Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation
Abstract
:1. Introduction
2. Biosynthesis of Carotenoids
3. A Brief History of Early Findings in M. xanthus Light-Induced Carotenogenesis
4. Structural Genes Encoding M. xanthus Light-Induced Carotenoid Biosynthetic Enzymes
5. Two Modes of Light Sensing and Signaling in M. xanthus Carotenogenesis
6. Direct Light Sensing, Signal Transduction and Gene Regulation by the B12-Based CarH Photoreceptor
6.1. CarH and Vitamin B12 Regulate Light-Induced Expression of Carotenoid Genes
6.2. Molecular Architecture and Mode of Action of the B12-Based CarH Photoreceptor
7. Blue Light Sensing, Signaling and Gene Regulation in the B12-Independent Pathway
7.1. Light Is Perceived through Photoexcitation of PPIX, Which Leads to 1O2 Production
7.2. CarF and Plasmalogen Lipids in M. xanthus Blue Light-PPIX-1O2 Signaling
7.3. Light-Induced Expression of the carQRS Operon and Gene crtIb
7.4. Regulation of CarQ Activity in Light-Induced Expression of carQRS and crtIb
7.5. Derepression of PB by Light-Induced Expression of the CarS Antirepressor
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Croce, R.; van Amerongen, H. Natural strategies for photosynthetic light harvesting. Nat. Chem. Biol. 2014, 10, 492–501. [Google Scholar] [CrossRef] [PubMed]
- Croce, R.; van Amerongen, H. Light harvesting in oxygenic photosynthesis: Structural biology meets spectroscopy. Science 2020, 369, eaay2058. [Google Scholar] [CrossRef] [PubMed]
- Saer, R.G.; Blankenship, R.E. Light harvesting in phototrophic bacteria: Structure and function. Biochem. J. 2017, 474, 2107–2131. [Google Scholar] [CrossRef]
- Elías-Arnanz, M.; Padmanabhan, S.; Murillo, F.J. Light-dependent gene regulation in nonphototrophic bacteria. Curr. Opin. Microbiol. 2011, 14, 128–135. [Google Scholar] [CrossRef]
- Purcell, E.B.; Crosson, S. Photoregulation in prokaryotes. Curr. Opin. Microbiol. 2008, 11, 168–178. [Google Scholar] [CrossRef]
- Cohen, S.E.; Golden, S.S. Circadian rhythms in cyanobacteria. Microbiol. Mol. Biol. Rev. 2015, 79, 373–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, E.-C.; Bosman, J.; Sartor, F.; Dodd, A.N.; Kovács, A.T.; Merrow, M. A circadian clock in a nonphotosynthetic prokaryote. Sci. Adv. 2021, 7, eabe2086. [Google Scholar]
- Glaeser, J.; Nuss, A.M.; Berghoff, B.A.; Klug, G. Singlet oxygen stress in microorganisms. Adv. Microb. Physiol. 2011, 58, 141–173. [Google Scholar]
- Ziegelhoffer, E.C.; Donohue, T.J. Bacterial responses to photo-oxidative stress. Nat. Rev. Microbiol. 2009, 7, 856–863. [Google Scholar] [CrossRef] [PubMed]
- Di Mascio, P.; Martinez, G.R.; Miyamoto, S.; Ronsein, G.E.; Medeiros, M.H.G.; Cadet, J. Singlet molecular oxygen reactions with nucleic acids, lipids, and proteins. Chem. Rev. 2019, 119, 2043–2086. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Elías-Arnanz, M.; Fontes, M.; Padmanabhan, S. Carotenogenesis in Myxococcus xanthus: A complex regulatory network. In Myxobacteria: Multicellularity and Differentiation; Whitworth, D.E., Ed.; ASM Press: Washington, DC, USA, 2008; pp. 211–225. [Google Scholar] [CrossRef]
- Rodriguez-Concepción, M.; Avalos, J.; Bonet, M.L.; Boronat, A.; Gómez-Gómez, L.; Hornero-Mendez, D.; Limon, M.C.; Meléndez-Martínez, A.J.; Olmedilla-Alonso, B.; Palou, A.; et al. A global perspective on carotenoids: Metabolism, biotechnology, and benefits for nutrition and health. Prog. Lipid Res. 2018, 70, 62–93. [Google Scholar] [CrossRef] [Green Version]
- Moise, A.R.; Al-Babili, S.; Wurtzel, E.T. Mechanistic aspects of carotenoid biosynthesis. Chem. Rev. 2014, 114, 164–193. [Google Scholar] [CrossRef] [Green Version]
- Llorente, B.; Martinez-Garcia, J.F.; Stange, C.; Rodriguez-Concepcion, M. Illuminating colors: Regulation of carotenoid biosynthesis and accumulation by light. Curr. Opin. Plant Biol. 2017, 37, 49–55. [Google Scholar] [CrossRef]
- Stanley, L.; Yuan, Y.W. Transcriptional regulation of carotenoid biosynthesis in plants: So many regulators, so little consensus. Front. Plant Sci. 2019, 10, 1017. [Google Scholar] [CrossRef] [Green Version]
- Corrochano, L.M. Light in the fungal world: From photoreception to gene transcription and beyond. Annu. Rev. Genet. 2019, 53, 149–170. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Fischer, R. Light sensing and responses in fungi. Nat. Rev. Microbiol. 2019, 17, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Jost, M.; Fernández-Zapata, J.; Polanco, M.C.; Ortiz-Guerrero, J.M.; Chen, P.Y.; Kang, G.; Padmanabhan, S.; Elías-Arnanz, M.; Drennan, C.L. Structural basis for gene regulation by a B12-dependent photoreceptor. Nature 2015, 526, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Guerrero, J.M.; Polanco, M.C.; Murillo, F.J.; Padmanabhan, S.; Elías-Arnanz, M. Light-dependent gene regulation by a coenzyme B12-based photoreceptor. Proc. Natl. Acad. Sci. USA 2011, 108, 7565–7570. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, S.; Jost, M.; Drennan, C.L.; Elías-Arnanz, M. A new facet of vitamin B12: Gene regulation by cobalamin-based photoreceptors. Annu. Rev. Biochem. 2017, 86, 485–514. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, S.; Pérez-Castaño, R.; Elías-Arnanz, M. B12-based photoreceptors: From structure and function to applications in optogenetics and synthetic biology. Curr. Opin. Struct. Biol. 2019, 57, 47–55. [Google Scholar] [CrossRef]
- Gallego-García, A.; Monera-Girona, A.J.; Pajares-Martínez, E.; Bastida-Martínez, E.; Pérez-Castaño, R.; Iniesta, A.A.; Fontes, M.; Padmanabhan, S.; Elías-Arnanz, M. A bacterial light response reveals an orphan desaturase for human plasmalogen synthesis. Science 2019, 366, 128–132. [Google Scholar] [CrossRef]
- Hoshino, Y.; Gaucher, E.A. On the origin of isoprenoid biosynthesis. Mol. Biol. Evol. 2018, 35, 2185–2197. [Google Scholar] [CrossRef] [Green Version]
- Meiser, P.; Bode, H.B.; Muller, R. The unique DKxanthene secondary metabolite family from the myxobacterium Myxococcus xanthus is required for developmental sporulation. Proc. Natl. Acad. Sci. USA 2006, 103, 19128–19133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchard, R.P.; Dworkin, M. Light-induced lysis and carotenogenesis in Myxococcus xanthus. J. Bacteriol. 1966, 91, 535–545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burchard, R.P.; Hendricks, S.B. Action spectrum for carotenogenesis in Myxococcus xanthus. J. Bacteriol. 1969, 97, 1165–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogilby, P.R. Singlet oxygen: There is indeed something new under the sun. Chem. Soc. Rev. 2010, 39, 3181–3209. [Google Scholar] [CrossRef] [PubMed]
- Hodgson, D.A.; Murillo, F.J. Genetics of regulation and pathway of synthesis of carotenoids. In Myxobacteria II; Dworkin, M., Kaiser, D., Eds.; American Society for Microbiology: Washington, DC, USA, 1993; pp. 157–181. [Google Scholar]
- Galbis-Martínez, M.; Padmanabhan, S.; Murillo, F.J.; Elías-Arnanz, M. CarF mediates signaling by singlet oxygen, generated via photoexcited protoporphyrin IX, in Myxococcus xanthus light-induced carotenogenesis. J. Bacteriol. 2012, 194, 1427–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Laborda, A.; Elías, M.; Ruiz-Vázquez, R.; Murillo, F.J. Insertions of Tn5 linked to mutations affecting carotenoid synthesis in Myxococcus xanthus. Mol. Gen. Genet. 1986, 205, 107–114. [Google Scholar] [CrossRef]
- Balsalobre, J.M.; Ruiz-Vázquez, R.M.; Murillo, F.J. Light induction of gene expression in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 1987, 84, 2359–2362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Laborda, A.; Balsalobre, J.M.; Fontes, M.; Murillo, F.J. Accumulation of carotenoids in structural and regulatory mutants of the bacterium Myxococcus xanthus. Mol. Gen. Genet. 1990, 223, 205–210. [Google Scholar] [CrossRef]
- Martinez-Laborda, A.; Murillo, F.J. Genic and allelic interactions in the carotenogenic response of Myxococcus xanthus to blue light. Genetics 1989, 122, 481–490. [Google Scholar] [CrossRef]
- Hodgson, D.A. Light-induced carotenogenesis in Myxococcus xanthus: Genetic analysis of the carR region. Mol. Microbiol. 1993, 7, 471–488. [Google Scholar] [CrossRef] [PubMed]
- McGowan, S.J.; Gorham, H.C.; Hodgson, D.A. Light-induced carotenogenesis in Myxococcus xanthus: DNA sequence analysis of the carR region. Mol. Microbiol. 1993, 10, 713–735. [Google Scholar] [CrossRef] [PubMed]
- Gorham, H.C.; McGowan, S.J.; Robson, P.R.; Hodgson, D.A. Light-induced carotenogenesis in Myxococcus xanthus: Light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol. Microbiol. 1996, 19, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Botella, J.A.; Murillo, F.J.; Ruiz-Vazquez, R. A cluster of structural and regulatory genes for light-induced carotenogenesis in Myxococcus xanthus. Eur. J. Biochem. 1995, 233, 238–248. [Google Scholar] [CrossRef]
- Fontes, M.; Ruiz-Vázquez, R.; Murillo, F.J. Growth phase dependence of the activation of a bacterial gene for carotenoid synthesis by blue light. EMBO J. 1993, 12, 1265–1275. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Vázquez, R.; Fontes, M.; Murillo, F.J. Clustering and co-ordinated activation of carotenoid genes in Myxococcus xanthus by blue light. Mol. Microbiol. 1993, 10, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Iniesta, A.A.; Cervantes, M.; Murillo, F.J. Cooperation of two carotene desaturases in the production of lycopene in Myxococcus xanthus. FEBS J. 2007, 274, 4306–4314. [Google Scholar] [CrossRef]
- Iniesta, A.A.; Cervantes, M.; Murillo, F.J. Conversion of the lycopene monocyclase of Myxococcus xanthus into a bicyclase. Appl. Microbiol. Biotechnol. 2008, 79, 793–802. [Google Scholar] [CrossRef]
- Reichenbach, H.; Kleinig, H. Pigments of myxobacteria. In Myxobacteria: Development and Cell Interactions; Rosenberg, E., Ed.; Springer: New York, NY, USA, 1984; pp. 128–137. [Google Scholar] [CrossRef]
- Losi, A.; Gardner, K.H.; Möglich, A. Blue-light receptors for optogenetics. Chem. Rev. 2018, 118, 10659–10709. [Google Scholar] [CrossRef] [PubMed]
- Möglich, A.; Yang, X.; Ayers, R.A.; Moffat, K. Structure and function of plant photoreceptors. Annu. Rev. Plant Biol. 2010, 61, 21–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomelsky, M.; Hoff, W.D. Light helps bacteria make important lifestyle decisions. Trends Microbiol. 2011, 19, 441–448. [Google Scholar] [CrossRef] [PubMed]
- Seong, J.; Lin, M.Z. Optobiochemistry: Genetically encoded control of protein activity by light. Annu. Rev. Biochem. 2021. [Google Scholar] [CrossRef]
- Cervantes, M.; Murillo, F.J. Role for vitamin B12 in light induction of gene expression in the bacterium Myxococcus xanthus. J. Bacteriol. 2002, 184, 2215–2224. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.L.; Stoyanov, J.V.; Kidd, S.P.; Hobman, J.L. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 2003, 27, 145–163. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.C.; Lin, L.Y.; Zou, X.W.; Huang, C.C.; Chan, N.L. Structural basis of the mercury(II)-mediated conformational switching of the dual-function transcriptional regulator MerR. Nucleic Acids Res. 2015, 43, 7612–7623. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Philips, S.J.; Wu, X.; Chen, K.; Shi, J.; Shen, L.; Xu, J.; Feng, Y.; O’Halloran, T.V.; Zhang, Y. CueR activates transcription through a DNA distortion mechanism. Nat. Chem. Biol. 2021, 17, 57–64. [Google Scholar] [CrossRef]
- Philips, S.J.; Canalizo-Hernandez, M.; Yildirim, I.; Schatz, G.C.; Mondragón, A.; O’Halloran, T.V. TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 2015, 349, 877–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drennan, C.L.; Huang, S.; Drummond, J.T.; Matthews, R.G.; Ludwig, M.L. How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 1994, 266, 1669–1674. [Google Scholar] [CrossRef]
- Banerjee, R.; Ragsdale, S.W. The many faces of vitamin B12: Catalysis by cobalamin-dependent enzymes. Annu. Rev. Biochem. 2003, 72, 209–247. [Google Scholar] [CrossRef]
- Giedyk, M.; Goliszewska, K.; Gryko, D. Vitamin B12 catalysed reactions. Chem. Soc. Rev. 2015, 44, 3391–3404. [Google Scholar] [CrossRef] [Green Version]
- López-Rubio, J.J.; Padmanabhan, S.; Lázaro, J.M.; Salas, M.; Murillo, F.J.; Elías-Arnanz, M. Operator design and mechanism for CarA repressor-mediated down-regulation of the photoinducible carB operon in Myxococcus xanthus. J. Biol. Chem. 2004, 279, 28945–28953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Rubio, J.J.; Elías-Arnanz, M.; Padmanabhan, S.; Murillo, F.J. A repressor-antirepressor pair links two loci controlling light-induced carotenogenesis in Myxococcus xanthus. J. Biol. Chem. 2002, 277, 7262–7270. [Google Scholar] [CrossRef] [Green Version]
- Navarro-Avilés, G.; Jiménez, M.A.; Pérez-Marín, M.C.; González, C.; Rico, M.; Murillo, F.J.; Elías-Arnanz, M.; Padmanabhan, S. Structural basis for operator and antirepressor recognition by Myxococcus xanthus CarA repressor. Mol. Microbiol. 2007, 63, 980–994. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Marín, M.C.; López-Rubio, J.J.; Murillo, F.J.; Elías-Arnanz, M.; Padmanabhan, S. The N-terminus of Myxococcus xanthus CarA repressor is an autonomously folding domain that mediates physical and functional interactions with both operator DNA and antirepressor protein. J. Biol. Chem. 2004, 279, 33093–33103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez-Marín, M.C.; Padmanabhan, S.; Polanco, M.C.; Murillo, F.J.; Elías-Arnanz, M. Vitamin B12 partners the CarH repressor to downregulate a photoinducible promoter in Myxococcus xanthus. Mol. Microbiol. 2008, 67, 804–819. [Google Scholar] [CrossRef]
- Jost, M.; Simpson, J.H.; Drennan, C.L. The transcription factor CarH safeguards use of adenosylcobalamin as a light sensor by altering the photolysis products. Biochemistry 2015, 54, 3231–3234. [Google Scholar] [CrossRef] [Green Version]
- Kutta, R.J.; Hardman, S.J.; Johannissen, L.O.; Bellina, B.; Messiha, H.L.; Ortiz-Guerrero, J.M.; Elías-Arnanz, M.; Padmanabhan, S.; Barran, P.; Scrutton, N.S.; et al. The photochemical mechanism of a B12-dependent photoreceptor protein. Nat. Commun. 2015, 6, 7907. [Google Scholar] [CrossRef] [Green Version]
- Miller, N.A.; Kaneshiro, A.K.; Konar, A.; Alonso-Mori, R.; Britz, A.; Deb, A.; Glownia, J.M.; Koralek, J.D.; Mallik, L.; Meadows, J.H.; et al. The photoactive excited state of the B12-based photoreceptor CarH. J. Phys. Chem. B 2020, 124, 10732–10738. [Google Scholar] [CrossRef]
- Fernández-Zapata, J.; Pérez-Castaño, R.; Aranda, J.; Colizzi, F.; Polanco, M.C.; Orozco, M.; Padmanabhan, S.; Elías-Arnanz, M. Plasticity in oligomerization, operator architecture, and DNA binding in the mode of action of a bacterial B12-based photoreceptor. J. Biol. Chem. 2018, 293, 17888–17905. [Google Scholar] [CrossRef] [Green Version]
- Takano, H.; Mise, K.; Hagiwara, K.; Hirata, N.; Watanabe, S.; Toriyabe, M.; Shiratori-Takano, H.; Ueda, K. Role and function of LitR, an adenosyl B12-bound light-sensitive regulator of Bacillus megaterium QM B1551, in regulation of carotenoid production. J. Bacteriol. 2015, 197, 2301–2315. [Google Scholar] [CrossRef] [Green Version]
- Díez, A.I.; Ortiz-Guerrero, J.M.; Ortega, A.; Elías-Arnanz, M.; Padmanabhan, S.; de la García Torre, J. Analytical ultracentrifugation studies of oligomerization and DNA-binding of TtCarH, a Thermus thermophilus coenzyme B12-based photosensory regulator. Eur. Biophys. J. 2013, 42, 463–476. [Google Scholar] [CrossRef]
- Toda, M.J.; Mamun, A.A.; Lodowski, P.; Kozlowski, P.M. Why is CarH photolytically active in comparison to other B(12)-dependent enzymes? J. Photochem. Photobiol. B Biol. 2020, 209, 111919. [Google Scholar] [CrossRef]
- Schwartz, P.A.; Frey, P.A. 5′-Peroxyadenosine and 5′-peroxyadenosylcobalamin as intermediates in the aerobic photolysis of adenosylcobalamin. Biochemistry 2007, 46, 7284–7292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dowling, D.P.; Croft, A.K.; Drennan, C.L. Radical use of Rossmann and TIM barrel architectures for controlling coenzyme B12 chemistry. Annu. Rev. Biophys. 2012, 41, 403–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fontes, M.; Galbis-Martínez, L.; Murillo, F.J. A novel regulatory gene for light-induced carotenoid synthesis in the bacterium Myxococcus xanthus. Mol. Microbiol. 2003, 47, 561–571. [Google Scholar] [CrossRef] [PubMed]
- Galbis-Martínez, L.; Galbis-Martínez, M.; Murillo, F.J.; Fontes, M. An anti-antisigma factor in the response of the bacterium Myxococcus xanthus to blue light. Microbiology 2008, 154, 895–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomson, T.M.; Lozano, J.J.; Loukili, N.; Carrio, R.; Serras, F.; Cormand, B.; Valeri, M.; Diaz, V.M.; Abril, J.; Burset, M.; et al. Fusion of the human gene for the polyubiquitination coeffector UEV1 with Kua, a newly identified gene. Genome Res. 2000, 10, 1743–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, J.; Ajjawi, I.; Manoli, A.; Sawin, A.; Xu, C.; Froehlich, J.E.; Last, R.L.; Benning, C. FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from characterized fatty acid desaturases. Plant J. 2009, 60, 832–839. [Google Scholar] [CrossRef]
- He, A.; Dean, J.M.; Lodhi, I.J. Peroxisomes as cellular adaptors to metabolic and environmental stress. Trends Cell Biol. 2021. [Google Scholar] [CrossRef]
- Paul, S.; Lancaster, G.I.; Meikle, P.J. Plasmalogens: A potential therapeutic target for neurodegenerative and cardiometabolic disease. Prog. Lipid Res. 2019, 74, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Braverman, N.E.; Moser, A.B. Functions of plasmalogen lipids in health and disease. Biochim. Biophys. Acta 2012, 1822, 1442–1452. [Google Scholar] [CrossRef] [Green Version]
- Ebenezer, D.L.; Fu, P.; Ramchandran, R.; Ha, A.W.; Putherickal, V.; Sudhadevi, T.; Harijith, A.; Schumacher, F.; Kleuser, B.; Natarajan, V. S1P and plasmalogen derived fatty aldehydes in cellular signaling and functions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2020, 1865, 158681. [Google Scholar] [CrossRef]
- Morand, O.H.; Zoeller, R.A.; Raetz, C.R. Disappearance of plasmalogens from membranes of animal cells subjected to photosensitized oxidation. J. Biol. Chem. 1988, 263, 11597–11606. [Google Scholar] [CrossRef]
- Stadelmann-Ingrand, S.; Favreliere, S.; Fauconneau, B.; Mauco, G.; Tallineau, C. Plasmalogen degradation by oxidative stress: Production and disappearance of specific fatty aldehydes and fatty alpha-hydroxyaldehydes. Free Radic. Biol. Med. 2001, 31, 1263–1271. [Google Scholar] [CrossRef]
- Dorninger, F.; Forss-Petter, S.; Wimmer, I.; Berger, J. Plasmalogens, platelet-activating factor and beyond—Ether lipids in signaling and neurodegeneration. Neurobiol. Dis. 2020, 145, 105061. [Google Scholar] [CrossRef]
- Martínez-Argudo, I.; Ruiz-Vázquez, R.M.; Murillo, F.J. The structure of an ECF-sigma-dependent, light-inducible promoter from the bacterium Myxococcus xanthus. Mol. Microbiol. 1998, 30, 883–893. [Google Scholar] [CrossRef] [PubMed]
- Whitworth, D.E.; Hodgson, D.A. Light-induced carotenogenesis in Myxococcus xanthus: Evidence that CarS acts as an anti-repressor of CarA. Mol. Microbiol. 2001, 42, 809–819. [Google Scholar] [CrossRef]
- Lonetto, M.A.; Brown, K.L.; Rudd, K.E.; Buttner, M.J. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc. Natl. Acad. Sci. USA 1994, 91, 7573–7577. [Google Scholar] [CrossRef] [Green Version]
- Lonetto, M.A.; Donohue, T.J.; Gross, C.A.; Buttner, M.J. Discovery of the extracytoplasmic function σ factors. Mol. Microbiol. 2019, 112, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Staron, A.; Sofia, H.J.; Dietrich, S.; Ulrich, L.E.; Liesegang, H.; Mascher, T. The third pillar of bacterial signal transduction: Classification of the extracytoplasmic function (ECF) sigma factor protein family. Mol. Microbiol. 2009, 74, 557–581. [Google Scholar] [CrossRef]
- Browning, D.F.; Whitworth, D.E.; Hodgson, D.A. Light-induced carotenogenesis in Myxococcus xanthus: Functional characterization of the ECF sigma factor CarQ and antisigma factor CarR. Mol. Microbiol. 2003, 48, 237–251. [Google Scholar] [CrossRef]
- Abellón-Ruiz, J.; Bernal-Bernal, D.; Abellán, M.; Fontes, M.; Padmanabhan, S.; Murillo, F.J.; Elías-Arnanz, M. The CarD/CarG regulatory complex is required for the action of several members of the large set of Myxococcus xanthus extracytoplasmic function sigma factors. Environ. Microbiol. 2014, 16, 2475–2490. [Google Scholar] [CrossRef] [PubMed]
- Kohler, C.; Lourenco, R.F.; Avelar, G.M.; Gomes, S.L. Extracytoplasmic function (ECF) sigma factor σF is involved in Caulobacter crescentus response to heavy metal stress. BMC Microbiol. 2012, 12, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masloboeva, N.; Reutimann, L.; Stiefel, P.; Follador, R.; Leimer, N.; Hennecke, H.; Mesa, S.; Fischer, H.M. Reactive oxygen species-inducible ECF σ factors of Bradyrhizobium japonicum. PLoS ONE 2012, 7, e43421. [Google Scholar] [CrossRef]
- Stockwell, S.B.; Reutimann, L.; Guerinot, M.L. A role for Bradyrhizobium japonicum ECF16 sigma factor EcfS in the formation of a functional symbiosis with soybean. Mol. Plant Microbe Interact. 2012, 25, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Moraleda-Muñoz, A.; Pérez, J.; Fontes, M.; Murillo, F.J.; Muñoz-Dorado, J. Copper induction of carotenoid synthesis in the bacterium Myxococcus xanthus. Mol. Microbiol. 2005, 56, 1159–1168. [Google Scholar] [CrossRef]
- Nicolás, F.J.; Ruiz-Vázquez, R.M.; Murillo, F.J. A genetic link between light response and multicellular development in the bacterium Myxococcus xanthus. Genes Dev. 1994, 8, 2375–2387. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.J.; Fontes, M.; Murillo, F.J. ihfA gene of the bacterium Myxococcus xanthus and its role in activation of carotenoid genes by blue light. J. Bacteriol. 2001, 183, 557–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dame, R.T.; Rashid, F.M.; Grainger, D.C. Chromosome organization in bacteria: Mechanistic insights into genome structure and function. Nat. Rev. Genet. 2020, 21, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Dey, D.; Nagaraja, V.; Ramakumar, S. Structural and evolutionary analyses reveal determinants of DNA binding specificities of nucleoid-associated proteins HU and IHF. Mol. Phylogenet. Evol. 2017, 107, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Peñalver-Mellado, M.; García-Heras, F.; Padmanabhan, S.; García-Moreno, D.; Murillo, F.J.; Elías-Arnanz, M. Recruitment of a novel zinc-bound transcriptional factor by a bacterial HMGA-type protein is required for regulating multiple processes in Myxococcus xanthus. Mol. Microbiol. 2006, 61, 910–926. [Google Scholar] [CrossRef]
- Elías-Arnanz, M.; Padmanabhan, S.; Murillo, F.J. The regulatory action of the myxobacterial CarD/CarG complex: A bacterial enhanceosome? FEMS Microbiol. Rev. 2010, 34, 764–778. [Google Scholar] [CrossRef]
- García-Heras, F.; Padmanabhan, S.; Murillo, F.J.; Elías-Arnanz, M. Functional equivalence of HMGA- and histone H1-like domains in a bacterial transcriptional factor. Proc. Natl. Acad. Sci. USA 2009, 106, 13546–13551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino-Puertas, L.; Goulas, T.; Gomis-Rüth, F.X. Matrix metalloproteinases outside vertebrates. Biochim. Biophys. Acta. Mol. Cell Res. 2017, 1864, 2026–2035. [Google Scholar] [CrossRef]
- Haugen, S.P.; Ross, W.; Gourse, R.L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA. Nat. Rev. Microbiol. 2008, 6, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Boyaci, H.; Campbell, E.A. Diverse and unified mechanisms of transcription initiation in bacteria. Nat. Rev. Microbiol. 2021, 19, 95–109. [Google Scholar] [CrossRef]
- Nicolás, F.J.; Cayuela, M.L.; Martínez-Argudo, I.M.; Ruiz-Vázquez, R.M.; Murillo, F.J. High mobility group I(Y)-like DNA-binding domains on a bacterial transcription factor. Proc. Natl. Acad. Sci. USA 1996, 93, 6881–6885. [Google Scholar] [CrossRef] [Green Version]
- Padmanabhan, S.; Elías-Arnanz, M.; Carpio, E.; Aparicio, P.; Murillo, F.J. Domain architecture of a high mobility group A-type bacterial transcriptional factor. J. Biol. Chem. 2001, 276, 41566–41575. [Google Scholar] [CrossRef] [Green Version]
- Reeves, R. Nuclear functions of the HMG proteins. Biochim. Biophys. Acta 2010, 1799, 3–14. [Google Scholar] [CrossRef]
- García-Heras, F.; Abellón-Ruiz, J.; Murillo, F.J.; Padmanabhan, S.; Elías-Arnanz, M. High-mobility-group a-like CarD binds to a DNA site optimized for affinity and position and to RNA polymerase to regulate a light-inducible promoter in Myxococcus xanthus. J. Bacteriol. 2013, 195, 378–388. [Google Scholar] [CrossRef] [Green Version]
- Whitworth, D.E.; Bryan, S.J.; Berry, A.E.; McGowan, S.J.; Hodgson, D.A. Genetic dissection of the light-inducible carQRS promoter region of Myxococcus xanthus. J. Bacteriol. 2004, 186, 7836–7846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernal-Bernal, D.; Gallego-García, A.; García-Martínez, G.; García-Heras, F.; Jiménez, M.A.; Padmanabhan, S.; Elías-Arnanz, M. Structure-function dissection of Myxococcus xanthus CarD N-Terminal domain, a defining member of the CarD_CdnL_TRCF family of RNA polymerase interacting proteins. PLoS ONE 2015, 10, e0121322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cayuela, M.L.; Elías-Arnanz, M.; Peñalver-Mellado, M.; Padmanabhan, S.; Murillo, F.J. The Stigmatella aurantiaca homolog of Myxococcus xanthus high-mobility-group A-type transcription factor CarD: Insights into the functional modules of CarD and their distribution in bacteria. J. Bacteriol. 2003, 185, 3527–3537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selby, C.P.; Sancar, A. Structure and function of transcription-repair coupling factor. I. Structural domains and binding properties. J. Biol. Chem. 1995, 270, 4882–4889. [Google Scholar] [CrossRef] [Green Version]
- García-Moreno, D.; Abellón-Ruiz, J.; García-Heras, F.; Murillo, F.J.; Padmanabhan, S.; Elías-Arnanz, M. CdnL, a member of the large CarD-like family of bacterial proteins, is vital for Myxococcus xanthus and differs functionally from the global transcriptional regulator CarD. Nucleic Acids Res. 2010, 38, 4586–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stallings, C.L.; Stephanou, N.C.; Chu, L.; Hochschild, A.; Nickels, B.E.; Glickman, M.S. CarD is an essential regulator of rRNA transcription required for Mycobacterium tuberculosis persistence. Cell 2009, 138, 146–159. [Google Scholar] [CrossRef] [Green Version]
- Iniesta, A.A.; García-Heras, F.; Abellón-Ruiz, J.; Gallego-García, A.; Elías-Arnanz, M. Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J. Bacteriol. 2012, 194, 5875–5885. [Google Scholar] [CrossRef] [Green Version]
- Gallego-García, A.; Mirassou, Y.; García-Moreno, D.; Elías-Arnanz, M.; Jiménez, M.A.; Padmanabhan, S. Structural insights into RNA polymerase recognition and essential function of Myxococcus xanthus CdnL. PLoS ONE 2014, 9, e108946. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.F.; Goldberg, M.S.; He, M.; Xu, H.; Blevins, J.S.; Norgard, M.V. Differential expression of a putative CarD-like transcriptional regulator, LtpA, in Borrelia burgdorferi. Infect. Immun. 2008, 76, 4439–4444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallego-García, A.; Iniesta, A.A.; Gonzalez, D.; Collier, J.; Padmanabhan, S.; Elías-Arnanz, M. Caulobacter crescentus CdnL is a non-essential RNA polymerase-binding protein whose depletion impairs normal growth and rRNA transcription. Sci. Rep. 2017, 7, 43240. [Google Scholar] [CrossRef] [Green Version]
- Henry, K.K.; Ross, W.; Myers, K.S.; Lemmer, K.C.; Vera, J.M.; Landick, R.; Donohue, T.J.; Gourse, R.L. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc. Natl. Acad. Sci. USA 2020, 117, 29658–29668. [Google Scholar] [CrossRef]
- Boyaci, H.; Chen, J.; Jansen, R.; Darst, S.A.; Campbell, E.A. Structures of an RNA polymerase promoter melting intermediate elucidate DNA unwinding. Nature 2019, 565, 382–385. [Google Scholar] [CrossRef] [PubMed]
- Woldemeskel, S.A.; Daitch, A.K.; Alvarez, L.; Panis, G.; Zeinert, R.; Gonzalez, D.; Smith, E.; Collier, J.; Chien, P.; Cava, F.; et al. The conserved transcriptional regulator CdnL is required for metabolic homeostasis and morphogenesis in Caulobacter. PLoS Genet. 2020, 16, e1008591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galbis-Martínez, M.; Fontes, M.; Murillo, F.J. The high-mobility group A-type protein CarD of the bacterium Myxococcus xanthus as a transcription factor for several distinct vegetative genes. Genetics 2004, 167, 1585–1595. [Google Scholar] [CrossRef] [Green Version]
- Bernal-Bernal, D.; Abellón-Ruiz, J.; Iniesta, A.A.; Pajares-Martínez, E.; Bastida-Martínez, E.; Fontes, M.; Padmanabhan, S.; Elías-Arnanz, M. Multifactorial control of the expression of a CRISPR-Cas system by an extracytoplasmic function sigma/anti-sigma pair and a global regulatory complex. Nucleic Acids Res. 2018, 46, 6726–6745. [Google Scholar] [CrossRef] [PubMed]
- León, E.; Navarro-Avilés, G.; Santiveri, C.M.; Flores-Flores, C.; Rico, M.; González, C.; Murillo, F.J.; Elías-Arnanz, M.; Jiménez, M.A.; Padmanabhan, S. A bacterial antirepressor with SH3 domain topology mimics operator DNA in sequestering the repressor DNA recognition helix. Nucleic Acids Res. 2010, 38, 5226–5241. [Google Scholar] [CrossRef] [PubMed]
- López-García, P.; Moreira, D. The Syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 2020, 5, 655–667. [Google Scholar] [CrossRef]
- García-Moreno, D.; Polanco, M.C.; Navarro-Avilés, G.; Murillo, F.J.; Padmanabhan, S.; Elías-Arnanz, M. A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J. Bacteriol. 2009, 191, 3108–3119. [Google Scholar] [CrossRef] [Green Version]
- Chatelle, C.; Ochoa-Fernandez, R.; Engesser, R.; Schneider, N.; Beyer, H.M.; Jones, A.R.; Timmer, J.; Zurbriggen, M.D.; Weber, W. A green-light-responsive system for the control of transgene expression in mammalian and plant cells. ACS Synth. Biol. 2018, 7, 1349–1358. [Google Scholar] [CrossRef] [PubMed]
- Kainrath, S.; Stadler, M.; Reichhart, E.; Distel, M.; Janovjak, H. Green-light-induced inactivation of receptor signaling using cobalamin-binding domains. Angew. Chem. Int. Ed. Engl. 2017, 56, 4608–4611. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Liu, X.; Yang, C.; Yang, Z.; Luo, J.; Kou, S.; Liu, K.; Sun, F. Injectable, photoresponsive hydrogels for delivering neuroprotective proteins enabled by metal-directed protein assembly. Sci. Adv. 2020, 6, eabc4824. [Google Scholar] [CrossRef]
- Wang, R.; Yang, Z.; Luo, J.; Hsing, I.M.; Sun, F. B12-dependent photoresponsive protein hydrogels for controlled stem cell/protein release. Proc. Natl. Acad. Sci. USA 2017, 114, 5912–5917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, D.; Ricken, J.; Wegner, S. Turning cell adhesions ON or OFF with high spatiotemporal precision using the green light responsive protein CarH. Chemistry 2020. [Google Scholar] [CrossRef]
- Jain, I.H.; Calvo, S.E.; Markhard, A.L.; Skinner, O.S.; To, T.L.; Ast, T.; Mootha, V.K. Genetic screen for cell fitness in high or low oxygen highlights mitochondrial and lipid metabolism. Cell 2020, 181, 716–727 e711. [Google Scholar] [CrossRef]
- Zou, Y.; Henry, W.S.; Ricq, E.L.; Graham, E.T.; Phadnis, V.V.; Maretich, P.; Paradkar, S.; Boehnke, N.; Deik, A.A.; Reinhardt, F.; et al. Plasticity of ether lipids promotes ferroptosis susceptibility and evasion. Nature 2020, 585, 603–608. [Google Scholar] [CrossRef]
- Cui, W.; Liu, D.; Gu, W.; Chu, B. Peroxisome-driven ether-linked phospholipids biosynthesis is essential for ferroptosis. Cell Death Differ. 2021. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padmanabhan, S.; Monera-Girona, A.J.; Pérez-Castaño, R.; Bastida-Martínez, E.; Pajares-Martínez, E.; Bernal-Bernal, D.; Galbis-Martínez, M.L.; Polanco, M.C.; Iniesta, A.A.; Fontes, M.; et al. Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021, 9, 1067. https://doi.org/10.3390/microorganisms9051067
Padmanabhan S, Monera-Girona AJ, Pérez-Castaño R, Bastida-Martínez E, Pajares-Martínez E, Bernal-Bernal D, Galbis-Martínez ML, Polanco MC, Iniesta AA, Fontes M, et al. Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms. 2021; 9(5):1067. https://doi.org/10.3390/microorganisms9051067
Chicago/Turabian StylePadmanabhan, S., Antonio J. Monera-Girona, Ricardo Pérez-Castaño, Eva Bastida-Martínez, Elena Pajares-Martínez, Diego Bernal-Bernal, María Luisa Galbis-Martínez, María Carmen Polanco, Antonio A. Iniesta, Marta Fontes, and et al. 2021. "Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation" Microorganisms 9, no. 5: 1067. https://doi.org/10.3390/microorganisms9051067
APA StylePadmanabhan, S., Monera-Girona, A. J., Pérez-Castaño, R., Bastida-Martínez, E., Pajares-Martínez, E., Bernal-Bernal, D., Galbis-Martínez, M. L., Polanco, M. C., Iniesta, A. A., Fontes, M., & Elías-Arnanz, M. (2021). Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms, 9(5), 1067. https://doi.org/10.3390/microorganisms9051067