A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings
Abstract
:1. Introduction
2. Method and Materials
2.1. Study Site and Population
2.2. Study Design
2.3. Assembly of the Mobile Suitcase Laboratory
2.4. Laboratory Analysis
2.4.1. Real-Time PCR for Detection of LD DNA
2.4.2. RPA Assay for Detection of LD DNA
2.5. Data Analysis
3. Results
3.1. Performance of Real-Time PCR in Diagnosis of VL, PKDL, and CL
3.2. Performance of RPA Assay in Diagnosis of VL, PKDL, and CL
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hotez, P.J.; Pecoul, B.; Rijal, S.; Boehme, C.; Aksoy, S.; Malecela, M.; Tapia-Conyer, R.; Reeder, J.C. Eliminating the neglected tropical diseases: Translational science and new technologies. PLoS Negl. Trop. Dis. 2016, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Karunaweera, N.D.; Ferreira, M.U. Leishmaniasis: Current challenges and prospects for elimination with special focus on the South Asian region. Parasitology 2018, 145, 425–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvar, J.; Vélez, I.D.; Bern, C.; Herrero, M.; Desjeux, P.; Cano, J.; Jannin, J.; den Boer, M. WHO Leishmaniasis Control Team. Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 2012, 7, e35671. [Google Scholar] [CrossRef]
- Franssen, S.U.; Durrant, C.; Stark, O.; Moser, B.; Downing, T.; Imamura, H.; Dujardin, J.C.; Sanders, M.J.; Mauricio, I.; Miles, M.A.; et al. Global genome diversity of the Leishmania donovani complex. Elife 2020, 9, 1–44. [Google Scholar] [CrossRef]
- Mondal, D.; Nasrin, K.N.; Huda, M.M.; Kabir, M.; Hossain, M.S.; Kroeger, A.; Thomas, T.; Haque, R. Enhanced case detection and improved diagnosis of PKDL in a Kala-azar-endemic area of Bangladesh. PLoS Negl. Trop. Dis. 2010, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wamai, R.G.; Kahn, J.; McGloin, J.; Ziaggi, G. Visceral leishmaniasis: A global overview. J. Glob. Heal. Sci. 2020, 2, 1–22. [Google Scholar] [CrossRef]
- Alam, M.Z.; Kuhls, K.; Schweynoch, C.; Sundar, S.; Rijal, S.; Shamsuzzaman, A.K.M.; Raju, B.V.S.; Salotra, P.; Dujardin, J.C.; Schönian, G. Multilocus microsatellite typing (MLMT) reveals genetic homogeneity of Leishmania donovani strains in the Indian subcontinent. Infect. Genet. Evol. 2009, 9, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Mondal, D.; Rijal, S.; Bhattacharya, S.; Ghalib, H.; Kroeger, A.; Boelaert, M.; Desjeux, P.; Richter-Airijoki, H.; Harms, G. Implementation research to support the initiative on the elimination of kala-azar from Bangladesh, India and Nepal-the challenges for diagnosis and treatment. Trop. Med. Int. Health 2008, 13, 2–5. [Google Scholar] [CrossRef]
- Rijal, S.; Sundar, S.; Mondal, D.; Das, P.; Alvar, J.; Boelaert, M. Eliminating visceral leishmaniasis in South Asia: The road ahead. BMJ 2019, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882. [Google Scholar] [CrossRef]
- Ghosh, P.; Hasnain, M.G.; Hossain, F.; Khan, M.A.A.; Chowdhury, R.; Faisal, K.; Mural, M.A.; Baker, J.; Nath, R.; Ghosh, D.; et al. Evaluation of real-time PCR for diagnosis of post-kala-azar dermal leishmaniasis in endemic foci of Bangladesh. Open Forum Infect. Dis. 2018, 5, 4–9. [Google Scholar] [CrossRef] [PubMed]
- de Vries, H.J.C.; Reedijk, S.H.; Schallig, H.D.F.H. Cutaneous Leishmaniasis: Recent Developments in Diagnosis and Management. Am. J. Clin. Dermatol. 2015, 16, 99–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, E.R.; Schoone, G.; Versteeg, I.; Gomez, M.A.; Diro, E.; Mori, Y.; Perlee, D.; Downing, T.; Saravia, N.; Assaye, A.; et al. Development and evaluation of a novel loop-mediated isothermal amplification assay for diagnosis of cutaneous and visceral leishmaniasis. J. Clin. Microbiol. 2018, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Tai, N.O.; Osman, O.F.; El Fari, M.; Presber, W.; Schönian, G. Genetic heterogeneity of ribosomal internal transcribed spacer in clinical samples of Leishmania donovani spotted on filter paper as revealed by single-strand conformation polymorphisms and sequencing. Trans. R. Soc. Trop. Med. Hyg. 2000, 94, 575–579. [Google Scholar] [CrossRef]
- Hossain, F.; Ghosh, P.; Khan, M.A.A.; Duthie, M.S.; Vallur, A.C.; Picone, A.; Howard, R.F.; Reed, S.G.; Mondal, D. Real-time PCR in detection and quantitation of Leishmania donovani for the diagnosis of Visceral Leishmaniasis patients and the monitoring of their response to treatment. PLoS ONE 2017, 12, 1–16. [Google Scholar]
- Mary, C.; Faraut, F.; Lascombe, L.; Dumon, H. Quantification of Leishmania infantum DNA by a real-time PCR assay with high sensitivity. J. Clin. Microbiol. 2004, 42, 5249–5255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zijlstra, E.E. Biomarkers in Post-kala-azar Dermal Leishmaniasis. Front. Cell. Infect. Microbiol. 2019, 9, 228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase polymerase amplification for diagnostic applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef]
- Euler, M.; Wang, Y.; Otto, P.; Tomaso, H.; Escudero, R.; Anda, P.; Hufert, F.T.; Weidmann, M. Recombinase polymerase amplification assay for rapid detection of Francisella tularensis. J. Clin. Microbiol. 2012, 50, 2234–2238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA Detection Using Recombination Proteins. PLoS Biol. 2006, 4, 2–8. [Google Scholar] [CrossRef]
- Mondal, D.; Ghosh, P.; Khan, M.A.A.; Hossain, F.; Böhlken-Fascher, S.; Matlashewski, G.; Kroeger, A.; Olliaro, P.; Abd El Wahed, A. Mobile suitcase laboratory for rapid detection of Leishmania donovani using recombinase polymerase amplification assay. Parasit Vectors 2016, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunaratna, G.; Manamperi, A.; Böhlken-Fascher, S.; Wickremasinge, R.; Gunawardena, K.; Yapa, B.; Pathirana, N.; Pathirana, H.; de Silva, N.; Sooriyaarachchi, M.; et al. Evaluation of rapid extraction and isothermal amplification techniques for the detection of Leishmania donovani DNA from skin lesions of suspected cases at the point of need in Sri Lanka. Parasit Vectors 2018, 11, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallur, A.C.; Duthie, M.S.; Reinhart, C.; Tutterrow, Y.; Hamano, S.; Bhaskar, K.R.H.; Coler, R.N.; Mondal, D.; Reed, S.G. Biomarkers for intracellular pathogens: Establishing tools as vaccine and therapeutic endpoints for visceral leishmaniasis. Clin. Microbiol. Infect 2014, 20, O374–O383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Wahed, A.A.; Patel, P.; Maier, M.; Pietsch, C.; Rüster, D.; Böhlken-Fascher, S.; Kissenkötter, J.; Behrmann, O.; Frimpong, M.; Diagne, M.M.; et al. Suitcase Lab for Rapid Detection of SARS-CoV-2 Based on Recombinase Polymerase Amplification Assay. Anal. Chem. 2021, 93, 2627–2634. [Google Scholar] [CrossRef]
- Sundar, S.; Singh, O.P. Molecular Diagnosis of Visceral Leishmaniasis. Mol. Diagnosis Ther. 2018, 22, 443–457. [Google Scholar] [CrossRef]
- Mondal, D.; Kumar, A.; Sharma, A.; Ahmed, M.M.; Hasnain, M.G.; Alim, A.; Huda, M.M.; Rahman, R.; Alvar, J.; Ahmed, B.N.; et al. Relationship between treatment regimens for visceral leishmaniasis and development of post-kala-azar dermal leishmaniasis and visceral leishmaniasis relapse: A cohort study from Bangladesh. PLoS Negl. Trop. Dis. 2019, 13, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Adams, E.R.; Versteeg, I.; Leeflang, M.M.G. Systematic review into diagnostics for post-kala-azar dermal leishmaniasis (PKDL). J. Trop. Med. 2013. [Google Scholar] [CrossRef] [PubMed]
- Mondal, D.; Bern, C.; Ghosh, D.; Rashid, M.; Molina, R.; Chowdhury, R.; Nath, R.; Ghosh, P.; Chapman, L.A.; Alim, A.; et al. Quantifying the infectiousness of post-kala-azar dermal leishmaniasis toward sand flies. Clin. Infect. Dis. 2019, 69, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Nasreen, S.A.; Hossain, M.A.; Paul, S.K.; Mahmud, M.C.; Ahmed, S.; Ghosh, S.; Kobayashi, N. PCR-based detection of Leishmania DNA in skin samples of post kala-azar dermal leishmaniasis patients from an endemic area of Bangladesh. Jpn. J. Infect. Dis. 2012, 65, 315–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, R.; Ghosh, P.; Khan, M.; Ashfaq, A.; Hossain, F.; Faisal, K.; Nath, R.; Baker, J.; Wahed, A.A.E.; Maruf, S.; et al. Evaluation of rapid extraction methods coupled with a recombinase polymerase amplification assay for point-of-need diagnosis of post-kala-azar dermal leishmaniasis. Trop. Med. Infect. Dis. 2020, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, S.; Wickremasinghe, R.; Hulangamuwa, S.; Sirimanna, G.; Opathella, N.; Maingon, R.D.; Chandrasekharan, V. Polymerase chain reaction detection of LeishmaniaDNA in skin biopsy samples in Sri Lanka where the causative agent of cutaneous leishmaniasis is Leishmania donovani. Mem. Inst. Oswaldo Cruz 2015, 110, 1017–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, J.; Hasker, E.; Kansal, S.; Singh, O.P.; Malaviya, P.; Singh, A.K.; Chourasia, A.; Singh, T.; Sudarshan, M.; Singh, A.P.; et al. Determinants for progression from asymptomatic infection to symptomatic visceral leishmaniasis: A cohort study. PLoS Negl. Trop. Dis. 2019, 13, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ostyn, B.; Gidwani, K.; Khanal, B.; Picado, A.; Chappuis, F.; Singh, S.P.; Rijal, S.; Sundar, S.; Boelaert, M. Incidence of symptomatic and asymptomatic Leishmania donovani infections in high-endemic foci in India and Nepal: A prospective study. PLoS Negl. Trop. Dis. 2011, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Owen, S.I.; Hossain, F.; Ghosh, P.; Chowdhury, R.; Hossain, M.S.; Jewell, C.; Adams, E.R. Detection of asymptomatic Leishmania infection in Bangladesh by antibody and antigen diagnostic tools shows an association with post–kala-azar dermal leishmaniasis (PKDL) patients. Parasites Vectors 2021, 14, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.M.; Zacarias, D.A.; de Figueirêdo, L.C.; Soares, M.R.A.; Ishikawa, E.A.; Costa, D.L.; Costa, C.H. Bone marrow parasite burden among patients with New World kala-azar is associated with disease severity. Am. J. Trop. Med. Hyg. 2014, 90, 621–626. [Google Scholar] [CrossRef]
- Porrás, A.I.; Yadon, Z.E.; Altcheh, J.; Britto, C.; Chaves, G.C.; Flevaud, L.; Martins-Filho, O.A.; Ribeiro, I.; Schijman, A.G.; Shikanai-Yasuda, M.A.; et al. Target product profile (TPP) for Chagas disease point-of-care diagnosis and assessment of response to treatment. PLoS Negl. Trop. Dis. 2015, 9, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, I.; Albertini, A.; Barbeitas, M.; Arana, A.; Picado, A.; Ruiz-Postigo, J.A.; Ndung’u, J.M. Target Product Profile for a point-of-care diagnostic test for dermal leishmaniases. Parasite Epidemiol. Control 2019, 5, e00103. [Google Scholar] [CrossRef] [PubMed]
- Kosack, C.S.; Page, A.-L.; Klatser, P.R. A guide to aid the selection of diagnostic tests. Bull. World Health Organ. 2017, 95, 639. [Google Scholar] [CrossRef] [PubMed]
- Saldarriaga, O.A.; Castellanos-Gonzalez, A.; Porrozzi, R.; Baldeviano, G.C.; Lescano, A.G.; de Los Santos, M.B.; Fernandez, O.L.; Saravia, N.G.; Costa, E.; Melby, P.C.; et al. An innovative field-applicable molecular test to diagnose cutaneous Leishmania Viannia spp. infections. PLoS Negl. Trop. Dis. 2016, 10, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Leprohon, P.; Fernandez-Prada, C.; Gazanion, É.; Monte-Neto, R.; Ouellette, M. Drug resistance analysis by next generation sequencing in Leishmania. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Site | Sample Type | Sensitivity (% CI) (n/N) Real-Time PCR | Sensitivity (% CI) (n/N) RPA | Pooled Sensitivity (% CI) (n/N) Real-Time PCR | Pooled Sensitivity (% CI) (n/N) RPA |
---|---|---|---|---|---|
icddr,b | Blood DNA | 100% (96.38–100) (100/100) | 92% (84.84–96.48) (92/100) | 96.86% (94.45–98.42) (339/350) | 88.85% (85.08–91.96) (311/350) |
RMRI | Blood DNA | 98% (92.96–99.76) (98/100) | 86% (77.63–92.13) (86/100) | ||
BPKIHS | Blood DNA | 94% (88.92–97.22) (141/150) | 88.7% (82.48–93.26) (133/150) | ||
BPKIHS | bone marrow DNA | 97% (91.48–99.38) (97/100) | 97% (91.48–99.38) (97/100) | NA | NA |
Site | Sample Type | Sensitivity (% CI) (n/N) Real-Time PCR | Sensitivity (% CI) (n/N) RPA | Pooled Sensitivity (% CI) (n/N) Real-Time PCR | Pooled Sensitivity (% CI) (n/N) RPA |
---|---|---|---|---|---|
icddr,b | Blood DNA | 1% (0.03–5.45) (1/100) | 0.0% (0.00–3.62) (0/100) | 24.33% (18.40–31.10) (46/189) | 20.10% (14.64–26.54) (38/189) |
RMRI | Blood DNA | 75% (62.14–85.28) (45/60) | 63.3% (49.90–75.41) (38/60) | ||
BPKIHS | Blood DNA | 0.0% (0.00–11.94) (0/29) | 0.0% (0.00–11.94) (0/29) | ||
icddr,b | Skin DNA | 100% (96.38–100) (100/100) | 99% (94.55–99.97) (99/100) | 96.50% (92.92–98.58) (193/200) | 93.50% (89.14–96.49) (187/200) |
RMRI | Skin DNA | 93% (86.11–97.14) (93/100) | 88% (79.98–93.64) (88/100) |
Site | Sample Type | Specificity (% CI) (n/N) Real-Time PCR | Specificity (% CI) (n/N) RPA | Pooled Specificity (% CI) (n/N) Real-Time PCR | Pooled Specificity (% CI) (n/N) RPA |
---|---|---|---|---|---|
icddr,b | Blood DNA | 100.00% (96.38–100.00) 100/100 | 100.00% (96.38–100.00) (100/100) | 96% (93.12% to 97.92%) (288/300) | 93.00% (89.50% to 95.61%) (279/300) |
RMRI | Blood DNA | 88.00% (79.98–93.64) (88/100) | 79.00% (69.71–86.51) (79/100) | ||
BPKIHS | Blood DNA | 100.00% (96.34–100.00) (100/100) | 100.00% (96.34–100.00) (100/100) |
Site | Concordance (Real-Time PCR vs RPA); Kappa Value | Agreement | p Value |
---|---|---|---|
icddr,b | 0.950 | Excellent | 0.016 |
RMRI | 0.781 | Good | 0.035 |
BPKIHS | 0.900 | Excellent | 0.023 |
USJ | 0.303 | Weak | 0.087 |
All sites | 0.855 | Excellent | 0.015 |
Disease Type | Site | Sample Type | Area Under the Curve (95% CI) | |
---|---|---|---|---|
Real-Time PCR | RPA | |||
Visceral Leishmaniasis | BPKIHS | Blood DNA | 0.97 (0.95–0.99) | 0.94 (0.91–0.97) |
icddr,b | 1.00 (1.00–1.00) | 0.96 (0.93–0.99) | ||
RMRI | 0.93 (0.88–0.97) | 0.83 (0.76–0.89) | ||
All | 0.96 (0.95–0.98) | 0.91 (0.88–0.94) | ||
PKDL | icddr,b | Skin DNA | 1.00 (1.00–1.00) | 0.96 (0.98–1.00) |
RMRI | 0.91 (0.86–0.95) | 0.84 (0.76–0.89) | ||
All | 0.95 (0.93–0.98) | 0.92 (0.88–0.95) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghosh, P.; Sharma, A.; Bhattarai, N.R.; Abhishek, K.; Nisansala, T.; Kumar, A.; Böhlken-Fascher, S.; Chowdhury, R.; Khan, M.A.A.; Faisal, K.; et al. A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings. Microorganisms 2021, 9, 588. https://doi.org/10.3390/microorganisms9030588
Ghosh P, Sharma A, Bhattarai NR, Abhishek K, Nisansala T, Kumar A, Böhlken-Fascher S, Chowdhury R, Khan MAA, Faisal K, et al. A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings. Microorganisms. 2021; 9(3):588. https://doi.org/10.3390/microorganisms9030588
Chicago/Turabian StyleGhosh, Prakash, Abhijit Sharma, Narayan Raj Bhattarai, Kumar Abhishek, Thilini Nisansala, Amresh Kumar, Susanne Böhlken-Fascher, Rajashree Chowdhury, Md Anik Ashfaq Khan, Khaledul Faisal, and et al. 2021. "A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings" Microorganisms 9, no. 3: 588. https://doi.org/10.3390/microorganisms9030588
APA StyleGhosh, P., Sharma, A., Bhattarai, N. R., Abhishek, K., Nisansala, T., Kumar, A., Böhlken-Fascher, S., Chowdhury, R., Khan, M. A. A., Faisal, K., Hossain, F., Uddin, M. R., Rashid, M. U., Maruf, S., Rai, K., Sooriyaarachchi, M., Abhayarathna, W. L. K., Karki, P., Kumar, S., ... Abd El Wahed, A. (2021). A Multi-Country, Single-Blinded, Phase 2 Study to Evaluate a Point-of-Need System for Rapid Detection of Leishmaniasis and Its Implementation in Endemic Settings. Microorganisms, 9(3), 588. https://doi.org/10.3390/microorganisms9030588