Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity
Abstract
:1. Introduction
2. Human Leishmaniasis: Epidemiology in the United States
2.1. Autochthonous Leishmaniasis
2.2. U.S. Leishmaniasis Vectors and Reservoirs
2.2.1. U.S. Sand Flies That Can Potentially Transmit Leishmaniasis
2.2.2. Common Animal Reservoirs for Leishmaniasis in the U.S.
2.3. Potential Impact of Climate Change on Autochthonous Leishmaniasis in the U.S.
2.4. Leishmaniasis in American Travelers
2.4.1. Cutaneous and Mucosal Leishmaniasis
2.4.2. Visceral Leishmaniasis
3. Emerging Issues Relevant to Leishmaniasis in the United States
4. Asymptomatic Visceral Leishmaniasis: Emerging Issues in the United States
4.1. Introduction
4.2. Asymptomatic VL: Immunity and Indicators of Progression
4.3. Asymptomatic VL: Diagnostic Approach in the U.S.
4.4. Reactivation, Prophylaxis, and Screening for AVL in Immunosuppressed Populations
4.4.1. HIV-VL Co-Infection
4.4.2. Solid Organ and Hematopoietic Transplantation
4.4.3. Biologic Agents
4.5. VL Prophylaxis and Screening within the U.S.
4.5.1. VL Primary and Secondary Prophylaxis
4.5.2. Screening
5. Prevention, Secondary Transmission, and U.S. Vector-Borne Transmission of VL
5.1. Blood Product Transfusions and Visceral Leishmaniasis
5.2. Transplant-Related Transmission
5.3. AVL and Potential Domestic Transmission via U.S. Sand Flies
6. Possible Long-Term Risks of Asymptomatic Visceral Leishmaniasis?
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stahlman, S.; Williams, V.F.; Taubman, S.B. Incident diagnoses of leishmaniasis, active and reserve components, U.S. Armed Forces, 2001–2016. MSMR 2017, 24, 2–7. [Google Scholar]
- Mody, R.M.; Lakhal-Naouar, I.; Sherwood, J.E.; Koles, N.L.; Shaw, D.; Bigley, D.P.; Co, E.-M.A.; Copeland, N.K.; Jagodzinski, L.L.; Mukbel, R.M.; et al. Asymptomatic Visceral Leishmania infantum Infection in US Soldiers Deployed to Iraq. Clin. Infect. Dis. 2019, 68, 2036–2044. [Google Scholar] [CrossRef] [Green Version]
- McHugh, C.P.; Melby, P.C.; Lafon, S.G. Leishmaniasis in Texas: Epidemiology and clinical aspects of human cases. Am. J. Trop. Med. Hyg. 1996, 55, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Maloney, D.M.; Maloney, J.E.; Dotson, D.; Popov, V.L.; Sanchez, R.L. Cutaneous leishmaniasis: Texas case diagnosed by electron microscopy. J. Am. Acad. Dermatol. 2002, 47, 614–616. [Google Scholar] [CrossRef] [PubMed]
- Wright, N.A.; Davis, L.E.; Aftergut, K.S.; Parrish, C.A.; Cockerell, C.J. Cutaneous leishmaniasis in Texas: A northern spread of endemic areas. J. Am. Acad. Dermatol. 2008, 58, 650–652. [Google Scholar] [CrossRef] [PubMed]
- Clarke, C.F.; Bradley, K.K.; Wright, J.H.; Glowicz, J. Case report: Emergence of autochthonous cutaneous leishmaniasis in northeastern Texas and southeastern Oklahoma. Am. J. Trop. Med. Hyg. 2013, 88, 157–161. [Google Scholar] [CrossRef]
- McIlwee, B.E.; Weis, S.E.; Hosler, G.A. Incidence of Endemic Human Cutaneous Leishmaniasis in the United States. JAMA Dermatol. 2018, 154, 1032–1039. [Google Scholar] [CrossRef] [Green Version]
- Taxy, J.B.; Goldin, H.M.; Dickie, S.; Cibull, T. Cutaneous Leishmaniasis: Contribution of Routine Histopathology in Unexpected Encounters. Am. J. Surg. Pathol. 2019, 43, 195–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, E.J.; De Almeida, M.; Marcet, P.L.; Bradbury, R.S.; Benedict, T.K.; Lin, W.; Dotson, E.M.; Hergert, M. An Atypical Case of Autochthonous Cutaneous Leishmaniasis Associated with Naturally Infected Phlebotomine Sand Flies in Texas, United States. Am. J. Trop. Med. Hyg. 2020, 103, 1496–1501. [Google Scholar] [CrossRef]
- Herwaldt, B.L.; Arana, B.A.; Navin, T.R. The Natural History of Cutaneous Leishmaniasis in Guatemala. J. Infect. Dis. 1992, 165, 518–527. [Google Scholar] [CrossRef]
- Reuss, S.M.; Dunbar, M.D.; Mays, M.B.C.; Owen, J.L.; Mallicote, M.F.; Archer, L.L.; Wellehan, J.F., Jr. Autochthonous Leishmania siamensis in horse, Florida, USA. Emerg. Infect. Dis. 2012, 18, 1545–1547. [Google Scholar] [CrossRef]
- Menezes, R.; Campos, M.; Popielarczyk, M.; Kiupel, M. Cutaneous Leishmaniosis caused by Leishmania martiniquensis in a Horse in Florida. J. Comp. Pathol. 2019, 173, 13–18. [Google Scholar] [CrossRef]
- Anderson, D.C.; Buckner, R.G.; Glenn, B.L.; MacVean, D.W. Endemic Canine Leishmaniasis. Veter. Pathol. 1980, 17, 94–96. [Google Scholar] [CrossRef] [PubMed]
- Duprey, Z.H.; Steurer, F.J.; Rooney, J.A.; Kirchhoff, L.V.; Jackson, J.E.; Rowton, E.D.; Schantz, P.M. Canine Visceral Leishmaniasis, United States and Canada, 2000–2003. Emerg. Infect. Dis. 2006, 12, 440–446. [Google Scholar] [CrossRef] [PubMed]
- Grosjean, N.L.; Vrable, R.A.; Murphy, A.J.; Mansfield, L.S. Seroprevalence of antibodies against Leishmania spp. among dogs in the United States. J. Am. Veter. Med. Assoc. 2003, 222, 603–606. [Google Scholar] [CrossRef] [PubMed]
- Boggiatto, P.M.; Gibson-Corley, K.N.; Metz, K.; Gallup, J.M.; Hostetter, J.M.; Mullin, K.; Petersen, C.A. Transplacental Transmission of Leishmania infantum as a Means for Continued Disease Incidence in North America. PLoS Negl. Trop. Dis. 2011, 5, e1019. [Google Scholar] [CrossRef] [PubMed]
- Petersen, C.A. Leishmaniasis, an Emerging Disease Found in Companion Animals in the United States. Top. Companion Anim. Med. 2009, 24, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Schaut, R.G.; Robles-Murguia, M.; Juelsgaard, R.; Esch, K.J.; Bartholomay, L.C.; Ramalho-Ortigao, M.; Petersen, C.A. Vectorborne Transmission of Leishmania infantum from Hounds, United States. Emerg. Infect. Dis. 2015, 21, 2209–2212. [Google Scholar] [CrossRef] [Green Version]
- Petersen, C.A. New Means of Canine Leishmaniasis Transmission in North America: The Possibility of Transmission to Humans Still Unknown. Interdiscip. Perspect. Infect. Dis. 2009, 2009, 802712. [Google Scholar] [CrossRef] [Green Version]
- Travi, B.; Ferro, C.; Cadena, H.; Montoya-Lerma, J.; Adler, G. Canine visceral leishmaniasis: Dog infectivity to sand flies from non-endemic areas. Res. Veter. Sci. 2002, 72, 83–86. [Google Scholar] [CrossRef]
- Douvoyiannis, M.; Khromachou, T.; Byers, N.; Hargreaves, J.; Murray, H.W. Cutaneous Leishmaniasis in North Dakota. Clin. Infect. Dis. 2014, 59, e73–e75. [Google Scholar] [CrossRef] [Green Version]
- Perkins, P.; Endris, R.; Young, D. Experimental Transmission of Leishmania mexicana by a North American Sand Fly, Lutzomyia anthophora (Diptera: Psychodidae). J. Med. Èntomol. 1987, 24, 243–247. [Google Scholar] [CrossRef]
- McHugh, C.P.; Grogl, M.; Kreutzer, R.D. Isolation of Leishmania mexicana (Kinetoplastida: Trypanosomatidae) from Lutzomyia anthophora (Diptera: Psychodidae) Collected in Texas. J. Med. Èntomol. 1993, 30, 631–633. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.P.; Ostrander, B.F.; Raymond, R.W.; Kerr, S.F. Population Dynamics of Sand Flies (Diptera: Psychodidae) at Two Foci of Leishmaniasis in Texas. J. Med. Èntomol. 2001, 38, 268–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claborn, D.M.; Rowton, E.D.; Lawyer, P.G.; Brown, G.C.; Keep, L.W. Species Diversity and Relative Abundance of Phlebotomine Sand Flies (Diptera: Psychodidae) on Three Army Installations in the Southern United States and Susceptibility of a Domestic Sand Fly to Infection With Old World Leishmania major. Mil. Med. 2009, 174, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Weng, J.-L.; Young, S.L.; Gordon, D.M.; Claborn, D.; Petersen, C.; Ramalho-Ortigao, M. First Report of Phlebotomine Sand Flies (Diptera: Psychodidae) in Kansas and Missouri, and a PCR Method to Distinguish Lutzomyia shannoni from Lutzomyia vexator. J. Med. Èntomol. 2012, 49, 1460–1465. [Google Scholar] [CrossRef] [Green Version]
- Lawyer, P.G.; Young, D.G. Experimental Transmission of Leishmania mexicana to Hamsters by Bites of Phlebotomine Sand Flies (Diptera: Psychodidae) from the United States. J. Med. Èntomol. 1987, 24, 458–462. [Google Scholar] [CrossRef]
- Williams, P. Experimental transmission of Leishmania mexicana by Lutzomyia cruciata. Ann. Trop. Med. Parasitol. 1966, 60, 365–372. [Google Scholar] [CrossRef]
- McHugh, C.P.; Villegas, M.D.; Thies, M.L.; Yantis, L.D., Jr.; Raymond, R.W.; Melby, P.C.; Kerr, S.F. Short Report: A Disseminated Infection of Leishmania mexicana in an eastern woodrat, Neotoma floridana, Collected in Texas. Am. J. Trop. Med. Hyg. 2003, 69, 470–472. [Google Scholar] [CrossRef] [Green Version]
- McHugh, C.P.; Grögl, M.; Kerr, S.F. Isolation of Leishmania mexicana from Neotoma micropus Collected in Texas. J. Parasitol. 1990, 76, 741. [Google Scholar] [CrossRef] [PubMed]
- Kerr, S.F.; McHugh, C.P.; Dronen, N.O. Leishmaniasis in Texas: Prevalence and seasonal transmission of Leishmania mexicana in Neotoma micropus. Am. J. Trop. Med. Hyg. 1995, 53, 73–77. [Google Scholar] [CrossRef]
- Raymond, R.W.; McHugh, C.P.; Witt, L.R.; Kerr, S.F. Temporal and spatial distribution of Leishmania mexicana infections in a population of Neotoma micropus. Mem. Inst. Oswaldo Cruz 2003, 98, 171–180. [Google Scholar] [CrossRef] [Green Version]
- Kerr, S.F.; McHugh, C.P.; Merkelz, R. Short report: A focus of Leishmania mexicana near Tucson, Arizona. Am. J. Trop. Med. Hyg. 1999, 61, 378–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McHugh, C.P. Cutaneous leishmaniasis in Texas. J. Am. Acad. Dermatol. 2010, 62, 508–510. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Rojas, J.J.; Rodríguez-Moreno, Á.; Berzunza-Cruz, M.; Gutiérrez-Granados, G.; Becker, I.; Sánchez-Cordero, V.; Rebollar-Téllez, E.A. Ecology of phlebotomine sandflies and putative reservoir hosts of leishmaniasis in a border area in Northeastern Mexico: Implications for the risk of transmission of Leishmania mexicana in Mexico and the USA. Parasite 2017, 24, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosypal, A.C.; Alexander, A.; Byrd, D.; Weaver, M.; Stewart, R.; Gerhold, R.; Houston, A.; Van Why, K.; Dubey, J.P. Survey of antibodies Toleishmania spp. in wild canids from Pennsylvania and Tennessee. J. Zoo Wildl. Med. 2013, 44, 1131–1133. [Google Scholar] [CrossRef] [PubMed]
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers of IPCC Special Report on Global Warming of 1.5 °C Approved by Governments. 2018. Available online: https://www.ipcc.ch/2018/10/08/summary-for-policymakers-of-ipcc-special-report-on-global-warming-of-1-5c-approved-by-governments/ (accessed on 25 February 2021).
- Koch, L.K.; Kochmann, J.; Klimpel, S.; Cunze, S. Modeling the climatic suitability of leishmaniasis vector species in Europe. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Hlavacova, J.; Votypka, J.; Volf, P. The effect of temperature on Leishmania (Kinetoplastida: Trypanosomatidae) development in sand flies. J. Med. Èntomol. 2013, 50, 955–958. [Google Scholar] [CrossRef] [Green Version]
- Rioux, J.A.; Zahaf, A.; Lanotte, G.; Dereure, J. Leishmania major (Yakimoff et Shokkor 1914), the agent of Gafsa boil. Ann. Parasitol. Hum. Comp. 1983, 58, 633–634. [Google Scholar] [CrossRef] [Green Version]
- Killick-Kendrick, R.; Killick-Kendrick, M. The laboratory colonization of Phlebotomus ariasi (Diptera: Psychodidae). Ann. Parasitol. Hum. Comp. 1987, 62, 354–356. [Google Scholar] [CrossRef] [Green Version]
- Killick-Kendrick, R.; Wilkes, T.J.; Bailly, M.; Bailly, I.; Righton, L.A. Preliminary field observations on the flight speed of a phlebotomine sandfly. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 138–142. [Google Scholar] [CrossRef]
- González, C.; Wang, O.; Strutz, S.E.; González-Salazar, C.; Sánchez-Cordero, V.; Sarkar, S. Climate Change and Risk of Leishmaniasis in North America: Predictions from Ecological Niche Models of Vector and Reservoir Species. PLoS Negl. Trop. Dis. 2010, 4, e585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Short, E.E.; Caminade, C.; Thomas, B.N. Climate Change Contribution to the Emergence or Re-Emergence of Parasitic Diseases. Infect. Dis. 2017, 10, 1178633617732296. [Google Scholar] [CrossRef] [Green Version]
- Moo-Llanes, D.; Ibarra-Cerdeña, C.N.; Rebollar-Tellez, E.A.; Ibáñez-Bernal, S.; Gonzalez, C.; Ramsey, J.M. Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios. PLoS Negl. Trop. Dis. 2013, 7, e2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, M.; Baum, S.; Barzilai, A.; Scope, A.; Trau, H.; Schwartz, E. Liposomal amphotericin B in comparison to sodium stibogluconate for cutaneous infection due to Leishmania braziliensis. J. Am. Acad. Dermatol. 2007, 56, 612–616. [Google Scholar] [CrossRef] [PubMed]
- Wortmann, G.; Pierson, J.; Weintrob, A.; Zapor, M.; Magill, A.; Ressner, R.; Fraser, S.; Hartzell, J. Lipsosomal Amphotericin B for Treatment of Cutaneous Leishmaniasis. Am. J. Trop. Med. Hyg. 2010, 83, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- Herwaldt, B.L.; Stokes, S.L.; Juranek, D.D. American Cutaneous Leishmaniasis in U.S. Travelers. Ann. Intern. Med. 1993, 118, 779. [Google Scholar] [CrossRef] [PubMed]
- Boggild, A.K.; Caumes, E.; Grobusch, M.P.; Schwartz, E.; Hynes, N.A.; Libman, M.; Connor, B.A.; Chakrabarti, S.; Parola, P.; Keystone, J.S.; et al. Cutaneous and mucocutaneous leishmaniasis in travellers and migrants: A 20-year GeoSentinel Surveillance Network analysis. J. Travel Med. 2019, 26. [Google Scholar] [CrossRef] [PubMed]
- Murray, H.W.; Eiras, D.P.; Kirkman, L.A.; Chai, R.L.; Caplivski, D. Case Report: Mucosal Leishmaniasis in New York City. Am. J. Trop. Med. Hyg. 2020, 102, 1319–1322. [Google Scholar] [CrossRef]
- Most, H.; Lavietes, P.H. Kala azar in American military personnel, report of 30 cases. Medicine 1947, 26, 221–284. [Google Scholar] [CrossRef]
- Magill, A.J.; Grogl, M.; Gasser, R.A.; Sun, W.; Oster, C.N. Visceral Infection Caused by Leishmania tropica in Veterans of Operation Desert Storm. N. Engl. J. Med. 1993, 328, 1383–1387. [Google Scholar] [CrossRef] [PubMed]
- Myles, O.; Wortmann, G.W.; Cummings, J.F.; Barthel, R.V.; Patel, S.; Crum-Cianflone, N.F.; Negin, N.S.; Weina, P.J.; Ockenhouse, C.F.; Joyce, D.J.; et al. Visceral Leishmaniasis: Clinical Observations in 4 US Army Soldiers Deployed to Afghanistan or Iraq, 2002–2004. Arch. Intern. Med. 2007, 167, 1899–1901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheufele, C.J.; Giesey, R.L.; Delost, G.R. The global, regional, and national burden of leishmaniasis: An ecologic analysis from the Global Burden of Disease Study 1990–2017. J. Am. Acad. Dermatol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Sereno, D. Leishmania (Mundinia) spp.: From description to emergence as new human and animal Leishmania pathogens. New Microbes New Infect. 2019, 30, 100540. [Google Scholar] [CrossRef]
- Yao, C. Leishmania spp. and leishmaniasis on the Caribbean islands. Trans. R. Soc. Trop. Med. Hyg. 2020, 114, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, S.R.; De Santana, A.K.; Takamiya, N.T.; Takahashi, T.Y.; Rogerio, L.A.; Oliveira, C.A.; Milanezi, C.M.; Trombela, V.A.; Cruz, A.K.; Jesus, A.R.; et al. Non-Leishmania Parasite in Fatal Visceral Leishmaniasis–Like Disease, Brazil. Emerg. Infect. Dis. 2019, 25, 2088–2092. [Google Scholar] [CrossRef] [Green Version]
- Blauwkamp, T.A.; Thair, S.; Rosen, M.J.; Blair, L.; Lindner, M.S.; Vilfan, I.D.; Kawli, T.; Christians, F.C.; Venkatasubrahmanyam, S.; Wall, G.D.; et al. Analytical and clinical validation of a microbial cell-free DNA sequencing test for infectious disease. Nat. Microbiol. 2019, 4, 663–674. [Google Scholar] [CrossRef]
- Lachaud, L.; Fernández-Arévalo, A.; Normand, A.-C.; Lami, P.; Nabet, C.; Donnadieu, J.L.; Piarroux, M.; Djenad, F.; Cassagne, C.; Ravel, C.; et al. Identification of Leishmania by Matrix-Assisted Laser Desorption Ionization–Time of Flight (MALDI-TOF) Mass Spectrometry Using a Free Web-Based Application and a Dedicated Mass-Spectral Library. J. Clin. Microbiol. 2017, 55, 2924–2933. [Google Scholar] [CrossRef] [Green Version]
- Goldin, H.; Kohen, S.; Taxy, J.; Libman, M.; Cibull, T.; Billick, K. Leishmania tropica infection of the ear treated with photodynamic therapy. JAAD Case Rep. 2020, 6, 514–517. [Google Scholar] [CrossRef]
- David, J.R. The successful use of radiofrequency-induced heat therapy for cutaneous leishmaniasis: A review. Parasitology 2018, 145, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Drugs for Neglected Tropical Disease Initiative. Cutaneous Leishmaniasis. Available online: https://dndi.org/diseases/cutaneous-leishmaniasis/ (accessed on 25 February 2021).
- Drugs for Neglected Tropical Disease Initiative. Visceral Leishmaniasis. Available online: https://dndi.org/diseases/visceral-leishmaniasis/ (accessed on 25 February 2021).
- Dos Santos, J.C.; de Figueiredo, A.M.B.; Silva, M.V.T.; Cirovic, B.; de Bree, L.C.J.; Damen, M.S.; Joosten, L.A. Beta-Glucan-Induced Trained Immunity Protects against Leishmania braziliensis Infection: A Crucial Role for IL-32. Cell Rep. 2019, 28, 2659–2672.e6. [Google Scholar] [CrossRef] [Green Version]
- Vetvicka, V.; Fernandez-Botran, R. Beta-Glucan and Parasites. Helminthologia 2018, 55, 177–184. [Google Scholar] [CrossRef] [Green Version]
- Bañuls, A.L.; Bastien, P.; Pomares, C.; Arevalo, J.; Fisa, R.; Hide, M. Clinical pleiomorphism in human leishmaniases, with special mention of asymptomatic infection. Clin. Microbiol. Infect. 2011, 17, 1451–1461. [Google Scholar] [CrossRef] [Green Version]
- Bern, C.; Chowdhury, R.; Breiman, R.F.; Wahed, M.A.; Wagatsuma, Y.; Secor, W.E.; Maguire, J.H.; Ali, M.; Vaz, L.; Amann, J.; et al. The Epidemiology of Visceral Leishmaniasis and Asymptomatic Leishmanial Infection in a Highly Endemic Bangladeshi Village. Am. J. Trop. Med. Hyg. 2007, 76, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Jeronimo, S.M.B.; Teixeira, M.J.; Sousa, A.D.Q.; Thielking, P.; Pearson, R.D.; Evans, T.G. Natural History of Leishmania (Leishmania) chagasi infection in Northeastern Brazil: Long-Term Follow-Up. Clin. Infect. Dis. 2000, 30, 608–609. [Google Scholar] [CrossRef] [Green Version]
- Lima, I.D.; Queiroz, J.W.; Lacerda, H.G.; Queiroz, P.V.S.; Pontes, N.N.; Barbosa, J.D.A.; Martins, D.R.; Weirather, J.L.; Pearson, R.D.; Wilson, M.E.; et al. Leishmania infantum chagasi in Northeastern Brazil: Asymptomatic Infection at the Urban Perimeter. Am. J. Trop. Med. Hyg. 2012, 86, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Mary, C.; Faraut, F.; Lascombe, L.; Dumon, H. Quantification of Leishmania infantum DNA by a Real-Time PCR Assay with High Sensitivity. J. Clin. Microbiol. 2004, 42, 5249–5255. [Google Scholar] [CrossRef] [Green Version]
- Desjeux, P. The increase in risk factors for leishmaniasis worldwide. Trans. R. Soc. Trop. Med. Hyg. 2001, 95, 239–243. [Google Scholar] [CrossRef]
- Hirve, S.; Boelaert, M.; Matlashewski, G.; Mondal, D.; Arana, B.; Kroeger, A.; Olliaro, P. Transmission Dynamics of Visceral Leishmaniasis in the Indian Subcontinent—A Systematic Literature Review. PLoS Negl. Trop. Dis. 2016, 10, e0004896. [Google Scholar] [CrossRef] [Green Version]
- Singh, O.P.; Tiwary, P.; Kushwaha, A.K.; Singh, S.K.; Singh, D.K.; Lawyer, P.; Rowton, E.; Chaubey, R.; Singh, A.K.; Rai, T.K.; et al. Xenodiagnosis to evaluate the infectiousness of humans to sandflies in an area endemic for visceral leishmaniasis in Bihar, India: A transmission-dynamics study. Lancet Microbe 2021, 2, e23–e31. [Google Scholar] [CrossRef]
- Michel, G.; Pomares, C.; Ferrua, B.; Marty, P. Importance of worldwide asymptomatic carriers of Leishmania infantum (L. chagasi) in human. Acta Trop. 2011, 119, 69–75. [Google Scholar] [CrossRef]
- Fakhar, M.; Motazedian, M.; Hatam, G.; Asgari, Q.; Kalantari, M.; Mohebali, M. Asymptomatic human carriers of Leishmania infantum: Possible reservoirs for Mediterranean visceral leishmaniasis in southern Iran. Ann. Trop. Med. Parasitol. 2008, 102, 577–583. [Google Scholar] [CrossRef]
- Alborzi, A.; Fakhar, M.; Pouladfar, G.R.; Kadivar, M.R.; Hatam, G.R.; Motazedian, M.H. Isolation of Leishmania tropica from a Patient with Visceral Leishmaniasis and Disseminated Cutaneous Leishmaniasis, Southern Iran. Am. J. Trop. Med. Hyg. 2008, 79, 435–437. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Fact Sheet: Leishmaniasis. 2 March 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 25 February 2021).
- Bhattacharyya, T.; Boelaert, M.; Miles, M.A. Comparison of Visceral Leishmaniasis Diagnostic Antigens in African and Asian Leishmania donovani Reveals Extensive Diversity and Region-specific Polymorphisms. PLoS Negl. Trop. Dis. 2013, 7, e2057. [Google Scholar] [CrossRef] [Green Version]
- Lun, Z.-R.; Wu, M.-S.; Chen, Y.-F.; Wang, J.-Y.; Zhou, X.-N.; Liao, L.-F.; Chen, J.-P.; Chow, L.M.C.; Chang, K.P. Visceral Leishmaniasis in China: An Endemic Disease under Control. Clin. Microbiol. Rev. 2015, 28, 987–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lukes, J.; Mauricio, I.L.; Schönian, G.; Dujardin, J.-C.; Soteriadou, K.; Dedet, J.-P.; Kuhls, K.; Tintaya, K.W.Q.; Jirků, M.; Chocholová, E.; et al. Evolutionary and geographical history of the Leishmania donovani complex with a revision of current taxonomy. Proc. Natl. Acad. Sci. USA 2007, 104, 9375–9380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pan American Health Organization. Annual Report of the Director of the Pan American Sanitary Bureau 2020. Saving Lives and Improving Health and Well-Being; PAHO: Washington, DC, USA, 2020. [Google Scholar]
- World Health Organization. WHO Weekly Epidemiological Record; WHO: Geneva, Switzerland, 2020; Volume 95, pp. 265–280. [Google Scholar]
- Gupta, G.; Oghumu, S.; Satoskar, A.R. Mechanisms of Immune Evasion in Leishmaniasis. Adv. Appl. Microbiol. 2013, 82, 155–184. [Google Scholar] [PubMed] [Green Version]
- Rohousová, I.; Volf, P. Sand fly saliva: Effects on host immune response and Leishmania transmission. Folia Parasitol. 2006, 53, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, V.; Cordeiro-Da-Silva, A.; LaForge, M.; Silvestre, R.; Estaquier, J. Regulation of immunity during visceral Leishmania infection. Parasites Vectors 2016, 9, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaye, P.M.; Svensson, M.; Ato, M.; Maroof, A.; Polley, R.; Stager, S.; Zubairi, S.; Engwerda, C.R. The immunopathology of experimental visceral leishmaniasis. Immunol. Rev. 2004, 201, 239–253. [Google Scholar] [CrossRef]
- Rodrigues, V.; LaForge, M.; Campillo-Gimenez, L.; Soundaramourty, C.; Correia-De-Oliveira, A.; Dinis-Oliveira, R.J.; Ouaissi, A.; Cordeiro-Da-Silva, A.; Silvestre, R.; Estaquier, J. Abortive T Follicular Helper Development Is Associated with a Defective Humoral Response in Leishmania infantum-Infected Macaques. PLoS Pathog. 2014, 10, e1004096. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, P.; Singh, V.; Naik, S. Immune response to leishmania: Paradox rather than paradigm. FEMS Immunol. Med. Microbiol. 2007, 51, 229–242. [Google Scholar] [CrossRef] [Green Version]
- Murray, H.W.; Lu, C.M.; Mauze, S.; Freeman, S.; Moreira, A.L.; Kaplan, G.; Coffman, R.L. Interleukin-10 (IL-10) in Experimental Visceral Leishmaniasis and IL-10 Receptor Blockade as Immunotherapy. Infect. Immun. 2002, 70, 6284–6293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, J.; Hasker, E.; Kansal, S.; Singh, O.P.; Malaviya, P.; Singh, A.K.; Chourasia, A.; Singh, T.; Sudarshan, M.; Singh, A.P.; et al. Determinants for progression from asymptomatic infection to symptomatic visceral leishmaniasis: A cohort study. PLoS Negl. Trop. Dis. 2019, 13, e0007216. [Google Scholar] [CrossRef] [PubMed]
- Das, V.N.R.; Bimal, S.; Siddiqui, N.A.; Kumar, A.; Pandey, K.; Sinha, S.K.; Topno, R.K.; Mahentesh, V.; Singh, A.K.; Lal, C.S.; et al. Conversion of asymptomatic infection to symptomatic visceral leishmaniasis: A study of possible immunological markers. PLoS Negl. Trop. Dis. 2020, 14, e0008272. [Google Scholar] [CrossRef]
- Evans, T.G.; Pearson, R.D.; Teixeira, M.J.; Sousa, A.D.Q. Short Report: Extended Follow-up of the Natural History of Persons Infected with Leishmania chagasi. Am. J. Trop. Med. Hyg. 1995, 53, 360–361. [Google Scholar] [CrossRef] [PubMed]
- Hasker, E.; Malaviya, P.; Gidwani, K.; Picado, A.; Ostyn, B.; Kansal, S.; Singh, R.P.; Singh, O.P.; Chourasia, A.; Singh, A.K.; et al. Strong Association between Serological Status and Probability of Progression to Clinical Visceral Leishmaniasis in Prospective Cohort Studies in India and Nepal. PLoS Negl. Trop. Dis. 2014, 8, e2657. [Google Scholar] [CrossRef] [PubMed]
- Chapman, L.A.C.; Dyson, L.; Courtenay, O.; Chowdhury, R.; Bern, C.; Medley, G.F.; Hollingsworth, T.D. Quantification of the natural history of visceral leishmaniasis and consequences for control. Parasites Vectors 2015, 8, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arce, A.; Estirado, A.; Ordobas, M.; Sevilla, S.; García, N.; Moratilla, L.; De La Fuente, S.; Martínez, A.M.; Pérez, A.M.; Aránguez, E.; et al. Re-emergence of leishmaniasis in Spain: Community outbreak in Madrid, Spain, 2009 to 2012. Eurosurveillance 2013, 18, 20546. [Google Scholar] [CrossRef] [Green Version]
- Horrillo, L.; Castro, A.; Matía, B.; Molina, L.; García-Martínez, J.; Jaqueti, J.; García-Arata, I.; Carrillo, E.; Moreno, J.; Ruiz-Giardin, J.M.; et al. Clinical aspects of visceral leishmaniasis caused by L. infantum in adults. Ten years of experience of the largest outbreak in Europe: What have we learned? Parasites Vectors 2019, 12, 359. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Meneses, A.V.; Carrillo, E.; Nieto, J.; Sánchez, C.; Ortega, S.; Estirado, A.; Zamalloa, P.L.; Sanz, J.C.; García-Comas, L.; Ordobás, M.; et al. Prevalence of asymptomatic Leishmania infection and associated risk factors, after an outbreak in the south-western Madrid region, Spain, 2015. Eurosurveillance 2019, 24, 1800379. [Google Scholar] [CrossRef] [Green Version]
- El-Safi, S.H.; Bucheton, B.; Kheir, M.M.; Musa, H.A.A.; Moawia, E.O.; Hammad, A.; Dessein, A. Epidemiology of visceral leishmaniasis in Atbara River area, eastern Sudan: The outbreak of Barbar El Fugara village (1996–1997). Microbes Infect. 2002, 4, 1439–1447. [Google Scholar] [CrossRef]
- Babuadze, G.; Alvar, J.; Argaw, D.; De Koning, H.P.; Iosava, M.; Kekelidze, M.; Tsertsvadze, N.; Tsereteli, D.; Chakhunashvili, G.; Mamatsashvili, T.; et al. Epidemiology of Visceral Leishmaniasis in Georgia. PLoS Negl. Trop. Dis. 2014, 8, e2725. [Google Scholar] [CrossRef] [Green Version]
- Aronson, N.; Herwaldt, B.L.; Libman, M.; Pearson, R.; Lopez-Velez, R.; Weina, P.; Magill, A. Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and Hygiene (ASTMH). Clin. Infect. Dis. 2016, 63, e202–e264. [Google Scholar] [CrossRef]
- Vexenat, A.D.C.; Santana, J.M.; Teixeira, A.R. Cross-reactivity of antibodies in human infections by the kinetoplastid protozoa Trypanosoma cruzi, Leishmania chagasi and Leishmania (Viannia) braziliensis. Rev. Inst. Med. Trop. São Paulo 1996, 38, 177–185. [Google Scholar] [CrossRef]
- Zanette, M.F.; De Lima, V.M.F.; Laurenti, M.D.; Rossi, C.N.; Vides, J.P.; Vieira, R.F.D.C.; Biondo, A.W.; Marcondes, M. Serological cross-reactivity of Trypanosoma cruzi, Ehrlichia canis, Toxoplasma gondii, Neospora caninum and Babesia canis to Leishmania infantum chagasi tests in dogs. Rev. Soc. Bras. Med. Trop. 2014, 47, 105–107. [Google Scholar] [CrossRef] [PubMed]
- Van Griensven, J.; Carrillo, E.; López-Vélez, R.; Lynen, L.; Moreno, J. Leishmaniasis in immunosuppressed individuals. Clin. Microbiol. Infect. 2014, 20, 286–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gajurel, K.; Dhakal, R.; Deresinski, S. Leishmaniasis in solid organ and hematopoietic stem cell transplant recipients. Clin. Transplant. 2017, 31, e12867. [Google Scholar] [CrossRef]
- Ramos, J.M.; Montero, M.; Portilla, J.; Blanes, M.; Merino, E.; Boix, V.; Aljibe, A.; Reus, S.; León, R.; Salavert, M. Is Visceral Leishmaniasis Different in Immunocompromised Patients without Human Immunodeficiency Virus? A Comparative, Multicenter Retrospective Cohort Analysis. Am. J. Trop. Med. Hyg. 2017, 97, 1127–1133. [Google Scholar] [CrossRef] [Green Version]
- Júnior, W.L.B.; Dos Santos, A.M.A.; Medeiros, Z.; De Andrade, L.D.; Dantas-Torres, F.; De Araújo, P.S.R.; Da Silva, M.A.L.; Barbosa, W.L. Rapid Tests and the Diagnosis of Visceral Leishmaniasis and Human Immunodeficiency Virus/Acquired Immunodeficiency Syndrome Coinfection. Am. J. Trop. Med. Hyg. 2015, 93, 967–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, J.; Hasker, E.; Das, P.; El Safi, S.; Goto, H.; Mondal, D.; Mbuchi, M.; Mukhtar, M.; Rabello, A.; Rijal, S.; et al. A Global Comparative Evaluation of Commercial Immunochromatographic Rapid Diagnostic Tests for Visceral Leishmaniasis. Clin. Infect. Dis. 2012, 55, 1312–1319. [Google Scholar] [CrossRef] [PubMed]
- Moreno, E.C.; Gonçalves, A.V.; Chaves, A.V.; Melo, M.N.; Lambertucci, J.R.; Andrade, A.S.R.; Negrão-Corrêa, D.; Antunes, C.M.D.F.; Carneiro, M. Inaccuracy of Enzyme-Linked Immunosorbent Assay Using Soluble and Recombinant Antigens to Detect Asymptomatic Infection by Leishmania infantum. PLoS Negl. Trop. Dis. 2009, 3, e536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Ruiter, C.M.; Van Der Veer, C.; Leeflang, M.M.G.; Deborggraeve, S.; Lucas, C.J.; Adams, E.R. Molecular Tools for Diagnosis of Visceral Leishmaniasis: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy. J. Clin. Microbiol. 2014, 52, 3147–3155. [Google Scholar] [CrossRef] [Green Version]
- Sudarshan, M.; Singh, T.; Chakravarty, J.; Sundar, S. A Correlative Study of Splenic Parasite Score and Peripheral Blood Parasite Load Estimation by Quantitative PCR in Visceral Leishmaniasis. J. Clin. Microbiol. 2015, 53, 3905–3907. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, J.N.; Lockwood, D.N. Clinical aspects of visceral leishmaniasis in HIV infection. Curr. Opin. Infect. Dis. 2013, 26, 1–9. [Google Scholar] [CrossRef]
- Alvar, J.; Aparicio, P.; Aseffa, A.; Den Boer, M.; Cañavate, C.; Dedet, J.-P.; Gradoni, L.; Ter Horst, R.; López-Vélez, R.; Moreno, J. The Relationship between Leishmaniasis and AIDS: The Second 10 Years. Clin. Microbiol. Rev. 2008, 21, 334–359. [Google Scholar] [CrossRef] [Green Version]
- Okwor, I.; Uzonna, J.E. The immunology of Leishmania/HIV co-infection. Immunol. Res. 2013, 56, 163–171. [Google Scholar] [CrossRef]
- Pagliano, P.; Esposito, S. Visceral leishmaniosis in immunocompromised host: An update and literature review. J. Chemother. 2017, 29, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, J.V.S.C.; Dos Santos, F.S.; Ribeiro, R.D.S.P.; Oliveira, I.B.B.; Dantas, V.B.; Santos, A.B.F.S.; Tauhata, J.R. Visceral leishmaniasis and leishmaniasis-HIV coinfection: Comparative study. Rev. Soc. Bras. Med. Trop. 2017, 50, 670–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvar, J.; Canavate, C.; Gutierrez-Solar, B.; Jimenez, M.; Laguna, F.; Lopez-Velez, R.; Moreno, J. Leishmania and human immunodeficiency virus coinfection: The first 10 years. Clin. Microbiol. Rev. 1997, 10, 298–319. [Google Scholar] [CrossRef]
- Antinori, S.; Cascio, A.; Parravicini, C.; Bianchi, R.; Corbellino, M. Leishmaniasis among organ transplant recipients. Lancet Infect. Dis. 2008, 8, 191–199. [Google Scholar] [CrossRef]
- Akuffo, H.; Costa, C.; Van Griensven, J.; Burza, S.; Moreno, J.; Herrero, M. New insights into leishmaniasis in the immunosuppressed. PLoS Negl. Trop. Dis. 2018, 12, e0006375. [Google Scholar] [CrossRef]
- La Hoz, R.M.; Morris, M.I.; Infectious Diseases Community of Practice of the American Society of Transplantation. Tissue and blood protozoa including toxoplasmosis, Chagas disease, leishmaniasis, Babesia, Acanthamoeba, Balamuthia, and Naegleria in solid organ transplant recipients—Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transpl. 2019, 33, e13546. [Google Scholar]
- Tatarelli, P.; Fornaro, G.; Del Bono, V.; Nicolini, L.; Raiola, A.; Gualandi, F.; Varaldo, R.; Di Muccio, T.; Gramiccia, M.; Gradoni, L.; et al. Visceral leishmaniasis in hematopoietic cell transplantation: Case report and review of the literature. J. Infect. Chemother. 2018, 24, 990–994. [Google Scholar] [CrossRef] [PubMed]
- Romaní-Costa, V.; Sánchez, C.; Moyá, F.; Estany, C. Visceral leishmaniasis related to infliximab administration. Enferm. Infecc. Microbiol. Clín. 2004, 22, 310. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Pizzorni, C.; Gradoni, L.; Del Bono, V.; Cutolo, M.; Viscoli, C. Visceral leishmaniasis infection in a rheumatoid arthritis patient treated with adalimumab. Rheumatology 2006, 45, 1446–1448. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Coakley, G.; Cosgrove, C.; Lockwood, D. Let off the leash: Kala-azar following the use of tumour necrosis factor antibodies. BMJ Case Rep. 2010, 2010. [Google Scholar] [CrossRef] [PubMed]
- Besada, E.; Njålla, R.J.; Nossent, J.C. Imported case of visceral leishmaniasis presenting as pancytopenia in a Norwegian patient treated with methotrexate and etanercept for psoriasis arthritis. Rheumatol. Int. 2013, 33, 2687–2689. [Google Scholar] [CrossRef]
- Guedes-Barbosa, L.S.; Da Costa, I.P.; Fernandes, V.; Da Mota, L.M.H.; De Menezes, I.; Scheinberg, M.A. Leishmaniasis during anti-tumor necrosis factor therapy: Report of 4 cases and review of the literature (additional 28 cases). Semin. Arthritis Rheum. 2013, 43, 152–157. [Google Scholar] [CrossRef]
- Maritati, M.; Trentini, A.; Michel, G.; Bellini, T.; Almugadam, S.; Hanau, S.; Govoni, M.; Marty, P.; Contini, C. Subclinical Leishmania infection in patients with rheumatic diseases under biological drugs. Infection 2018, 46, 801–809. [Google Scholar] [CrossRef]
- Guillén, M.C.; Alcover, M.M.; Borruel, N.; Sulleiro, E.; Salvador, F.; Berenguer, D.; Guise, C.H.-D.; Rodríguez, V.; Moure, Z.; Sánchez-Montalvà, A.; et al. Leishmania infantum asymptomatic infection in inflammatory bowel disease patients under anti-TNF therapy. Heliyon 2020, 6, e03940. [Google Scholar] [CrossRef]
- Zanger, P.; Kötter, I.; Kremsner, P.; Gabrysch, S. Tumor necrosis factor alpha antagonist drugs and leishmaniasis in Europe. Clin. Microbiol. Infect. 2012, 18, 670–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosch-Nicolau, P.; Ubals, M.; Salvador, F.; Sánchez-Montalvá, A.; Aparicio, G.; Erra, A.; De Salazar, P.M.; Sulleiro, E.; Molina, I. Leishmaniasis and tumor necrosis factor alpha antagonists in the Mediterranean basin. A switch in clinical expression. PLoS Negl. Trop. Dis. 2019, 13, e0007708. [Google Scholar] [CrossRef] [PubMed]
- Fallahi-Sichani, M.; Flynn, J.L.; Linderman, J.J.; Kirschner, D.E. Differential Risk of Tuberculosis Reactivation among Anti-TNF Therapies Is Due to Drug Binding Kinetics and Permeability. J. Immunol. 2012, 188, 3169–3178. [Google Scholar] [CrossRef] [Green Version]
- Clemente, W.T.; Mourão, P.H.O.; Lopez-Medrano, F.; Schwartz, B.S.; García-Donoso, C.; Torre-Cisneros, J. Visceral and Cutaneous Leishmaniasis Recommendations for Solid Organ Transplant Recipients and Donors. Transplantation 2018, 102 (Suppl. 2), S8–S15. [Google Scholar] [CrossRef]
- Malinis, M.; Boucher, H.W.; on behalf of the AST Infectious Diseases Community of Practice. Screening of donor and candidate prior to solid organ transplantation—Guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin. Transpl. 2019, 33, e13548. [Google Scholar] [CrossRef]
- Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV; Department of Health and Human Services: Washington, DC, USA, 2019. [Google Scholar]
- Singh, J.A.; Saag, K.G.; Bridges, S.L., Jr.; Akl, E.A.; Bannuru, R.R.; Sullivan, M.C.; Vaysbrot, E.; McNaughton, C.; Osani, M.; Shmerling, R.H.; et al. 2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis. Arthritis Rheum. 2016, 68, 1–25. [Google Scholar]
- Lichtenstein, G.R.; Loftus, E.V.; Isaacs, K.L.; Regueiro, M.D.; Gerson, L.B.; Sands, B.E. ACG Clinical Guideline: Management of Crohn’s Disease in Adults. Am. J. Gastroenterol. 2018, 113, 481–517. [Google Scholar] [CrossRef] [PubMed]
- Berry, A.; Abraham, B.; Dereure, J.; Pinzani, V.; Bastien, P.; Reynes, J. Two Case Reports of Symptomatic Visceral Leishmaniasis in AIDS Patients Concomitant with Immune Reconstitution due to Antiretroviral Therapy. Scand. J. Infect. Dis. 2004, 36, 225–227. [Google Scholar] [CrossRef] [PubMed]
- Ribera, E.; Ocaña, I.; de Otero, J.; Cortes, E.; Gasser, I.; Pahissa, A. Prophylaxis of visceral leishmaniasis in human immunodeficiency virus-infected patients. Am. J. Med. 1996, 100, 496–501. [Google Scholar] [CrossRef]
- Berenguer, J.; Cosín, J.; Miralles, P.; López, J.C.; Padilla, B. Discontinuation of secondary anti-Leishmania prophylaxis in HIV-infected patients who have responded to highly active antiretroviral therapy. AIDS 2000, 14, 2946–2948. [Google Scholar] [CrossRef] [PubMed]
- Clemente, W.; Vidal, E.; Girao, E.; Ramos, A.; Govedic, F.; Merino, E.; Muñoz, P.; Sabé, N.; Cervera, C.; Cota, G.; et al. Risk factors, clinical features and outcomes of visceral leishmaniasis in solid-organ transplant recipients: A retrospective multicenter case–control study. Clin. Microbiol. Infect. 2015, 21, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centers for Disease Control and Prevention. Leishmaniasis: Resources for Health Professionals. June 2020. Available online: https://www.cdc.gov/parasites/leishmaniasis/health_professionals/index.html (accessed on 21 February 2021).
- Dey, A.; Singh, S. Transfusion transmitted leishmaniasis: A case report and review of literature. Indian J. Med. Microbiol. 2006, 24, 165–170. [Google Scholar] [PubMed]
- Chung, H.; Chow, K.K.; Lu, J.P. The first two cases of transfusion kala-azar. Chin. Med. J. 1948, 66, 325–326. [Google Scholar]
- Jimenez-Marco, T.; Fisa, R.; Girona-Llobera, E.; Cancino-Faure, B.; Tomás-Pérez, M.; Berenguer, D.; Guillen, C.; Pujol, A.; Iniesta, L.; Serra, T.; et al. Transfusion-transmitted leishmaniasis: A practical review. Transfusion 2016, 56 (Suppl. 1), S45–S51. [Google Scholar] [CrossRef]
- Luz, K.G.; Freire, T.C.; D’Almeida, J.B.; Palatnik, M.; Da Silva, V.O.; Gomes, E.M.; Machado, F.C.S.; Araujo, M.A.F.; Fonseca, H.E.M.; Palatnik-De-Sousa, C.B. Prevalence of Anti-Leishmania donovani Antibody Among Brazilian Blood Donors and Multiply Transfused Hemodialysis Patients. Am. J. Trop. Med. Hyg. 1997, 57, 168–171. [Google Scholar] [CrossRef]
- Fukutani, K.F.; Figueiredo, V.; Celes, F.S.; Cristal, J.R.; Barral, A.; Barral-Netto, M.; de Oliveira, C.I. Serological survey of Leishmania infection in blood donors in Salvador, Northeastern Brazil. BMC Infect. Dis. 2014, 14, 422. [Google Scholar] [CrossRef] [Green Version]
- França, A.D.O.; Pompilio, M.A.; Pontes, E.R.J.C.; De Oliveira, M.P.; Pereira, L.; Lima, R.B.; Goto, H.; Sanchez, M.C.A.; Fujimori, M.; Lima-Júnior, M.S.D.C.; et al. Leishmania infection in blood donors: A new challenge in leishmaniasis transmission? PLoS ONE 2018, 13, e0198199. [Google Scholar] [CrossRef] [Green Version]
- Riera, C.; Fisa, R.; López-Chejade, P.; Serra, T.; Girona, E.; Jiménez, M.; Portús, M. Asymptomatic infection by Leishmania infantum in blood donors from the Balearic Islands (Spain). Transfusion 2008, 48, 1383–1389. [Google Scholar] [CrossRef]
- Dhaliwal, A.; Chauhan, A.; Aggarwal, D.; Davda, P.; David, M.; Amel-Kashipaz, R.; Brown, R.; Dedicoat, M.; Clark, F.; Shah, T.; et al. Donor acquired visceral leishmaniasis following liver transplantation. Front. Gastroenterol. 2021. [Google Scholar] [CrossRef]
- Fabiani, S.; Fortunato, S.; Bruschi, F. Solid Organ Transplant and Parasitic Diseases: A Review of the Clinical Cases in the Last Two Decades. Pathogens 2018, 7, 65. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Jiménez, M.; García-Martínez, J.; Martín, J.V.S.; Carrillo, E.; Sánchez, C.; Moreno, J.; Alves, F.; Alvar, J. Role of asymptomatic and symptomatic humans as reservoirs of visceral leishmaniasis in a Mediterranean context. PLoS Negl. Trop. Dis. 2020, 14, e0008253. [Google Scholar] [CrossRef] [PubMed]
- Molina, R.; Pulido, F.; Laguna, F.; Alvar, J.; López-Vélez, R.; Lohse, J.M. Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am. J. Trop. Med. Hyg. 1999, 60, 51–53. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, G.R.; Da Silva, J.C.; Faustino, S.K.M.; Ribeiro, J.C.C.B.; Pereira, H.F.; Parente, D.M.; Costa, C.H.N.; Filho, A.M.; Pereira, T.D.J.C.F.; De Mendonça, I.L.; et al. Human Competence to Transmit Leishmania infantum to Lutzomyia longipalpis and the Influence of Human Immunodeficiency Virus Infection. Am. J. Trop. Med. Hyg. 2018, 98, 126–133. [Google Scholar] [CrossRef] [Green Version]
- Pahwa, R.; Goyal, A.; Bansal, P.; Jialal, I. Chronic Inflammation; StatPearls: Treasure Island, FL, USA, 2020. [Google Scholar]
- Piber, D.; Olmstead, R.; Cho, J.H.-J.; Witarama, T.; Perez, C.; Dietz, N.; Seeman, T.E.; Breen, E.C.; Cole, S.W.; Irwin, M.R. Inflammaging: Age and Systemic, Cellular, and Nuclear Inflammatory Biology in Older Adults. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2019, 74, 1716–1724. [Google Scholar] [CrossRef] [PubMed]
- Faleiro, R.J.; Kumar, R.; Hafner, L.M.; Engwerda, C.R. Immune Regulation during Chronic Visceral Leishmaniasis. PLoS Negl. Trop. Dis. 2014, 8, e2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deeks, S.G.; Tracy, R.; Douek, D.C. Systemic Effects of Inflammation on Health during Chronic HIV Infection. Immunity 2013, 39, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freiberg, M.S.; Chang, C.-C.H.; Kuller, L.H.; Skanderson, M.; Lowy, E.; Kraemer, K.L.; Butt, A.A.; Goetz, M.B.; Leaf, D.; Oursler, K.A.; et al. HIV Infection and the Risk of Acute Myocardial Infarction. JAMA Intern. Med. 2013, 173, 614–622. [Google Scholar] [CrossRef]
- Desquilbet, L.; Jacobson, L.P.; Fried, L.P.; Phair, J.P.; Jamieson, B.D.; Holloway, M.; Margolick, J.B.; for the Multicenter AIDS Cohort Study. HIV-1 Infection Is Associated with an Earlier Occurrence of a Phenotype Related to Frailty. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 2007, 62, 1279–1286. [Google Scholar] [CrossRef] [Green Version]
- Cardoso, S.W.; Torres, T.S.; Santini-Oliveira, M.; Marins, L.M.S.; Veloso, V.G.; Grinsztejn, B. Aging with HIV: A practical review. Braz. J. Infect. Dis. 2013, 17, 464–479. [Google Scholar] [CrossRef] [Green Version]
- Currier, J.S. Management of Long-Term Complications of HIV Disease: Focus on Cardiovascular Disease. Top. Antivir. Med. 2018, 25, 133–137. [Google Scholar] [PubMed]
- Navas, A.; Fernández, O.; Gallego-Marín, C.; Castro, M.D.M.; Rosales-Chilama, M.; Murillo, J.; Cossio, A.; McMahon-Pratt, D.; Saravia, N.G.; Gómez, M.A. Profiles of Local and Systemic Inflammation in the Outcome of Treatment of Human Cutaneous Leishmaniasis Caused by Leishmania (Viannia). Infect. Immun. 2020, 88. [Google Scholar] [CrossRef] [PubMed]
- Covre, L.P.; Martins, R.F.; Devine, O.P.; Chambers, E.S.; Vukmanovic-Stejic, M.; Silva, J.A.; Dietze, R.; Rodrigues, R.R.; Guedes, H.L.D.M.; Falqueto, A.; et al. Circulating Senescent T Cells Are Linked to Systemic Inflammation and Lesion Size During Human Cutaneous Leishmaniasis. Front. Immunol. 2019, 9, 3001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sand Fly Species | U.S. Geographic Locations | Competent Leishmania Vector |
---|---|---|
Lu. anthophora | Arizona, Oklahoma, Texas | L. mexicana [22] |
Lu. cruciata | Florida, Georgia | L. mexicana [28] |
Lu. diabolica | Texas | L. mexicana [27] |
Lu. shannoni | Widespread; AL, AR, DE, FL, GA, KY, KS, LA, MD MO, MS, NC, NJ, OH SC, TN, TX [26] | L. mexicana [27] L. infantum [18,20] ? L. major [25]—transmission not proven, can be infected |
Leishmania donovani
| East Africa and Southern Arabia
|
Northwestern China
| |
South Asia
| |
Leishmania infantum (synonym: L. chagasi) | Central and South America
|
Arabian Peninsula
| |
Mediterranean, North Africa, and Middle East
| |
Western Asia and China
| |
L. (Mundinia) species
| Thailand, Myanmar, Grenada, Martinique |
Study Name (Year) [Reference] | Location | Species | Study Size | Tests Used | Follow-Up Duration | Risk of Progression | Factors Associated with Risk of Progression |
---|---|---|---|---|---|---|---|
Evans et al. (1995) [92] | Brazil | L. infantum | 653 (children) | Anti-leishmanial antibodies | 5 years | 6.1% | Seroconversion; living in household with prior VL case |
Hasker et al. (2014) [93] | India, Nepal | L. donovani | 32,529 | rK39, DAT | 1 year | 6.4% (India; high baseline DAT) | High titers of rK39 and/or DAT; new seroconverters |
9.8% (Nepal; high baseline DAT) | |||||||
7.3% (India; high baseline rK39) | |||||||
7.7% (Nepal; high baseline rK39) | |||||||
12.5% (India; new seroconversion) | |||||||
9.1% (Nepal; new seroconversion) | |||||||
Chapman et al. (2015) [94] | Bangladesh | L. donovani | 2410 | rK39 | 3 years | 14.7% | High titer rK39, especially in new seroconverters |
Chakravaty et al. (2019) [90] | India | L. donovani | 1606 | rK39, DAT, IGRA, qPCR | 3 years | 1.6% (8/476 known seroconverters) | High titer DAT; high titer rK39; +qPCR |
Das et al. (2020) [91] | India | L. donovani | 5794 | rK39, DAT, qPCR | 6 months | 3.27% (+ rK39 only) | + for mid-high titer rK39 and DAT plus + qPCR |
8.33% (+rK39 and DAT) | |||||||
23.8% (+rK39, DAT, and qPCR) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Curtin, J.M.; Aronson, N.E. Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity. Microorganisms 2021, 9, 578. https://doi.org/10.3390/microorganisms9030578
Curtin JM, Aronson NE. Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity. Microorganisms. 2021; 9(3):578. https://doi.org/10.3390/microorganisms9030578
Chicago/Turabian StyleCurtin, John M., and Naomi E. Aronson. 2021. "Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity" Microorganisms 9, no. 3: 578. https://doi.org/10.3390/microorganisms9030578
APA StyleCurtin, J. M., & Aronson, N. E. (2021). Leishmaniasis in the United States: Emerging Issues in a Region of Low Endemicity. Microorganisms, 9(3), 578. https://doi.org/10.3390/microorganisms9030578