals, Arctocephalus gazella, dying at Bird Island, South Georgia. Br. Vet. J. 1989, 145, 263–275. [Google Scholar] [CrossRef]
- Zappulli, V.; Mazzariol, S.; Cavicchioli, L.; Petterino, C.; Bargelloni, L.; Castagnaro, M. Fatal necrotizing fasciitis and myositis in a captive common bottlenose dolphin (Tursiops truncatus) associated with Streptococcus agalactiae. J. Vet. Diagn. Investig. 2005, 17, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.J.; Pasnik, D.J.; Klesius, P.H.; Al-Ablani, S. First report of Streptococcus agalactiae and Lactococcus garvieae from a wild bottlenose dolphin (Tursiops truncatus). J. Wildl. Dis. 2006, 42, 561–569. [Google Scholar] [CrossRef]
- Delannoy, C.M.; Crumlish, M.; Fontaine, M.C.; Pollock, J.; Foster, G.; Dagleish, M.P.; Turnbull, J.F.; Zadoks, R.N. Human Streptococcus agalactiae strains in aquatic mammals and fish. BMC Microbiol. 2013, 13, 41. [Google Scholar] [CrossRef] [Green Version]
- Fleming, M.; Bexton, S. Conjunctival flora of healthy and diseased eyes of grey seals (Halichoerus grypus): Implications for treatment. Vet. Rec. 2016, 179, 99. [Google Scholar] [CrossRef]
- Kissel, L.N.; Bankowski, M.J.; Koyamatsu, T.L.; Nagai, R.Y.; Seifried, S.E.; Crow, G.L. Aerobic microorganisms identified over a fourteen-month period from the upper respiratory tract of captive Hawaiian monk seals (Monachus schauinslandi). Aquat. Mamm. 2011, 37, 377. [Google Scholar] [CrossRef]
- Evans, J.J.; Klesius, P.H.; Gilbert, P.M.; Shoemaker, C.A.; Sarawi, M.A.A.; Landsberg, J.; Duremdez, R.; Marzouk, A.A.; Zenki, S.A. Characterization of β-haemolytic Group B Streptococcus agalactiae in cultured seabream, Sparus auratus L., and wild mullet, Liza klunzingeri (Day), in Kuwait. J. Fish Dis. 2002, 25, 505–513. [Google Scholar] [CrossRef]
- Mian, G.F.; Godoy, D.T.; Leal, C.A.G.; Yuhara, T.Y.; Costa, G.M.; Figueiredo, H.C.P. Aspects of the natural history and virulence of S. agalactiae infection in Nile tilapia. Vet. Microbiol. 2009, 136, 180–183. [Google Scholar] [CrossRef] [PubMed]
- Duremdez, R.; Al-Marzouk, A.; Qasem, J.A.; Al-Harbi, A.; Gharabally, H. Isolation of Streptococcus agalactiae from cultured silver pomfret, Pampus argenteus (Euphrasen), in Kuwait. J. Fish Dis. 2004, 27, 307–310. [Google Scholar] [CrossRef]
- Garcia, J.C.; Klesius, P.H.; Evans, J.J.; Shoemaker, C.A. Non-infectivity of cattle Streptococcus agalactiae in Nile tilapia, Oreochromis niloticus and channel catfish, Ictalurus punctatus. Aquaculture 2008, 281, 151–154. [Google Scholar] [CrossRef]
- Pereira, U.P.; Mian, G.F.; Oliveira, I.C.M.; Benchetrit, L.C.; Costa, G.M.; Figueiredo, H.C.P. Genotyping of Streptococcus agalactiae strains isolated from fish, human and cattle and their virulence potential in Nile tilapia. Vet. Microbiol. 2010, 140, 186–192. [Google Scholar] [CrossRef]
- Kannika, K.; Pisuttharachai, D.; Srisapoome, P.; Wongtavatchai, J.; Kondo, H.; Hirono, I.; Unajak, S.; Areechon, N. Molecular serotyping, virulence gene profiling and pathogenicity of Streptococcus agalactiae isolated from tilapia farms in Thailand by multiplex PCR. J. Appl. Microbiol. 2017, 122, 1497–1507. [Google Scholar] [CrossRef] [PubMed]
- Delannoy, C.M.J.; Zadoks, R.N.; Crumlish, M.; Rodgers, D.; Lainson, F.A.; Ferguson, H.W.; Turnbull, J.; Fontaine, M.C. Genomic comparison of virulent and non-virulent Streptococcus agalactiae in fish. J. Fish Dis. 2016, 39, 13–29. [Google Scholar] [CrossRef] [PubMed]
- Higginbottom, C.; Wheater, D.W.F. The incidence of Streptococcus bovis in cattle. J. Agric. Sci. 1954, 44, 434–442. [Google Scholar] [CrossRef]
- Greetham, H.L.; Giffard, C.; Hutson, R.A.; Collins, M.D.; Gibson, G.R. Bacteriology of the Labrador dog gut: A cultural and genotypic approach. J. Appl. Microbiol. 2002, 93, 640–646. [Google Scholar] [CrossRef] [Green Version]
- Moellering, R.C.; Watson, B.K.; Kunz, L.J. Endocarditis due to group D streptococci: Comparison of disease caused by Streptococcus bovis with that produced by the enterococci. Am. J. Med. 1974, 57, 239–250. [Google Scholar] [CrossRef]
- Fikar, C.R.; Levy, J. Streptococcus bovis meningitis in a neonate. Am. J. Dis. Child. 1979, 133, 1149–1150. [Google Scholar] [CrossRef] [PubMed]
- García-Porrúa, C.; González-Gay, M.A.; Monterroso, J.R.; Sánchez-Andrade, A.; González-Ramirez, A. Septic arthritis due to Streptococcus bovis as presenting sign of ‘silent’ colon carcinoma. Rheumatology 2000, 39, 338–339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murray, H.W.; Roberts, R.B. Streptococcus bovis bacteremia and underlying gastrointestinal disease. Arch. Intern Med. 1978, 138, 1097–1099. [Google Scholar] [CrossRef] [PubMed]
- Vanrobaeys, M.; De Herdt, P.; Ducatelle, R.; Creten, W.; Haesebrouck, F. Extracellular proteins and virulence in Streptococcus bovis isolates from pigeons. Vet. Microbiol. 1997, 59, 59–66. [Google Scholar] [CrossRef]
- Vanrobaeys, M.; De Herdt, P.; Haesebrouck, F.; Ducatelle, R.; Devriese, L.A. Secreted antigens as virulence associated markers in Streptococcus bovis strains from pigeons. Vet. Microbiol. 1996, 53, 339–348. [Google Scholar] [CrossRef]
- Neves, H.C.; Pires, R. Recuperation of a Mediterranean monk seal pup, Monachus monachus, in Desertas Islands, Madeira archipelago: Conditions for its success. In Arquipelago: Life and Marine Sciences; The Monachus Guardian: Ponta Delgada, Portugal, 2001; Supplement 2 Part B; pp. 111–116. ISBN 0873-4704. [Google Scholar]
- Buck, J.D.; Wells, R.S.; Rhinehart, H.L.; Hansen, L.J. Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. J. Wildl. Dis. 2006, 42, 536–544. [Google Scholar] [CrossRef]
- Devriese, L.A.; Hommez, J.; Kilpper-Bälz, R.; Schleifer, K.-H. Streptococcus canis sp. nov.: A species of Group G streptococci from animals. Int. J. Syst. Evol. Microbiol. 1986, 36, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Lam, M.M.; Clarridge, J.E.; Young, E.J.; Mizuki, S. The other Group G Streptococcus: Increased detection of Streptococcus canis ulcer infections in dog owners. J. Clin. Microbiol. 2007, 45, 2327–2329. [Google Scholar] [CrossRef] [Green Version]
- Chalmers, G.; McLean, J.; Hunter, D.B.; Brash, M.; Slavic, D.; Pearl, D.L.; Boerlin, P. Staphylococcus spp., Streptococcus canis, and Arcanobacterium phocae of healthy Canadian farmed mink and mink with pododermatitis. Can. J. Vet. Res. 2015, 79, 129–135. [Google Scholar]
- Hariharan, H.; Matthew, V.; Fountain, J.; Snell, A.; Doherty, D.; King, B.; Shemer, E.; Oliveira, S.; Sharma, R.N. Aerobic bacteria from mucous membranes, ear canals, and skin wounds of feral cats in Grenada, and the antimicrobial drug susceptibility of major isolates. Comp. Immunol. Microbiol. Infect. Dis. 2011, 34, 129–134. [Google Scholar] [CrossRef]
- Timoney, J.F.; Velineni, S.; Ulrich, B.; Blanchard, P. Biotypes and ScM types of isolates of Streptococcus canis from diseased and healthy cats. Vet. Rec. 2017, 180, 358. [Google Scholar] [CrossRef] [PubMed]
- DeWinter, L.M.; Low, D.E.; Prescott, J.F. Virulence of Streptococcus canis from canine streptococcal toxic shock syndrome and necrotizing fasciitis. Vet. Microbiol. 1999, 70, 95–110. [Google Scholar] [CrossRef]
- Fulde, M.; Rohde, M.; Polok, A.; Preissner, K.T.; Chhatwal, G.S.; Bergmann, S. Cooperative plasminogen recruitment to the surface of Streptococcus canis via M protein and enolase enhances bacterial survival. mBio 2013, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eichhorn, I.; Linden, M.; van der Jarek, M.; Fulde, M. Draft genome sequence of zoonotic Streptococcus canis isolate G361. Genome Announc. 2017, 5. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Liu, Y.; Xu, J.; Li, B. Characterization of a new protective antigen of Streptococcus canis. Vet. Res. Commun. 2010, 34, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Bergmann, S.; Eichhorn, I.; Kohler, T.P.; Hammerschmidt, S.; Goldmann, O.; Rohde, M.; Fulde, M. SCM, the M protein of Streptococcus canis binds immunoglobulin G. Front. Cell Infect. Microbiol. 2017, 7. [Google Scholar] [CrossRef] [Green Version]
- Van Bonn, W.G.; Ridgway, S.H.; Williams, B.H. Chronic refractory emesis associated with a colonic lesion in a california sea lion (Zalophus californianus). J. Zoo Wildl. Med. 1995, 26, 286–292. [Google Scholar]
- Williams, D.L.; MacGregor, S.; Sainsbury, A.W. Evaluation of bacteria isolated from infected eyes of captive, non-domestic animals. Vet. Rec. 2000, 146, 515–518. [Google Scholar] [CrossRef]
- Seguel, M.; Gutiérrez, J.; Hernández, C.; Montalva, F.; Verdugo, C. Respiratory mites (Orthohalarachne diminuata) and β-hemolytic streptococci-associated bronchopneumonia outbreak in South American fur seal pups (Arctocephalus australis). J. Wildl. Dis. 2018, 54, 380–385. [Google Scholar] [CrossRef]
- Henton, M.M.; Zapke, O.; Basson, P.A. Streptococcus phocae infections associated with starvation in Cape fur seals: Case report. J. S. Afr. Vet. Assoc. 1999, 70, 98–99. [Google Scholar] [CrossRef] [Green Version]
- Jepson, P.D.; Baker, J.R.; Kuiken, T.; Simpson, V.R.; Kennedy, S.; Bennett, P.M. Pulmonary pathology of harbour porpoises (Phocoena phocoena) stranded in England. Vet. Rec. 2000, 146, 721–728. [Google Scholar] [CrossRef] [PubMed]
- Leahy, C.L. Causes and Patterns of Harbor Seal (Phoca vitulina) Pup Mortality at Smith Island, Washington, 2004–2009. Ph.D. Thesis, Evergreen State College, Olympia, WA, USA, 2010. [Google Scholar]
- Vandamme, P.; Pot, B.; Falsen, E.; Kersters, K.; Devriese, L.A. Taxonomic study of Lancefield streptococcal Groups C, G, and L (Streptococcus dysgalactiae) and proposal of S. dysgalactiae subsp. equisimilis subsp. nov. Int. J. Syst. Evol. Microbiol. 1996, 46, 774–781. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.M.; Wilson, M.E.; Brandt, C.M.; Spellerberg, B. Human infections due to Streptococcus dysgalactiae subspecies equisimilis. Clin. Infect. Dis. 2009, 49, 766–772. [Google Scholar] [CrossRef] [Green Version]
- Jensen, A.; Kilian, M. Delineation of Streptococcus dysgalactiae, its subspecies, and its clinical and phylogenetic relationship to Streptococcus pyogenes. J. Clin. Microbiol. 2012, 50, 113–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baker, J.R.; Doidge, D.W. Pathology of the antarctic fur seal (Arctocephalus gazella) in South Georgia. Br. Vet. J. 1984, 140, 210–219. [Google Scholar] [CrossRef]
- Vossen, A.; Abdulmawjood, A.; Lämmler, C.; Weiß, R.; Siebert, U. Identification and molecular characterization of beta-hemolytic streptococci isolated from harbor seals (Phoca vitulina) and grey seals (Halichoerus grypus) of the German North and Baltic Seas. J. Clin. Microbiol. 2004, 42, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, M.V.; Ehlers, L.P.; Vargas, T.P.; Lopes, B.C.; Taunde, P.A.; de Cecco, B.S.; Henker, L.C.; Vielmo, A.; Lorenzett, M.P.; Riboldi, C.I.; et al. Omphalitis, urachocystitis and septicemia by Streptococcus dysgalactiae in a southern right whale calf Eubalaena australis, Brazil. Dis. Aquat. Organ. 2018, 131, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Boyle, A.G.; Timoney, J.F.; Newton, J.R.; Hines, M.T.; Waller, A.S.; Buchanan, B.R. Streptococcus equi infections in horses: Guidelines for treatment, control, and prevention of strangles—Revised consensus statement. J. Vet. Intern Med. 2018, 32, 633–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chalker, V.J.; Brooks, H.W.; Brownlie, J. The association of Streptococcus equi subsp. zooepidemicus with canine infectious respiratory disease. Vet. Microbiol. 2003, 95, 149–156. [Google Scholar] [CrossRef]
- Breiman, R.F.; Silverblatt, F.J. Systemic Streptococcus equi infection in a horse handler—A case of human strangles. West. J. Med. 1986, 145, 385–386. [Google Scholar]
- Eyre, D.W.S.; Kenkre, J.; Bowler, I.C.J.W.; McBride, S.J. Streptococcus equi subspecies zooepidemicus meningitis—A case report and review of the literature. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1459–1463. [Google Scholar] [CrossRef] [PubMed]
- Akineden, Ö.; Hassan, A.A.; Alber, J.; El-Sayed, A.; Estoepangestie, A.T.S.; Lämmler, C.; Weiss, R.; Siebert, U. Phenotypic and genotypic properties of Streptococcus equi subsp. zooepidemicus isolated from harbor seals (Phoca vitulina) from the German North Sea during the phocine distemper outbreak in 2002. Vet. Microbiol. 2005, 110, 147–152. [Google Scholar] [CrossRef]
- Akineden, Ö; Alber, J.; Lämmler, C.; Weiss, R.; Siebert, U.; Foster, G.; Tougaard, S.; Brasseur, S.M.J.M.; Reijnders, P.J.H. Relatedness of Streptococcus equi subsp. zooepidemicus strains isolated from harbour seals (Phoca vitulina) and grey seals (Halichoerus grypus) of various origins of the North Sea during 1988–2005. Vet. Microbiol. 2007, 121, 158–162. [Google Scholar] [CrossRef] [PubMed]
- Venn-Watson, S.; Daniels, R.; Smith, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Organ. 2012, 99, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Nelson, T.M.; Wallen, M.M.; Bunce, M.; Oskam, C.L.; Lima, N.; Clayton, L.; Mann, J. Detecting respiratory bacterial communities of wild dolphins: Implications for animal health. Mar. Ecol. Prog. Ser. 2019, 622, 203–217. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Kim, J.-Y.; Jung, S.C.; Lee, H.-S.; Her, M.; Chae, C. First isolation of Streptococcus halichoeri and Streptococcus phocae from a steller sea lion (Eumetopias jubatus) in South Korea. J. Wildl. Dis. 2015, 52, 183–185. [Google Scholar] [CrossRef] [PubMed]
- Foo, R.M.; Chan, D. A Fishy Tale: A man with empyema caused by Streptococcus halichoeri. J. Clin. Microbiol. 2014, 52, 681–682. [Google Scholar] [CrossRef] [Green Version]
- Giudice, P.D.; Plainvert, C.; Hubiche, T.; Tazi, A.; Fribourg, A.; Poyart, C. Infectious cellulitis caused by Streptococcus halichoeri. Acta Derm. Venereol. 2018, 98, 378–379. [Google Scholar] [CrossRef] [Green Version]
- Shewmaker, P.L.; Whitney, A.M.; Humrighouse, B.W. Phenotypic, genotypic, and antimicrobial characteristics of Streptococcus halichoeri isolates from humans, proposal to rename Streptococcus halichoeri as Streptococcus halichoeri subsp. halichoeri, and description of Streptococcus halichoeri subsp. hominis subsp. nov., a bacterium associated with human clinical infections. J. Clin. Microbiol. 2016, 54, 739–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaltonen, K.; Kant, R.; Eklund, M.; Raunio-Saarnisto, M.; Paulin, L.; Vapalahti, O.; Grönthal, T.; Rantala, M.; Sironen, T. Streptococcus halichoeri: Comparative genomics of an emerging pathogen. Int. J. Genomics 2020. [Google Scholar] [CrossRef] [Green Version]
- Eklund, M.; Aaltonen, K.; Sironen, T.; Raunio-Saarnisto, M.; Grönthal, T.; Nordgren, H.; Pitkälä, A.; Vapalahti, O.; Rantala, M. Comparison of Streptococcus halichoeri isolates from canine and fur animal infections: Biochemical patterns, molecular characteristics and genetic relatedness. Acta Vet. Scand. 2020, 62, 26. [Google Scholar] [CrossRef] [PubMed]
- Pier, G.B.; Madin, S.H. Streptococcus iniae sp. nov., a beta-hemolytic Streptococcus isolated from an Amazon freshwater dolphin, Inia geoffrensis. Int. J. Syst. Evol. Microbiol. 1976, 26, 545–553. [Google Scholar] [CrossRef]
- Pier, G.B.; Madin, S.H.; Al-Nakeeb, S. Isolation and characterization of a second isolate of Streptococcus iniae. Int. J. Syst. Evol. Microbiol. 1978, 28, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Bonar, C.J.; Wagner, R.A. A Third report of “golf ball disease” in an amazon river dolphin (Inia geoffrensis) associated with Streptococcus iniae. J. Zoo Wildl. Med. 2003, 34, 296–301. [Google Scholar] [CrossRef]
- Song, Z.; Yue, R.; Sun, Y.; Liu, C.; Khan, S.H.; Li, C.; Zhao, Y.; Zhou, X.; Yang, L.; Zhao, D. Fatal bacterial septicemia in a bottlenose dolphin Tursiops truncatus caused by Streptococcus iniae. Dis. Aquat. Organ. 2017, 122, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Rahmatullah, M.; Ariff, M.; Kahieshesfandiari, M.; Daud, H.M.; Zamri-Saad, M.; Sabri, M.Y.; Amal, M.N.A.; Ina-Salwany, M.Y. Isolation and pathogenicity of Streptococcus iniae in cultured red hybrid tilapia in Malaysia. J. Aquat. Anim. Health 2017, 29, 208–213. [Google Scholar] [CrossRef]
- Locke, J.B.; Colvin, K.M.; Datta, A.K.; Patel, S.K.; Naidu, N.N.; Neely, M.N.; Nizet, V.; Buchanan, J.T. Streptococcus iniae capsule impairs phagocytic clearance and contributes to virulence in fish. J. Bacteriol. 2007, 189, 1279–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, J.B.; Colvin, K.M.; Varki, N.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae β-hemolysin streptolysin S is a virulence factor in fish infection. Dis. Aquat. Organ. 2007, 76, 17–26. [Google Scholar] [CrossRef]
- Soh, K.Y.; Loh, J.M.S.; Hall, C.; Proft, T. Functional analysis of two novel Streptococcus iniae virulence factors using a zebrafish infection model. Microorganisms 2020, 8, 1361. [Google Scholar] [CrossRef]
- Milani, C.J.E.; Aziz, R.K.; Locke, J.B.; Dahesh, S.; Nizet, V.; Buchanan, J.T. The novel polysaccharide deacetylase homologue Pdi contributes to virulence of the aquatic pathogen Streptococcus iniae. Microbiology 2010, 156, 543–554. [Google Scholar] [CrossRef] [Green Version]
- Locke, J.B.; Aziz, R.K.; Vicknair, M.R.; Nizet, V.; Buchanan, J.T. Streptococcus iniae M-like protein contributes to virulence in fish and is a target for live attenuated vaccine development. PLoS ONE 2008, 3, e2824. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Wang, Y.; Wang, K. Comparative genome analysis of Streptococcus iniae DX09 reveals new insights into niche adaptation and competitive host colonisation ability. Oncotarget 2017, 5. [Google Scholar] [CrossRef]
- Silayeva, O.; Engelstädter, J.; Barnes, A.C. Evolutionary epidemiology of Streptococcus iniae: Linking mutation rate dynamics with adaptation to novel immunological landscapes. bioRxiv 2020, 355412. [Google Scholar] [CrossRef] [PubMed]
- Aas, J.A.; Paster, B.J.; Stokes, L.N.; Olsen, I.; Dewhirst, F.E. Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 2005, 43, 5721–5732. [Google Scholar] [CrossRef] [Green Version]
- Smith, D.J.; Anderson, J.M.; King, W.F.; Houte, J. van, Taubman, M.A. Oral streptococcal colonization of infants. Oral Microbiol. Immunol. 1993, 8, 1–4. [Google Scholar] [CrossRef]
- Matsui, N.; Ito, M.; Kuramae, H.; Inukai, T.; Sakai, A.; Okugawa, M. Infective endocarditis caused by multidrug-resistant Streptococcus mitis in a combined immunocompromised patient: An autopsy case report. J. Infect. Chemother. 2013, 19, 321–325. [Google Scholar] [CrossRef]
- Husain, E.; Whitehead, S.; Castell, A.; Thomas, E.E.; Speert, D.P. Viridans streptococci bacteremia in children with malignancy: Relevance of species identification and penicillin susceptibility. Pediatr. Infect. Dis. J. 2005, 24, 563–566. [Google Scholar] [CrossRef]
- Marron, A.; Carratalà, J.; González-Barca, E.; Fernández-Sevilla, A.; Alcaide, F.; Gudiol, F. Serious complications of bacteremia caused by viridans streptococci in neutropenic patients with cancer. Clin. Infect. Dis. 2000, 31, 1126–1130. [Google Scholar] [CrossRef]
- Denapaite, D.; Brückner, R.; Nuhn, M.; Reichmann, P.; Henrich, B.; Maurer, P.; Schähle, Y.; Selbmann, P.; Zimmermann, W.; Wambutt, R.; et al. The genome of Streptococcus mitis B6—What is a commensal? PLoS ONE 2010, 5, e9426. [Google Scholar] [CrossRef] [Green Version]
- Buck, J.D.; Shepard, L.L.; Bubucis, P.M.; Spotte, S.; McClave, K.; Cook, R.A. Microbiological characteristics of white whale (Delphinapterus leucas) from capture through extended captivity. Can. J. Fish Aquat. Sci. 1989, 46, 1914–1921. [Google Scholar] [CrossRef]
- Mitchell, J. Streptococcus mitis: Walking the line between commensalism and pathogenesis. Mol. Oral Microbiol. 2011, 26, 89–98. [Google Scholar] [CrossRef]
- Romalde, J.L.; Ravelo, C.; Valdés, I.; Magariños, B.; de la Fuente, E.; Martín, C.S.; Avendaño-Herrera, R.; Toranzo, A.E. Streptococcus phocae, an emerging pathogen for salmonid culture. Vet. Microbiol. 2008, 130, 198–207. [Google Scholar] [CrossRef] [PubMed]
- Gibello, A.; Mata, A.I.; Blanco, M.M.; Casamayor, A.; Domínguez, L.; Fernández-Garayzabal, J.F. First identification of Streptococcus phocae isolated from Atlantic salmon (Salmo salar). J. Clin. Microbiol. 2005, 43, 526–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imai, D.; Jang, S.; Miller, M.; Conrad, P.A. Characterization of beta-hemolytic streptococci isolated from southern sea otters (Enhydra lutris nereis) stranded along the California coast. Vet. Microbiol. 2009, 136, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Satish, R.K.; Arul, V. Purification and characterization of phocaecin PI80: An anti-listerial bacteriocin produced by Streptococcus phocae PI80 Isolated from the gut of Peneaus indicus (Indian white shrimp). J. Microbiol. Biotechnol. 2009, 19, 1393–1400. [Google Scholar]
- Avendaño-Herrera, R.; Balboa, S.; Castro, N.; González-Contreras, A.; Magariños, B.; Fernández, J.; Toranzo, A.E.; Romalde, J.L. Comparative polyphasic characterization of Streptococcus phocae strains with different host origin and description of the subspecies Streptococcus phocae subsp. salmonis subsp. nov. Int. J. Syst. Evol. Microbiol. 2014, 64, 1775–1781. [Google Scholar] [CrossRef]
- Ludes-Wehrmeister, E.; Wohlsein, P.; Prenger-Berninghoff, E.; Ewers, C.; Woelfing, B.; Lehnert, K.; Siebert, U. Intestinal displacements in older harbour and grey seals. Dis. Aquat. Organ. 2020, 138, 215–225. [Google Scholar] [CrossRef]
- Hueffer, K.; Lieske, C.L.; McGilvary, L.M.; Hare, R.F.; Miller, D.L.; O’Hara, T.M. Streptococcus phocae isolated from a spotted seal (Phoca largha) with pyometra in Alaska. J. Zoo Wildl. Med. 2011, 42, 108–112. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.L.; Jensen, E.D.; Johnson, S.P.; Lutmerding, B.A.; Smith, C.R.; Meegan, J.M.; Emory-Gomez, F.M.; Venn-Watson, S. Strangles-like clinical presentation of Streptococcus phocae in three bottlenose dolphins (Tursiops truncatus). In Proceedings of the 42nd Annual Conference of the International Association for Aquatic Animal Medicine, Las Vegas, NV, USA, 7–11 May 2011; Available online: https://www.vin.com/doc/?id=6698522 (accessed on 11 January 2021).
- Fenton, H.; Daoust, P.-Y.; Forzán, M.J.; Vanderstichel, R.V.; Ford, J.K.B.; Spaven, L.; Lair, S.; Raverty, S. Causes of mortality of harbor porpoises Phocoena phocoena along the Atlantic and Pacific coasts of Canada. Dis. Aquat. Organ. 2017, 122, 171–183. [Google Scholar] [CrossRef] [Green Version]
- Taurisano, N.D.; Butler, B.P.; Stone, D.; Hariharan, H.; Fields, P.J.; Ferguson, H.W.; Haulena, M.; Cotrell, P.; Nielsen, O.; Raverty, S. Streptococcus phocae in marine mammals of Northeastern Pacific and Arctic Canada: A retrospective analysis of 85 postmortem investigations. J. Wildl. Dis. 2017, 54, 101–111. [Google Scholar] [CrossRef]
- Goertz, C.E.C.; Reichmuth, C.; Thometz, N.M.; Ziel, H.; Boveng, P. Comparative health assessments of Alaskan ice seals. Front. Vet. Sci. 2019, 6. [Google Scholar] [CrossRef] [Green Version]
- Ashley, E.A.; Olson, J.K.; Adler, T.E.; Raverty, S.; Anderson, E.M.; Jeffries, S.; Gaydos, J.K. Causes of mortality in a harbor seal (Phoca vitulina) population at equilibrium. Front. Mar. Sci. 2020, 7. [Google Scholar] [CrossRef]
- Martin, M.C.-S.; González-Contreras, A.; Avendaño-Herrera, R. Infectivity study of Streptococcus phocae to seven fish and mammalian cell lines by confocal microscopy. J. Fish Dis. 2018, 35, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Salazar, S.; Oliver, C.; Yáñez, A.J.; Avendaño-Herrera, R. Comparative analysis of innate immune responses to Streptococcus phocae strains in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol. 2016, 51, 97–103. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Poblete-Morales, M. Genome sequence of Streptococcus phocae subsp. phocae Strain ATCC 51973T isolated from a harbor seal (Phoca vitulina). Genome Announc. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Gilbert, M.J.; IJsseldijk, L.L.; Rubio-García, A.; Gröne, A.; Duim, B.; Rossen, J.; Zomer, A.L.; Wagenaar, J.A. After the bite: Bacterial transmission from grey seals (Halichoerus grypus) to harbour porpoises (Phocoena phocoena). R. Soc. Open Sci. 2020. [Google Scholar] [CrossRef] [PubMed]
- Coykendall, A.L. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 1989, 2, 315–328. [Google Scholar] [CrossRef]
- Facklam, R.R. Physiological differentiation of viridans streptococci. J. Clin. Microbiol. 1977, 5, 184–201. [Google Scholar] [PubMed]
- Beighton, D.; Hardie, J.M.; Whiley, R.A. A scheme for the identification of viridans streptococci. J. Med. Microbiol. 1991, 35, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Douglas, C.W.I.; Heath, J.; Hampton, K.K.; Preston, F.E. Identity of viridans streptococci isolated from cases of infective endocarditis. J. Med. Microbiol. 1993, 39, 179–182. [Google Scholar] [CrossRef] [Green Version]
- Salavert, M.; Gomez, L.; Rodriguez-Carballeira, M.; Xercavins, M.; Freixas, N.; Garau, J. Seven-year review of bacteremia caused by Streptococcus milleri and other viridans streptococci. Eur. J. Clin. Microbiol. Infect. Dis. 1996, 15, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, S.; Yatera, K.; Kawanami, T.; Yamasaki, K.; Naito, K.; Akata, K.; Shimabukuro, I.; Ishimoto, H.; Yoshii, C.; Mukae, H. The clinical features of respiratory infections caused by the Streptococcus anginosus group. BMC Pulm. Med. 2015, 15, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, S.M.; Nolan, S.; Gulland, F.M.D. Bacterial isolates from california sea lions (Zalophus californianus), harbor seals (Phoca vitulina), and northern elephant seals (Mirounga angustirostris) admitted to a rehabilitation center along the Central California Coast, 1994–1995. J. Zoo Wildl. Med. 1998, 29, 171–176. [Google Scholar] [PubMed]
- Johnson, S.P.; Jang, S.; Gulland, F.M.D.; Miller, M.A.; Casper, D.R.; Lawrence, J.; Herrera, J. Characterization and clinical manifestations of Arcanobacterium phocae infections in marine mammals stranded along the Central California Coast. J. Wildl. Dis. 2003, 39, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burek-Huntington, K.A.; Dushane, J.L.; Goertz, C.E.C.; Measures, L.N.; Romero, C.H.; Raverty, S.A. Morbidity and mortality in stranded Cook Inlet beluga whales Delphinapterus leucas. Dis. Aquat. Organ. 2015, 114, 45–60. [Google Scholar] [CrossRef]
- Morris, P.J.; Johnson, W.R.; Pisani, J.; Bossart, G.D.; Adams, J.; Reif, J.S.; Fair, P.A. Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States. Vet. Microbiol. 2011, 148, 440–447. [Google Scholar] [CrossRef]
- Li, C.; Tan, X.; Bai, J.; Xu, Q.; Liu, S.; Guo, W.; Yu, C.; Fan, G.; Lu, Y.; Zhang, H.; et al. A survey of the sperm whale (Physeter catodon) commensal microbiome. PeerJ 2019, 7, e7257. [Google Scholar] [CrossRef] [Green Version]
- Rocha Goselin, A. Caracterización de la Carga Microbiana y Parasitaria de tres Especies de Misticetos en las ostas de la Península de Baja California, México. 2009. Available online: http://www.repositoriodigital.ipn.mx//handle/123456789/13932 (accessed on 9 July 2020).
- Benga, L.; Fulde, M.; Neis, C.; Goethe, R.; Valentin-Weigand, P. Polysaccharide capsule and suilysin contribute to extracellular survival of Streptococcus suis co-cultivated with primary porcine phagocytes. Vet. Microbiol. 2008, 132, 211–219. [Google Scholar] [CrossRef]
- Edwards, M.S.; Nicholson-Weller, A.; Baker, C.J.; Kasper, D.L. The role of specific antibody in alternative complement pathway-mediated opsonophagocytosis of type III, group B Streptococcus. J. Exp. Med. 1980, 151, 1275–1287. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.O.; Romero-Steiner, S.; Sørensen, U.B.; Blom, J.; Carvalho, M.; Barnard, S.; Carlone, G.; Weiser, J.N. Relationship between cell surface carbohydrates and intrastrain variation on opsonophagocytosis of Streptococcus pneumoniae. Infect. Immun. 1999, 67, 2327–2333. [Google Scholar] [CrossRef] [Green Version]
- Wessels, M.R.; Moses, A.E.; Goldberg, J.B.; DiCesare, T.J. Hyaluronic acid capsule is a virulence factor for mucoid group A streptococci. Proc. Natl. Acad. Sci. USA 1991, 88, 8317–8321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischetti, V.A. Streptococcal M protein: Molecular design and biological behavior. Clin. Microbiol. Rev. 1989, 2, 285–314. [Google Scholar] [CrossRef]
- Brouwer, S.; Barnett, T.C.; Rivera-Hernandez, T.; Rohde, M.; Walker, M.J. Streptococcus pyogenes adhesion and colonization. FEBS Lett. 2016, 590, 3739–3757. [Google Scholar] [CrossRef] [PubMed]
- Nobbs, A.H.; Lamont, R.J.; Jenkinson, H.F. Streptococcus adherence and colonization. Microbiol. Mol. Biol. Rev. 2009, 73, 407–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanier, G.; Segura, M.; Friedl, P.; Lacouture, S.; Gottschalk, M. Invasion of porcine brain microvascular endothelial cells by Streptococcus suis Serotype 2. Infect. Immun. 2004, 72, 1441–1449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, R.; De Martino, L.; Donnarumma, G.; Conte, M.P.; Seganti, L.; Valenti, P. Invasion of cultured human cells by Streptococcus pyogenes. Res. Microbiol. 1995, 146, 551–560. [Google Scholar] [CrossRef]
- Bhakdi, S.; Tranum-Jensen, J.; Sziegoleit, A. Mechanism of membrane damage by streptolysin-O. Infect. Immun. 1985, 47, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Alouf, J.E. Streptococcal toxins (streptolysin O, streptolysin S, erythrogenic toxin). Pharmacol. Ther. 1980, 11, 661–717. [Google Scholar] [CrossRef]
- Khil, J.; Im, M.; Heath, A.; Ringdahl, U.; Mundada, L.; Cary Engleberg, N.; Fay, W.P. Plasminogen enhances virulence of Group A streptococci by streptokinase-dependent and streptokinase-independent mechanisms. J. Infect. Dis. 2003, 188, 497–505. [Google Scholar] [CrossRef] [Green Version]
- Blair, D.E.; Schüttelkopf, A.W.; MacRae, J.I.; van Aalten, D.M.F. Structure and metal-dependent mechanism of peptidoglycan deacetylase, a streptococcal virulence factor. Proc. Natl. Acad. Sci. USA 2005, 102, 15429–15434. [Google Scholar] [CrossRef] [Green Version]
- Von Graevenitz, A. The role of opportunistic bacteria in human disease. Annu. Rev. Microbiol. 1977, 31, 447–471. [Google Scholar] [CrossRef] [PubMed]
- Lewthwaite, P.; Parsons, H.K.; Bates, C.J.; McKendrick, M.W.; Dockrell, D.H. Group G streptococcal bacteraemia: An opportunistic infection associated with immune senescence. Scand. J. Infect. Dis. 2002, 34, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Wilde, S.; Olivares, K.L.; Nizet, V.; Hoffman, H.M.; Radhakrishna, S.; LaRock, C.N. Opportunistic invasive infection by Group A Streptococcus during anti–interleukin-6 immunotherapy. J. Infect. Dis. 2020. [Google Scholar] [CrossRef] [PubMed]
- Louw, A.; Tikly, M. Purulent pericarditis due to co-infection with Streptococcus pneumoniae and Mycobacterium tuberculosis in a patient with features of advanced HIV infection. BMC Infect. Dis. 2007, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Blyth, C.C.; Webb, S.A.R.; Kok, J.; Dwyer, D.E.; van Hal, S.J.; Foo, H.; Ginn, A.N.; Kesson, A.M.; Seppelt, I.; Iredell, J.R. The impact of bacterial and viral co-infection in severe influenza. Influenza Other Respir. Viruses 2013, 7, 168–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmer, A.M.; Timmer, J.C.; Pence, M.A.; Hsu, L.-C.; Ghochani, M.; Frey, T.G.; Karin, M.; Salvesen, G.S.; Nizet, V. Streptolysin O promotes Group A Streptococcus immune evasion by accelerated macrophage apoptosis. J. Biol. Chem. 2009, 284, 862–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinkla, K.; Rohde, M.; Jansen, W.T.M.; Carapetis, J.R.; Chhatwal, G.S.; Talay, S.R. Streptococcus pyogenes recruits collagen via surface-bound fibronectin: A novel colonization and immune evasion mechanism. Mol. Microbiol. 2003, 47, 861–869. [Google Scholar] [CrossRef]
- Avendaño-Herrera, R.; Suarez, R.; Lazo, E.; Bravo, D.; Llegues, K.O.; Romalde, J.L.; Godoy, M.G. Genome sequence of Streptococcus phocae subsp. salmonis Strain C-4T, isolated from Atlantic salmon (Salmo salar). Genome Announc. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicki, I.H.; Campeau, A.; Dehaini, D.; Holay, M.; Wei, X.; Greene, T.; Ying, M.; Sands, J.S.; Lamsa, A.; Zuniga, E.; et al. Group A streptococcal S protein utilizes red blood cells as immune camouflage and is a critical determinant for immune evasion. Cell Rep. 2019, 29, 2979–2989.e15. [Google Scholar] [CrossRef] [Green Version]
- Rungelrath, V.; Wohlsein, J.C.; Siebert, U.; Stott, J.; Prenger-Berninghoff, E.; von Pawel-Rammingen, U.; Valentin-Weigand, P.; Baums, C.G.; Seele, J. Identification of a novel host-specific IgG protease in Streptococcus phocae subsp. phocae. Vet. Microbiol. 2017, 201, 42–48. [Google Scholar] [CrossRef]
- Cavagnolo, R.Z.; Vedros, N.A. Identification and characterization of three immunoglobulin classes in the northern fur seal Callorhinus ursinus. Dev. Comp. Immunol. 1978, 2, 689–697. [Google Scholar] [CrossRef]
- Carter, S.D.; Hughes, D.E.; Baker, J.R. Characterization and measurement of immunoglobulins in the grey seal (Halichoerus grypus). J. Comp. Pathol. 1990, 102, 13–23. [Google Scholar] [CrossRef]
- Nash, D.R.; Mach, J.P. Immunoglobulin classes in aquatic mammals: Characterization by serologic cross-reactivity, molecular size and binding of human free secretory component. J. Immunol. 1971, 107, 1424–1430. [Google Scholar] [PubMed]
- Saito, H.; Poon, M.-C.; Goldsmith, G.H.; Ratnoff, O.D.; Árnason, Ú. Studies on the blood clotting and fibrinolytic system in the plasma from a sei (baleen) whale. Proc. Soc. Exp. Biol. Med. 1976, 152, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Robinson, A.J.; Kropatkin, M.; Aggeler, P.M. Hageman Factor (Factor XII) deficiency in marine mammals. Science 1969, 166, 1420–1422. [Google Scholar] [CrossRef]
- Huang, T.T.; Malke, H.; Ferretti, J.J. Heterogeneity of the streptokinase gene in group A streptococci. Infect. Immun. 1989, 57, 502–506. [Google Scholar] [CrossRef] [Green Version]
- Feltz, E.T.; Fay, F.H. Thermal requirements in vitro of epidermal cells from seals. Cryobiology 1966, 3, 261–264. [Google Scholar] [CrossRef]
- Katsumata, E.; Furuta, C.; Katsumata, H.; Watanabe, G.; Taya, K. Basal body temperature method for detecting ovarian cycle in the captive beluga (Delphinapterus leucas). J. Reprod. Dev. 2005. [Google Scholar] [CrossRef] [Green Version]
- Katsumata, E.; Jaroenporn, S.; Katsumata, H.; Konno, S.; Maeda, Y.; Watanabe, G.; Taya, K. Body temperature and circulating progesterone levels before and after parturition in killer whales (Orcinus orca). J. Reprod. Dev. 2005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terasawa, F.; Yokoyama, Y.; Kitamura, M. Rectal temperatures before and after parturition in bottlenose dolphins. Zoo Biol. 1999, 18, 153–156. [Google Scholar] [CrossRef]
- Bartholomew, G.A.; Wilke, F. Body temperature in the northern fur seal, Callorhinus ursinus. J. Mammal 1956, 37, 327–337. [Google Scholar] [CrossRef]
- Oppenheimer, C.H.; ZoBell, C.E. The growth and viability of sixty-three species of marine bacteria as influenced by hydrostatic pressure. J. Mar. Res. 1952, 11, 10–18. [Google Scholar]
- ZoBell, C.E.; Johnson, F.H. The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J. Bacteriol. 1949, 57, 179–189. [Google Scholar] [CrossRef] [Green Version]
- Hoppes, W.L.; Lerner, P.I. Nonenterococcal Group-D streptococcal endocarditis caused by Streptococcus bovis. Ann. Intern Med. 1974, 81, 588–593. [Google Scholar] [CrossRef]
- Facklam, R.R.; Padula, J.F.; Thacker, L.G.; Wortham, E.C.; Sconyers, B.J. Presumptive identification of Group, A, B, and D streptococci. Appl. Microbiol. 1974, 27, 107–113. [Google Scholar] [CrossRef]
- Ayhan, K.; Durlu-Özkaya, F.; Tunail, N. Commercially important characteristics of Turkish origin domestic strains of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. Int. J. Dairy Technol. 2005, 58, 150–157. [Google Scholar] [CrossRef]
- Seeley, H.W. The physiology and nutrition of Streptococcus uberis. J. Bacteriol. 1951, 62, 107–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currás, M.; Magariños, B.; Toranzo, A.E.; Romalde, J.L. Dormancy as a survival strategy of the fish pathogen Streptococcus parauberis in the marine environment. Dis. Aquat. Organ. 2002, 52, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, D.B.; Fahlman, A.; Gardner, M.; Kleinhenz, D.; Piscitelli, M.; Raverty, S.; Haulena, M.; Zimba, P.V. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals. Respir. Physiol. Neurobiol. 2015, 211, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosinski-Chupin, I.; Sauvage, E.; Mairey, B.; Mangenot, S.; Ma, L.; Da Cunha, V.; Rusniok, C.; Bouchier, C.; Barbe, V.; Glaser, P. Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics 2013, 14, 252. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, H.; Lefébure, T.; Hubisz, M.J.; Pavinski Bitar, P.; Lang, P.; Siepel, A.; Stanhope, M.J. Comparative genomic analysis of the Streptococcus dysgalactiae species group: Gene content, molecular adaptation, and promoter evolution. Genome Biol. Evol. 2011, 3, 168–185. [Google Scholar] [CrossRef] [Green Version]
- Richards, V.P.; Zadoks, R.N.; Pavinski Bitar, P.D.; Lefébure, T.; Lang, P.; Werner, B.; Tikofsky, L.; Moroni, P.; Stanhope, M.J. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis. BMC Microbiol. 2012, 12, 293. [Google Scholar] [CrossRef] [Green Version]
- Burek, K.A.; Gulland, F.M.D.; O’Hara, T.M. Effects of climate change on arctic marine mammal health. Ecol. Appl. 2008, 18, S126–S134. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S. Morbillivirus infections in aquatic mammals. J. Comp. Pathol. 1998, 119, 201–225. [Google Scholar] [CrossRef]
- Zlotkin, A.; Hershko, H.; Eldar, A. Possible transmission of Streptococcus iniae from wild fish to cultured marine fish. Appl. Environ. Microbiol. 1998, 64, 4065–4067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawasaki, M.; Delamare-Deboutteville, J.; Bowater, R.O.; Walker, M.J.; Beatson, S.; Zakour, N.L.B.; Barnes, A.C. Microevolution of Streptococcus agalactiae ST-261 from Australia indicates dissemination via imported tilapia and ongoing adaptation to marine hosts or environment. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brinkmeyer, R. Diversity of bacteria in ships ballast water as revealed by next generation DNA sequencing. Mar. Pollut. Bull. 2016, 107, 277–285. [Google Scholar] [CrossRef] [PubMed]
- Altug, G.; Gurun, S.; Cardak, M.; Ciftci, P.S.; Kalkan, S. The occurrence of pathogenic bacteria in some ships’ ballast water incoming from various marine regions to the Sea of Marmara, Turkey. Mar. Environ. Res. 2012, 81, 35–42. [Google Scholar] [CrossRef]
- Gerba, C.P. Assessment of enteric pathogen shedding by bathers during recreational activity and its impact on water quality. Quant Microbiol. 2000, 2, 55–68. [Google Scholar] [CrossRef]
- Elmir, S.M.; Wright, M.E.; Abdelzaher, A.; Solo-Gabriele, H.M.; Fleming, L.E.; Miller, G.; Rybolowik, M.; Peter Shih, M.-T.; Pillai, S.P.; Cooper, J.A.; et al. Quantitative evaluation of bacteria released by bathers in a marine water. Water Res. 2007, 41, 3–10. [Google Scholar] [CrossRef] [Green Version]
- Plano, L.R.; Garza, A.C.; Shibata, T.; Elmir, S.M.; Kish, J.; Sinigalliano, C.D.; Gidley, M.L.; Miller, G.; Withum, K.; Fleming, L.E.; et al. Shedding of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus from adult and pediatric bathers in marine waters. BMC Microbiol. 2011, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Kalkan, S.; Altuğ, G. The composition of cultivable bacteria, bacterial pollution, and environmental variables of the coastal areas: An example from the Southeastern Black Sea, Turkey. Environ. Monit. Assess. 2020, 192, 1–23. [Google Scholar] [CrossRef]
- Nielsen, M.C.; Jiang, S.C. Alterations of the human skin microbiome after ocean water exposure. Mar. Pollut. Bull. 2019, 145, 595–603. [Google Scholar] [CrossRef] [PubMed]
- Holeton, C.; Chambers, P.A.; Grace, L. Wastewater release and its impacts on Canadian waters. Can. J. Fish Aquat. Sci. 2011, 68, 1836–1859. [Google Scholar] [CrossRef]
- O’Malley, M.L.; Lear, D.W.; Adams, W.N.; Gaines, J.; Sawyer, T.K.; Lewis, E.J. Microbial contamination of continental shelf sediments by wastewater. J. Water Pollut. Control Fed. 1982, 54, 1311–1317. [Google Scholar]
- Nelson, M.; Jones, S.H.; Edwards, C.; Ellis, J.C. Characterization of Escherichia coli populations from gulls, landfill trash, and wastewater using ribotyping. Dis. Aquat. Organ. 2008, 81, 53–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleisher, J.M.; Kay, D.; Salmon, R.L.; Jones, F.; Wyer, M.D.; Godfree, A.F. Marine waters contaminated with domestic sewage: Nonenteric illnesses associated with bather exposure in the United Kingdom. Am. J. Public Health 1996, 86, 1228–1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fries, J.S.; Characklis, G.W.; Noble, R.T. Sediment–water exchange of Vibrio sp. and fecal indicator bacteria: Implications for persistence and transport in the Neuse River Estuary, North Carolina, USA. Water Res. 2008, 42, 941–950. [Google Scholar] [CrossRef]
- Fries, J.S.; Characklis, G.W.; Noble, R.T. Attachment of fecal indicator bacteria to particles in the Neuse River Estuary, N.C. J. Environ. Eng. 2006, 132, 1338–1345. [Google Scholar] [CrossRef]
- Griffin, D.W.; Kellogg, C.A.; Garrison, V.H.; Shinn, E.A. The global transport of dust: An Intercontinental river of dust, microorganisms and toxic chemicals flows through the Earth’s atmosphere. Am. Sci. 2002, 90, 228–235. [Google Scholar] [CrossRef]
- Prospero, J.M.; Blades, E.; Mathison, G.; Naidu, R. Interhemispheric transport of viable fungi and bacteria from Africa to the Caribbean with soil dust. Aerobiologia 2005, 21, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Ito, T.; Okazaki, K.; Kawaoka, Y.; Takada, A.; Webster, R.G.; Kida, H. Perpetuation of influenza A viruses in Alaskan waterfowl reservoirs. Arch. Virol. 1995, 140, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Anthony, S.J.; Leger, J.A.S.; Pugliares, K.; Ip, H.S.; Chan, J.M.; Carpenter, Z.W.; Navarrete-Macias, I.; Sanchez-Leon, M.; Saliki, J.T.; Pedersen, J.; et al. Emergence of fatal avian influenza in New England harbor seals. mBio 2012, 3. [Google Scholar] [CrossRef] [Green Version]
- Dewar, M.L. Gastrointestinal Microbiota of Seabirds. Ph.D. Thesis, School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia, 2012. [Google Scholar]
- Zhao, X.; Han, Y.; Ren, S.; Ma, Y.; Li, H.; Peng, X. L-proline increases survival of tilapias infected by Streptococcus agalactiae in higher water temperature. Fish Shellfish Immunol. 2015, 44, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Troussellier, M.; Escalas, A.; Bouvier, T.; Mouillot, D. Sustaining rare marine microorganisms: Macroorganisms as repositories and dispersal agents of microbial diversity. Front. Microbiol. 2017, 8. [Google Scholar] [CrossRef]
- Acevedo-Whitehouse, K.; Rocha-Gosselin, A.; Gendron, D. A novel non-invasive tool for disease surveillance of free-ranging whales and its relevance to conservation programs. Anim. Conserv. 2010, 13, 217–225. [Google Scholar] [CrossRef]
- Hermosilla, C.; Hirzmann, J.; Silva, L.M.R.; Brotons, J.M.; Cerdà, M.; Prenger-Berninghoff, E.; Ewers, C.; Taubert, A. Occurrence of anthropozoonotic parasitic infections and faecal microbes in free-ranging sperm whales (Physeter macrocephalus) from the Mediterranean Sea. Parasitol. Res. 2018, 117, 2531–2541. [Google Scholar] [CrossRef]
- Greenwood, A.G.; Taylor, D.C. Captive killer whales in Europe. Aquat. Mamm. 1985, 1, 10–12. [Google Scholar]
- Goertz, C.E.C.; Polasek, L.; Burek, K.; Suydam, R.; Sformo, T. Demography and pathology of a pacific walrus (Odobenus rosmarus divergens) mass-mortality event at Icy Cape, Alaska, September 2009. Polar Biol. 2017, 40, 989–996. [Google Scholar] [CrossRef]
- Zamri-Saad, M.; Amal, M.N.A.; Siti-Zahrah, A. Pathological changes in red tilapias (Oreochromis spp.) naturally infected by Streptococcus agalactiae. J. Comp. Pathol. 2010, 143, 227–229. [Google Scholar] [CrossRef]
- Shoemaker, C.A.; Evans, J.J.; Klesius, P.H. Density and dose: Factors affecting mortality of Streptococcus iniae infected tilapia (Oreochromis niloticus). Aquaculture 2000, 188, 229–235. [Google Scholar] [CrossRef]
- Agnew, W.; Barnes, A.C. Streptococcus iniae: An aquatic pathogen of global veterinary significance and a challenging candidate for reliable vaccination. Vet. Microbiol. 2007, 122, 1–15. [Google Scholar] [CrossRef]
- Amsallem, M.; Iung, B.; Bouleti, C.; Armand-Lefevre, L.; Eme, A.-L.; Touati, A.; Kirsch, M.; Duval, X.; Vahanian, A. First reported human case of native mitral infective endocarditis caused by Streptococcus canis. Can. J. Cardiol 2014, 30, 1462.e1–1462.e2. [Google Scholar] [CrossRef]
- Abbott, Y.; Acke, E.; Khan, S.; Muldoon, E.G.; Markey, B.K.; Pinilla, M.; Leonard, F.C.; Steward, K.; Waller, A. Zoonotic transmission of Streptococcus equi subsp. zooepidemicus from a dog to a handler. J. Med. Microbiol. 2010, 59, 120–123. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Numberger, D.; Siebert, U.; Fulde, M.; Valentin-Weigand, P. Streptococcal Infections in Marine Mammals. Microorganisms 2021, 9, 350. https://doi.org/10.3390/microorganisms9020350
Numberger D, Siebert U, Fulde M, Valentin-Weigand P. Streptococcal Infections in Marine Mammals. Microorganisms. 2021; 9(2):350. https://doi.org/10.3390/microorganisms9020350
Chicago/Turabian StyleNumberger, Daniela, Ursula Siebert, Marcus Fulde, and Peter Valentin-Weigand. 2021. "Streptococcal Infections in Marine Mammals" Microorganisms 9, no. 2: 350. https://doi.org/10.3390/microorganisms9020350
APA StyleNumberger, D., Siebert, U., Fulde, M., & Valentin-Weigand, P. (2021). Streptococcal Infections in Marine Mammals. Microorganisms, 9(2), 350. https://doi.org/10.3390/microorganisms9020350