Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Inclusion Criteria
2.3. Interventions
2.4. Variables
- Demographic and anthropometric data: age (years), gender (male/female), height (m), body weight (kg), and body mass index (BMI; kg/m2).
- Dietary habits: The diet was assessed with a validated food frequency questionnaire, and the daily intake was based on the Norwegian food composition table [24,25]. Use of non-nutritive sweeteners (NNS) was calculated, one unit of NNS being a 100 mL beverage with NNS or two tablets/teaspoons of NNS.
- Irritable bowel syndrome (IBS) was diagnosed according to the Rome III criteria with the subgroups diarrhoea-predominant (IBS-D), constipation-predominant (IBS-C) and mixed (IBS-M) [26].
- Morbidity and use of drugs: diabetes and use of metformin (yes/no).
- Blood tests: C-reactive protein (CRP, normal range < 3.0 mg/L; a marker of inflammation), and s-zonulin (normal range < 38 ng/mL; a marker of inflammation and gastrointestinal permeability).
- Faecal samples from the subjects with obesity were collected at inclusion and six months after surgery. The samples were mixed with stool transport and recovery buffer (Roche, Basel, Switzerland) in a 1:3 ratio by vortexing. All samples were pulse centrifuged, and 600 µL was transferred to a 96-well Lysing Matrix E rack (MP Biomedicals Inc., Santa Ana, CA, USA). Samples were mechanically lysed twice at 1800 rpm, 40 s on 40 s rest, in a FastPrep-96™ (MP Biomedicals Inc.). Lysed samples were centrifuged (5 min, 1300× g, PlateSpin II centrifuge, Kubota, Tokyo, Japan), and 250 µL was incubated at 65°C for 15 min with 250 µL magTM maxi kit lysis buffer BLM (prod. no 40430) (LGC Genomics GmbH, Berlin, Germany) and 20 µL magTM maxi kit protease (LGC Genomics GmbH, Berlin, Germany). A 400 µL aliquot of each protease-treated faecal sample was used to extract total genomic DNA according to mag™ maxi kit instructions (LGC Genomics, Berlin, Germany), adjusted for a MagMAX™ express 96 DNA extraction robot (Life Technologies, Waltham, MA, USA) [27]. The DNA was further handled for the samples from the healthy controls as described below.
- Faecal samples from the healthy controls were collected on Bio-Me filter cards organised by HUNT4. Three 6 mm discs were punched out from each sample filter card, and microbial DNA was extracted using a Microbiome MagMAX Ultra kit (Thermo Fisher Scientific, Waltham, MA, USA) [28] essentially following the manufacturer’s recommendations on KingFisher™ Flex (ThermoFisher Scientific). The bacterial cell wall was disrupted using a VWR Star Beater at maximum settings for 2 min. Purified DNA was eluted in 200 µL MagMAX Elution Buffer, and DNA was quantified using PicoGreen and an F200 Infinite plate reader (Tecan).
- The sample microbiome DNA from obese and healthy subjects was analysed using Precision Microbiome Profiling (PMP™) qPCR panels for direct quantification of 104 target bacterial species on the QuantStudio™ 12K qPCR platform (Thermo Fisher Scientific). Liquid handling steps were automated and performed using epMotion™ 5700 (Eppendorf) and Accufill™ system (ThermoFisher Scientific). Absolute quantification of the number of genomic copies per µL for each bacterial taxon was interpolated from standard curves derived from quantified reference isolates (see Supplementary Table S1). The relative abundance (%) is the total number of copies for a given target divided by the sum of copies for all 104 targets. Results were provided for both absolute quantification and relative abundance of each bacterial taxon. The relative abundance (%) of the 104 target bacteria was used in this study.
2.5. Statistics
2.6. Ethics
3. Results
3.1. The Participants
3.2. Morbid Obesity versus Normal Weight
3.3. Morbid Obesity: Before and after Treatment
3.4. Morbid Obesity: Irritable Bowel Syndrome
3.5. Morbid Obesity: Other Variables
3.6. Alpha Diversity
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 27 June 2020).
- Castaner, O.; Goday, A.; Park, Y.M.; Lee, S.H.; Magkos, F.; Shiow, S.T.E.; Schroder, H. The Gut Microbiome Profile in Obesity: A Systematic Review. Int. J. Endocrinol. 2018, 2018, 4095789. [Google Scholar] [CrossRef]
- Tseng, C.H.; Wu, C.Y. The gut microbiome in obesity. J. Formos. Med. Assoc. 2019, 118, S3–S9. [Google Scholar] [CrossRef] [PubMed]
- Heymsfield, S.B.; Wadden, T.A. Mechanisms, Pathophysiology, and Management of Obesity. N. Engl. J. Med. 2017, 376, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Abenavoli, L.; Scarpellini, E.; Colica, C.; Boccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; De Lorenzo, A.; Izzo, A.A.; et al. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients 2019, 11, 2690. [Google Scholar] [CrossRef] [Green Version]
- Lim, Y.Y.; Lee, Y.S.; Ooi, D.S.Q. Engineering the Gut Microbiome for Treatment of Obesity: A Review of Current Understanding and Progress. Biotechnol. J. 2020, 15, e2000013. [Google Scholar] [CrossRef] [PubMed]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M.; Moayyedi, P. Gut Microbiota in Patients with Irritable Bowel Syndrome—A Systematic Review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Hugerth, L.W.; Andreasson, A.; Talley, N.J.; Forsberg, A.M.; Kjellstrom, L.; Schmidt, P.T.; Agreus, L.; Engstrand, L. No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut 2020, 69, 1076–1084. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeffery, I.B.; Das, A.; O’Herlihy, E.; Coughlan, S.; Cisek, K.; Moore, M.; Bradley, F.; Carty, T.; Pradhan, M.; Dwibedi, C.; et al. Differences in Fecal Microbiomes and Metabolomes of People with vs without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology 2020, 158, 1016–1028. [Google Scholar] [CrossRef]
- Sinha, R.; Abnet, C.C.; White, O.; Knight, R.; Huttenhower, C. The microbiome quality control project: Baseline study design and future directions. Genome Biol. 2015, 16, 276. [Google Scholar] [CrossRef] [Green Version]
- Meijnikman, A.S.; Aydin, O.; Prodan, A.; Tremaroli, V.; Herrema, H.; Levin, E.; Acherman, Y.; Bruin, S.; Gerdes, V.E.; Backhed, F.; et al. Distinct differences in gut microbial composition and functional potential from lean to morbidly obese subjects. J. Intern. Med. 2020, 288. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 5029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gwak, H.J.; Rho, M. Data-Driven Modeling for Species-Level Taxonomic Assignment From 16S rRNA: Application to Human Microbiomes. Front. Microbiol. 2020, 11, 570825. [Google Scholar] [CrossRef] [PubMed]
- Malla, M.A.; Dubey, A.; Kumar, A.; Yadav, S.; Hashem, A.; Abd Allah, E.F. Exploring the Human Microbiome: The Potential Future Role of Next-Generation Sequencing in Disease Diagnosis and Treatment. Front. Immunol. 2018, 9, 2868. [Google Scholar] [CrossRef]
- Bio-Me. Bringing Microbiome into the Clinic. Available online: https://bio-me.com (accessed on 24 November 2020).
- PMP™—A Microbiome-Based Approach to Precision Medicine and Personalized Nutrition. Available online: https://www.nfs.no/wp-content/uploads/2019/11/FD19_PDF_MortenLIsaksen.pdf (accessed on 7 May 2020).
- Aasbrenn, M.; Lydersen, S.; Farup, P.G. A Conservative Weight Loss Intervention Relieves Bowel Symptoms in Morbidly Obese Subjects with Irritable Bowel Syndrome: A Prospective Cohort Study. J. Obes. 2018, 2018, 3732753. [Google Scholar] [CrossRef] [Green Version]
- Kvehaugen, A.S.; Farup, P.G. Changes in gastrointestinal symptoms and food tolerance 6 months following weight loss surgery: Associations with dietary changes, weight loss and the surgical procedure. BMC Obes. 2018, 5, 29. [Google Scholar] [CrossRef]
- Farup, P.G.; Aasbrenn, M.; Valeur, J. Separating “good” from ″bad″ faecal dysbiosis-evidence from two cross-sectional studies. BMC Obes. 2018, 5, 30. [Google Scholar] [CrossRef]
- Farup, P.G.; Valeur, J. Changes in Faecal Short-Chain Fatty Acids after Weight-Loss Interventions in Subjects with Morbid Obesity. Nutrients 2020, 12, 802. [Google Scholar] [CrossRef] [Green Version]
- The HUNT Study—A Longitudinal Population Health Study in Norway. Available online: https://www.ntnu.edu/hunt (accessed on 7 May 2020).
- Schauer, P.R.; Ikramuddin, S.; Hamad, G.; Eid, G.M.; Mattar, S.; Cottam, D.; Ramanathan, R.; Gourash, W. Laparoscopic gastric bypass surgery: Current technique. J. Laparoendosc. Adv. Surg. Technol. A 2003, 13, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Roa, P.E.; Kaidar-Person, O.; Pinto, D.; Cho, M.; Szomstein, S.; Rosenthal, R.J. Laparoscopic sleeve gastrectomy as treatment for morbid obesity: Technique and short-term outcome. Obes. Surg. 2006, 16, 1323–1326. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Lillegaard, I.T.; Karlsen, A.; Blomhoff, R.; Drevon, C.A.; Andersen, L.F. Evaluation of energy and dietary intake estimates from a food frequency questionnaire using independent energy expenditure measurement and weighed food records. Nutr. J. 2010, 9, 37. [Google Scholar] [CrossRef] [Green Version]
- The Norwegian Food Composition Table. Available online: http://www.matvaretabellen.no/?language=en (accessed on 25 February 2020).
- Drossman, D.A. Rome III: The Functional GI Disorders, 3rd ed.; Allen Press: Lawrence, KS, USA, 2006; pp. 1–1048. [Google Scholar]
- Casen, C.; Vebo, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Froyland, C.; Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Ther. 2015, 42, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Husakova, M.; Kralik, P.; Babak, V.; Slana, I. Efficiency of DNA Isolation Methods based on Silica Columns and Magnetic Separation Tested for the Detection of Mycobacterium avium Subsp. Paratuberculosis in Milk and Faeces. Materials 2020, 13, 5112. [Google Scholar] [CrossRef]
- Yun, Y.; Kim, H.N.; Kim, S.E.; Heo, S.G.; Chang, Y.; Ryu, S.; Shin, H.; Kim, H.L. Comparative analysis of gut microbiota associated with body mass index in a large Korean cohort. BMC Microbiol. 2017, 17, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, V.K.; Kim, M.; Bakshi, U.; Cunningham, K.Y.; Davis, J.M., 3rd; Lazaridis, K.N.; Nelson, H.; Chia, N.; Sung, J. A predictive index for health status using species-level gut microbiome profiling. Nat. Commun. 2020, 11, 4635. [Google Scholar] [CrossRef] [PubMed]
- Crovesy, L.; Ostrowski, M.; Ferreira, D.; Rosado, E.L.; Soares-Mota, M. Effect of Lactobacillus on body weight and body fat in overweight subjects: A systematic review of randomized controlled clinical trials. Int. J. Obes. 2017, 41, 1607–1614. [Google Scholar] [CrossRef]
- Million, M.; Angelakis, E.; Paul, M.; Armougom, F.; Leibovici, L.; Raoult, D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012, 53, 100–108. [Google Scholar] [CrossRef]
- Peters, B.A.; Shapiro, J.A.; Church, T.R.; Miller, G.; Trinh-Shevrin, C.; Yuen, E.; Friedlander, C.; Hayes, R.B.; Ahn, J. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 2018, 8, 9749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ley, R.E.; Backhed, F.; Turnbaugh, P.; Lozupone, C.A.; Knight, R.D.; Gordon, J.I. Obesity alters gut microbial ecology. Proc. Natl. Acad. Sci. USA 2005, 102, 11070–11075. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajilic-Stojanovic, M.; De Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev. 2014, 38, 996–1047. [Google Scholar] [CrossRef]
- Parker, B.J.; Wearsch, P.A.; Veloo, A.C.M.; Rodriguez-Palacios, A. The Genus Alistipes: Gut Bacteria with Emerging Implications to Inflammation, Cancer and Mental Health. Front. Immunol. 2020, 11, 906. [Google Scholar] [CrossRef]
- Aron-Wisnewsky, J.; Prifti, E.; Belda, E.; Ichou, F.; Kayser, B.D.; Dao, M.C.; Verger, E.O.; Hedjazi, L.; Bouillot, J.L.; Chevallier, J.M.; et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut 2019, 68, 70–82. [Google Scholar] [CrossRef]
- Paganelli, F.L.; Luyer, M.; Hazelbag, C.M.; Uh, H.W.; Rogers, M.R.C.; Adriaans, D.; Berbers, R.M.; Hendrickx, A.P.A.; Viveen, M.C.; Groot, J.A.; et al. Roux-Y Gastric Bypass and Sleeve Gastrectomy directly change gut microbiota composition independent of surgery type. Sci. Rep. 2019, 9, 10979. [Google Scholar] [CrossRef]
- Farin, W.; Onate, F.P.; Plassais, J.; Bonny, C.; Beglinger, C.; Woelnerhanssen, B.; Nocca, D.; Magoules, F.; Le Chatelier, E.; Pons, N.; et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: A metagenomic comparative analysis. Surg. Obes. Relat. Dis. 2020, 16, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Liou, A.P.; Paziuk, M.; Luevano, J.M., Jr.; Machineni, S.; Turnbaugh, P.J.; Kaplan, L.M. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 2013, 5, 178ra141. [Google Scholar] [CrossRef] [Green Version]
- Cani, P.D. Severe obesity and gut microbiota: Does bariatric surgery really reset the system? Gut 2019, 68, 5–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sohail, M.U.; Althani, A.; Anwar, H.; Rizzi, R.; Marei, H.E. Role of the Gastrointestinal Tract Microbiome in the Pathophysiology of Diabetes Mellitus. J. Diabetes Res. 2017, 2017, 9631435. [Google Scholar] [CrossRef]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Pedersen, H.K.; et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Farup, P.G.; Lydersen, S.; Valeur, J. Are Nonnutritive Sweeteners Obesogenic? Associations between Diet, Faecal Microbiota, and Short-Chain Fatty Acids in Morbidly Obese Subjects. J. Obes. 2019, 2019, 4608315. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zilberman-Schapira, G.; Segal, E.; Elinav, E. Non-caloric artificial sweeteners and the microbiome: Findings and challenges. Gut Microbes 2015, 6, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Aasbrenn, M.; Lydersen, S.; Farup, P.G. Changes in serum zonulin in individuals with morbid obesity after weight-loss interventions: A prospective cohort study. BMC Endocr. Disord. 2020, 20, 108. [Google Scholar] [CrossRef]
- Liu, R.; Hong, J.; Xu, X.; Feng, Q.; Zhang, D.; Gu, Y.; Shi, J.; Zhao, S.; Liu, W.; Wang, X.; et al. Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat. Med. 2017, 23, 859–868. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greathouse, K.L.; Sinha, R.; Vogtmann, E. DNA extraction for human microbiome studies: The issue of standardization. Genome Biol. 2019, 20, 212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Morbidly Obese at Inclusion (no 46) | Healthy Volunteers (no 46) | Morbidly Obese 6 Months after Surgery (no 19) | |
---|---|---|---|
Age (years, mean (SD)) | 43.6 (8.5) | 43.6 (8.6) | 45.7 (6.6) |
Gender (men/women; no (%)) | 2 (4%)/44 (96%) | 2 (4%)/44 (96%) | 0 (0%)/19 (100%) |
BMI kg/m2 (mean (SD)) | 41.9 (3.5) | 22.5 (1.5) | 30.6 (3.7) |
Diabetes (no (%)) | 4 (9%) | 0 (0%) | |
Metformin (no (%)) | 3 (7%) | 0 (0%) | |
Irritable bowel syndrome (no (%)) | 23 (50%) | 0 (0%) | |
IBS-D, IBS-M, IBS-C (no) 1 | 7/11/4 | ||
CRP (mean (SD)) | 7.0 (5.7) | n.a. | |
NNS (units/day) 2 (mean (SD)) | 8.7 (11.9) | n.a. | |
Zonulin (mean (SD)) | 68.3 (37.1) | n.a. | |
Operation: Bypass/Sleeve (no (%)) | 15 (79%)/4 (21%) |
Bacterium | Morbid Obesity 1 | Normal Weight 1 | Statistics p-Value | FDR 2 q-Value |
---|---|---|---|---|
Akkermansia muciniphila | 0.02 (0.00–0.44) | 0.35 (0.07–3.19) | 0.002 | 0.015 |
Anaerobutyricum hallii | 0.00 (0.00–0.00) | 0.00 (0.00–0.58) | <0.001 | 0.001 |
Anaerostipes hadrus | 0.03 (0.00–0.36) | 0.47 (0.30–1.07) | <0.001 | <0.001 |
Bifidobacterium adolescentis | 0.00 (0.00–0.46) | 0.43 (0.00–1.41) | 0.007 | 0.043 |
Bifidobacterium longum | 0.12 (0.00–0.95) | 0.72 (0.27–1.52) | 0.001 | 0.008 |
Blautia wexlerae | 0.00 (0.00–0.37) | 0.55 (0.24–1.32) | <0.001 | <0.001 |
Butyrivibrio crossotus | 0.00 (0.00–0.00) | 0.00 (0.00–0.00) | 0.001 | 0.009 |
Christensenella minuta | 0.00 (0.00–0.00) | 0.00 (0.00–0.001) | <0.001 | 0.003 |
Coprococcus catus | 0.08 (0.00–0.35) | 0.69 (0.38–1.11) | <0.001 | <0.001 |
Dorea formicigenerans | 0.00 (0.00–0.08) | 0.19 (0.13–0.25) | <0.001 | <0.001 |
Eubacterium siraeum | 0.00 (0.00–0.40) | 0.10 (0.03–1.33) | 0.005 | 0.030 |
Eubacterium ventriosum | 0.00 (0.00–0.21) | 0.27 (0.03–0.52) | 0.001 | 0.009 |
Faecalibacterium prausnitzii | 0.81 (0.07–1.85) | 1.91 (0.39–3.57) | 0.003 | 0.021 |
Haemophilus parainfluenzae | 0.00 (0.00–0.05) | 0.06 (0.01–0.16) | <0.001 | 0.004 |
Methanobrevibacter smithii | 0.00 (0.00–0.23) | 0.33 (0.00–1.81) | <0.001 | <0.001 |
Prevotella copri | 0.00 (0.00–10.09) | 0.16 (0.00–14.07) | 0.002 | 0.015 |
Ruminococcus bromii | 0.07 (0.00–0.88) | 2.17 (0.51–4.73) | <0.001 | <0.001 |
Groups | Alpha Diversity | Alpha Diversity | Statistics p-Value |
---|---|---|---|
Obese/normal weight | Obese 32 (23–36) | Normal weight 42 (37–46) | p < 0.001 |
Surgery | Before surgery 32 (25–36) | After surgery 37 (27–41) | p = 0.013 |
Irritable bowel syndrome | IBS 1 Yes 27 (22–35) | IBS 1 No 33 (29–37) | n.s. p = 0.096 |
Type of surgery | Gastric bypass 38 (32–41) | Sleeve gastrectomy 32 (22–42) | n.s. p = 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farup, P.G.; Maseng, M.G. Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity. Microorganisms 2021, 9, 664. https://doi.org/10.3390/microorganisms9030664
Farup PG, Maseng MG. Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity. Microorganisms. 2021; 9(3):664. https://doi.org/10.3390/microorganisms9030664
Chicago/Turabian StyleFarup, Per G., and Maria G. Maseng. 2021. "Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity" Microorganisms 9, no. 3: 664. https://doi.org/10.3390/microorganisms9030664
APA StyleFarup, P. G., & Maseng, M. G. (2021). Are Faecal Microbiota Analyses on Species-Level Suitable Clinical Biomarkers? A Pilot Study in Subjects with Morbid Obesity. Microorganisms, 9(3), 664. https://doi.org/10.3390/microorganisms9030664