Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis
Abstract
:1. Introduction
2. PG and Cell Shape
3. The Sporulation and Germination of M. xanthus
4. PG Assembly and Morphological Transition during M. xanthus Spore Germination
5. Roles of aPBPs and the Rod System during Germination
6. De Novo Establishment of Cell Poles
7. Symmetry Breaking by Random Fluctuation
8. When PG Assembly Intersects with Gliding Motility
9. Perspectives
9.1. What Does It Take to Make a Rod?
9.2. The Versatile MreB
9.3. Are Small GTPases the Universal Regulators of Cell Polarity?
9.4. What Are the Primary Roles of the Gliding Motors?
9.5. How Do PG Polymerases Co-Ordinate with Hydrolases?
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yulo, P.R.J.; Hendrickson, H.L. The evolution of spherical cell shape; progress and perspective. Biochem. Soc. Trans. 2019, 47, 1621–1634. [Google Scholar] [CrossRef]
- Chang, F.; Huang, K.C. How and why cells grow as rods. BMC Biol. 2014, 12, 54. [Google Scholar] [CrossRef] [Green Version]
- Young, K.D. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 2006, 70, 660–703. [Google Scholar] [CrossRef] [Green Version]
- Holtje, J.V. Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol. Mol. Biol. Rev. 1998, 62, 181–203. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Jericho, M.; Pink, D.; Beveridge, T. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 1999, 181, 6865–6875. [Google Scholar] [CrossRef] [Green Version]
- Typas, A.; Banzhaf, M.; Gross, C.A.; Vollmer, W. From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat. Rev. Microbiol. 2012, 10, 123–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, K.D. Bacterial shape: Two-dimensional questions and possibilities. Annu. Rev. Microbiol. 2010, 64, 223–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holtje, J.V.; Heidrich, C. Enzymology of elongation and constriction of the murein sacculus of Escherichia coli. Biochimie 2001, 83, 103–108. [Google Scholar] [CrossRef]
- Egan, A.J.F.; Errington, J.; Vollmer, W. Regulation of peptidoglycan synthesis and remodelling. Nat. Rev. Microbiol. 2020, 18, 446–460. [Google Scholar] [CrossRef] [PubMed]
- Claessen, D.; Errington, J. Cell Wall Deficiency as a Coping Strategy for Stress. Trends Microbiol. 2019, 27, 1025–1033. [Google Scholar] [CrossRef] [Green Version]
- Errington, J.; Mickiewicz, K.; Kawai, Y.; Wu, L.J. L-form bacteria, chronic diseases and the origins of life. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371. [Google Scholar] [CrossRef] [PubMed]
- Ranjit, D.K.; Jorgenson, M.A.; Young, K.D. PBP1B Glycosyltransferase and Transpeptidase Activities Play Different Essential Roles during the De Novo Regeneration of Rod Morphology in Escherichia coli. J. Bacteriol. 2017, 199. [Google Scholar] [CrossRef] [Green Version]
- Leaver, M.; Dominguez-Cuevas, P.; Coxhead, J.M.; Daniel, R.A.; Errington, J. Life without a wall or division machine in Bacillus subtilis. Nature 2009, 457, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Mercier, R.; Kawai, Y.; Errington, J. Excess membrane synthesis drives a primitive mode of cell proliferation. Cell 2013, 152, 997–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawai, Y.; Mickiewicz, K.; Errington, J. Lysozyme Counteracts beta-Lactam Antibiotics by Promoting the Emergence of L-Form Bacteria. Cell 2018, 172, 1038–1049. [Google Scholar] [CrossRef] [Green Version]
- Kawai, Y.; Mercier, R.; Errington, J. Bacterial cell morphogenesis does not require a preexisting template structure. Curr. Biol. 2014, 24, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Billings, G.; Ouzounov, N.; Ursell, T.; Desmarais, S.M.; Shaevitz, J.; Gitai, Z.; Huang, K.C. De novo morphogenesis in L-forms via geometric control of cell growth. Mol. Microbiol. 2014, 93, 883–896. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.J.; Lee, S.; Park, S.; Eland, L.E.; Wipat, A.; Holden, S.; Errington, J. Geometric principles underlying the proliferation of a model cell system. Nat. Commun. 2020, 11, 4149. [Google Scholar] [CrossRef]
- Muñoz-Dorado, J.; Marcos-Torres, F.J.; García-Bravo, E.; Moraleda-Muñoz, A.; Pérez, J. Myxobacteria: Moving, killing, feeding, and surviving together. Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Zusman, D.R.; Scott, A.E.; Yang, Z.; Kirby, J.R. Chemosensory pathways, motility and development in Myxococcus xanthus. Nat. Rev. Microbiol. 2007, 5, 862–872. [Google Scholar] [CrossRef]
- Bui, N.K.; Gray, J.; Schwarz, H.; Schumann, P.; Blanot, D.; Vollmer, W. The peptidoglycan sacculus of Myxococcus xanthus has unusual structural features and is degraded during glycerol-induced myxospore development. J. Bacteriol. 2009, 191, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Mulholland, G.A.; Seef, S.; Zhu, S.; Liu, J.; Mignot, T.; Nan, B. Establishing rod shape from spherical, peptidoglycan-deficient bacterial spores. Proc. Natl. Acad. Sci. USA 2020, 117, 14444–14452. [Google Scholar] [CrossRef]
- Meeske, A.J.; Riley, E.P.; Robins, W.P.; Uehara, T.; Mekalanos, J.J.; Kahne, D.; Walker, S.; Kruse, A.C.; Bernhardt, T.G.; Rudner, D.Z. SEDS proteins are a widespread family of bacterial cell wall polymerases. Nature 2016, 537, 634–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cava, F.; de Pedro, M.A. Peptidoglycan plasticity in bacteria: Emerging variability of the murein sacculus and their associated biological functions. Curr. Opin. Microbiol. 2014, 18, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Van Teeffelen, S.; Renner, L.D. Recent advances in understanding how rod-like bacteria stably maintain their cell shapes. F1000Research 2018, 7, 241. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, S.A.; Lohans, C.T. Breaking down the cell wall: Strategies for antibiotic discovery targeting bacterial transpeptidases. Eur. J. Med. Chem. 2020, 194, 112262. [Google Scholar] [CrossRef]
- Rohs, P.D.; Buss, J.; Sim, S.I.; Squyres, G.R.; Srisuknimit, V.; Smith, M.; Cho, H.; Sjodt, M.; Kruse, A.C.; Garner, E.C. A central role for PBP2 in the activation of peptidoglycan polymerization by the bacterial cell elongation machinery. PLoS Genet. 2018, 14, e1007726. [Google Scholar] [CrossRef]
- Sjodt, M.; Rohs, P.D.A.; Gilman, M.S.A.; Erlandson, S.C.; Zheng, S.; Green, A.G.; Brock, K.P.; Taguchi, A.; Kahne, D.; Walker, S.; et al. Structural coordination of polymerization and crosslinking by a SEDS-bPBP peptidoglycan synthase complex. Nat. Microbiol. 2020, 5, 813–820. [Google Scholar] [CrossRef]
- Emami, K.; Guyet, A.; Kawai, Y.; Devi, J.; Wu, L.J.; Allenby, N.; Daniel, R.A.; Errington, J. RodA as the missing glycosyltransferase in Bacillus subtilis and antibiotic discovery for the peptidoglycan polymerase pathway. Nat. Microbiol. 2017, 2, 16253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Wivagg, C.N.; Kapoor, M.; Barry, Z.; Rohs, P.D.; Suh, H.; Marto, J.A.; Garner, E.C.; Bernhardt, T.G. Bacterial cell wall biogenesis is mediated by SEDS and PBP polymerase families functioning semi-autonomously. Nat. Microbiol. 2016. [Google Scholar] [CrossRef]
- Hussain, S.; Wivagg, C.N.; Szwedziak, P.; Wong, F.; Schaefer, K.; Izore, T.; Renner, L.D.; Holmes, M.J.; Sun, Y.; Bisson-Filho, A.W.; et al. MreB filaments align along greatest principal membrane curvature to orient cell wall synthesis. eLife 2018, 7. [Google Scholar] [CrossRef]
- Colavin, A.; Shi, H.; Huang, K.C. RodZ modulates geometric localization of the bacterial actin MreB to regulate cell shape. Nat. Commun. 2018, 9, 1280. [Google Scholar] [CrossRef]
- Ursell, T.S.; Nguyen, J.; Monds, R.D.; Colavin, A.; Billings, G.; Ouzounov, N.; Gitai, Z.; Shaevitz, J.W.; Huang, K.C. Rod-like bacterial shape is maintained by feedback between cell curvature and cytoskeletal localization. Proc. Natl. Acad. Sci. USA 2014, 111, E1025–E1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pazos, M.; Vollmer, W. Regulation and function of class A Penicillin-binding proteins. Curr. Opin. Microbiol. 2021, 60, 80–87. [Google Scholar] [CrossRef]
- Vigouroux, A.; Cordier, B.; Aristov, A.; Alvarez, L.; Ozbaykal, G.; Chaze, T.; Oldewurtel, E.R.; Matondo, M.; Cava, F.; Bikard, D.; et al. Class-A penicillin binding proteins do not contribute to cell shape but repair cell-wall defects. eLife 2020, 9. [Google Scholar] [CrossRef] [PubMed]
- Dion, M.F.; Kapoor, M.; Sun, Y.; Wilson, S.; Ryan, J.; Vigouroux, A.; van Teeffelen, S.; Oldenbourg, R.; Garner, E.C. Bacillus subtilis cell diameter is determined by the opposing actions of two distinct cell wall synthetic systems. Nat. Microbiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Van Heijenoort, J. Peptidoglycan hydrolases of Escherichia coli. Microbiol. Mol. Biol. Rev. 2011, 75, 636–663. [Google Scholar] [CrossRef] [Green Version]
- Higgins, D.; Dworkin, J. Recent progress in Bacillus subtilis sporulation. FEMS Microbiol. Rev. 2012, 36, 131–148. [Google Scholar] [CrossRef] [Green Version]
- Tocheva, E.I.; Ortega, D.R.; Jensen, G.J. Sporulation, bacterial cell envelopes and the origin of life. Nat. Rev. Microbiol. 2016, 14, 535–542. [Google Scholar] [CrossRef] [Green Version]
- McKenney, P.T.; Eichenberger, P. Dynamics of spore coat morphogenesis in Bacillus subtilis. Mol. Microbiol. 2012, 83, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Dworkin, M.; Gibson, S.M. A System for Studying Microbial Morphogenesis: Rapid Formation of Microcysts in Myxococcus xanthus. Science 1964, 146, 243–244. [Google Scholar] [CrossRef]
- O’Connor, K.A.; Zusman, D.R. Starvation-independent sporulation in Myxococcus xanthus involves the pathway for beta-lactamase induction and provides a mechanism for competitive cell survival. Mol. Microbiol. 1997, 24, 839–850. [Google Scholar] [CrossRef] [PubMed]
- Sudo, S.Z.; Dworkin, M. Resistance of vegetative cells and microcysts of Myxococcus xanthus. J. Bacteriol. 1969, 98, 883–887. [Google Scholar] [CrossRef] [Green Version]
- Muller, F.D.; Schink, C.W.; Hoiczyk, E.; Cserti, E.; Higgs, P.I. Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol. Microbiol. 2012, 83, 486–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsey, W.S.; Dworkin, M. Microcyst germination in Myxococcus xanthus. J. Bacteriol. 1968, 95, 2249–2257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elias, M.; Murillo, F.J. Induction of Germination in Myxococcus xanthus Fruiting Body Spores. J. Gen. Microbiol. 1991, 137, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Otani, M.; Inouye, M.; Inouye, S. Germination of myxospores from the fruiting bodies of Myxococcus xanthus. J. Bacteriol. 1995, 177, 4261–4265. [Google Scholar] [CrossRef] [Green Version]
- Fu, G.; Bandaria, J.N.; Le Gall, A.V.; Fan, X.; Yildiz, A.; Mignot, T.; Zusman, D.R.; Nan, B. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc. Natl. Acad. Sci. USA 2018, 115, 2484–2489. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, R.; Lockless, S.W.; Sorg, J.A. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J. Biol. Chem. 2017, 292, 10735–10742. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.P.; Rittichier, J.; Kuru, E.; Yablonowski, J.; Pasciak, E.; Tekkam, S.; Hall, E.; Murphy, B.; Lee, T.K.; Garner, E.C.; et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chem. Sci. 2017, 8, 6313–6321. [Google Scholar] [CrossRef] [Green Version]
- Kuru, E.; Radkov, A.; Meng, X.; Egan, A.; Alvarez, L.; Dowson, A.; Booher, G.; Breukink, E.; Roper, D.I.; Cava, F.; et al. Mechanisms of incorporation for D-amino acid probes that target peptidoglycan biosynthesis. ACS Chem. Biol. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mueller, E.A.; Egan, A.J.; Breukink, E.; Vollmer, W.; Levin, P.A. Plasticity of Escherichia coli cell wall metabolism promotes fitness and antibiotic resistance across environmental conditions. eLife 2019, 8. [Google Scholar] [CrossRef]
- Leonardy, S.; Miertzschke, M.; Bulyha, I.; Sperling, E.; Wittinghofer, A.; Sogaard-Andersen, L. Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J. 2010, 29, 2276–2289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Franco, M.; Ducret, A.; Mignot, T. A bacterial Ras-like small GTP-binding protein and its cognate GAP establish a dynamic spatial polarity axis to control directed motility. PLoS Biol. 2010, 8, e1000430. [Google Scholar] [CrossRef]
- McLoon, A.L.; Wuichet, K.; Hasler, M.; Keilberg, D.; Szadkowski, D.; Sogaard-Andersen, L. MglC, a paralog of Myxococcus xanthus GTPase activating protein MglB, plays a divergent role in motility regulation. J. Bacteriol. 2015. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guzzo, M.; Ducret, A.; Li, Y.Z.; Mignot, T. A dynamic response regulator protein modulates G-protein-dependent polarity in the bacterium Myxococcus xanthus. PLoS Genet. 2012, 8, e1002872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keilberg, D.; Wuichet, K.; Drescher, F.; Sogaard-Andersen, L. A response regulator interfaces between the Frz chemosensory system and the MglA/MglB GTPase/GAP module to regulate polarity in Myxococcus xanthus. PLoS Genet. 2012, 8, e1002951. [Google Scholar] [CrossRef] [Green Version]
- Szadkowski, D.; Harms, A.; Carreira, L.A.M.; Wigbers, M.; Potapova, A.; Wuichet, K.; Keilberg, D.; Gerland, U.; Sogaard-Andersen, L. Spatial control of the GTPase MglA by localized RomR-RomX GEF and MglB GAP activities enables Myxococcus xanthus motility. Nat. Microbiol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Pogue, C.B.; Zhou, T.; Nan, B. PlpA, a PilZ-like protein, regulates directed motility of the bacterium Myxococcus xanthus. Mol. Microbiol. 2018, 107, 214–228. [Google Scholar] [CrossRef] [Green Version]
- Muller, F.D.; Treuner-Lange, A.; Heider, J.; Huntley, S.M.; Higgs, P.I. Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genom. 2010, 11, 264. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Dorado, J.; Moraleda-Munoz, A.; Marcos-Torres, F.J.; Contreras-Moreno, F.J.; Martin-Cuadrado, A.B.; Schrader, J.M.; Higgs, P.I.; Perez, J. Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; McBride, M.J.; Chen, J.; Zusman, D.R.; Oster, G. Bacteria that glide with helical tracks. Curr. Biol. 2014, 24, R169–R173. [Google Scholar] [CrossRef] [Green Version]
- Treuner-Lange, A.; Macia, E.; Guzzo, M.; Hot, E.; Faure, L.M.; Jakobczak, B.; Espinosa, L.; Alcor, D.; Ducret, A.; Keilberg, D.; et al. The small G-protein MglA connects to the MreB actin cytoskeleton at bacterial focal adhesions. J. Cell Biol. 2015, 210, 243–256. [Google Scholar] [CrossRef] [PubMed]
- Mauriello, E.M.; Mouhamar, F.; Nan, B.; Ducret, A.; Dai, D.; Zusman, D.R.; Mignot, T. Bacterial motility complexes require the actin-like protein, MreB and the Ras homologue, MglA. EMBO J. 2010, 29, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Nan, B. Bacterial Gliding Motility: Rolling Out a Consensus Model. Curr. Biol. 2017, 27, R154–R156. [Google Scholar] [CrossRef] [Green Version]
- Nan, B.; Bandaria, J.N.; Guo, K.Y.; Fan, X.; Moghtaderi, A.; Yildiz, A.; Zusman, D.R. The polarity of myxobacterial gliding is regulated by direct interactions between the gliding motors and the Ras homolog MglA. Proc. Natl. Acad. Sci. USA 2015, 112, E186–E193. [Google Scholar] [CrossRef] [Green Version]
- Nan, B.; Chen, J.; Neu, J.C.; Berry, R.M.; Oster, G.; Zusman, D.R. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc. Natl. Acad. Sci. USA 2011, 108, 2498–2503. [Google Scholar] [CrossRef] [Green Version]
- Nan, B.; Bandaria, J.N.; Moghtaderi, A.; Sun, I.H.; Yildiz, A.; Zusman, D.R. Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proc. Natl. Acad. Sci. USA 2013, 110, E1508–E1513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galicia, C.; Lhospice, S.; Varela, P.F.; Trapani, S.; Zhang, W.; Navaza, J.; Herrou, J.; Mignot, T.; Cherfils, J. MglA functions as a three-state GTPase to control movement reversals of Myxococcus xanthus. Nat. Commun. 2019, 10, 5300. [Google Scholar] [CrossRef] [Green Version]
- Faure, L.M.; Fiche, J.B.; Espinosa, L.; Ducret, A.; Anantharaman, V.; Luciano, J.; Lhospice, S.; Islam, S.T.; Treguier, J.; Sotes, M.; et al. The mechanism of force transmission at bacterial focal adhesion complexes. Nature 2016, 539, 530–535. [Google Scholar] [CrossRef] [Green Version]
- Shi, H.; Bratton, B.P.; Gitai, Z.; Huang, K.C. How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 2018, 172, 1294–1305. [Google Scholar] [CrossRef]
- Reichmann, N.T.; Tavares, A.C.; Saraiva, B.M.; Jousselin, A.; Reed, P.; Pereira, A.R.; Monteiro, J.M.; Sobral, R.G.; VanNieuwenhze, M.S.; Fernandes, F.; et al. SEDS-bPBP pairs direct lateral and septal peptidoglycan synthesis in Staphylococcus aureus. Nat. Microbiol. 2019, 4, 1368–1377. [Google Scholar] [CrossRef]
- Pinho, M.G.; Kjos, M.; Veening, J.W. How to get (a)round: Mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 2013, 11, 601–614. [Google Scholar] [CrossRef] [Green Version]
- Van den Ent, F.; Izore, T.; Bharat, T.A.; Johnson, C.M.; Lowe, J. Bacterial actin MreB forms antiparallel double filaments. eLife 2014, 3, e02634. [Google Scholar] [CrossRef]
- Shi, H.; Quint, D.A.; Grason, G.M.; Gopinathan, A.; Huang, K.C. Chiral twisting in a bacterial cytoskeletal polymer affects filament size and orientation. Nat. Commun. 2020, 11, 1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, F.; Garner, E.C.; Amir, A. Mechanics and dynamics of translocating MreB filaments on curved membranes. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Salje, J.; van den Ent, F.; de Boer, P.; Lowe, J. Direct membrane binding by bacterial actin MreB. Mol. Cell 2011, 43, 478–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wingreen, N.S.; Huang, K.C. Physics of Intracellular Organization in Bacteria. Annu. Rev. Microbiol. 2015, 69, 361–379. [Google Scholar] [CrossRef] [PubMed]
- Bratton, B.P.; Shaevitz, J.W.; Gitai, Z.; Morgenstein, R.M. MreB polymers and curvature localization are enhanced by RodZ and predict E. coli’s cylindrical uniformity. Nat. Commun. 2018, 9, 2797. [Google Scholar] [CrossRef] [Green Version]
- Morgenstein, R.M.; Bratton, B.P.; Nguyen, J.P.; Ouzounov, N.; Shaevitz, J.W.; Gitai, Z. RodZ links MreB to cell wall synthesis to mediate MreB rotation and robust morphogenesis. Proc. Natl. Acad. Sci. USA 2015. [Google Scholar] [CrossRef] [Green Version]
- Kawazura, T.; Matsumoto, K.; Kojima, K.; Kato, F.; Kanai, T.; Niki, H.; Shiomi, D. Exclusion of assembled MreB by anionic phospholipids at cell poles confers cell polarity for bidirectional growth. Mol. Microbiol. 2017, 104, 472–486. [Google Scholar] [CrossRef] [Green Version]
- Zielinska, A.; Savietto, A.; de Sousa Borges, A.; Martinez, D.; Berbon, M.; Roelofsen, J.R.; Hartman, A.M.; de Boer, R.; Van der Klei, I.J.; Hirsch, A.K.; et al. Flotillin-mediated membrane fluidity controls peptidoglycan synthesis and MreB movement. eLife 2020, 9. [Google Scholar] [CrossRef]
- Garenne, D.; Libchaber, A.; Noireaux, V. Membrane molecular crowding enhances MreB polymerization to shape synthetic cells from spheres to rods. Proc. Natl. Acad. Sci. USA 2020, 117, 1902–1909. [Google Scholar] [CrossRef] [PubMed]
- Kurita, K.; Kato, F.; Shiomi, D. Alteration of Membrane Fluidity or Phospholipid Composition Perturbs Rotation of MreB Complexes in Escherichia coli. Front. Mol. Biosci. 2020, 7, 582660. [Google Scholar] [CrossRef] [PubMed]
- Hodgkin, J.; Kaiser, D. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen. Genet. 1979, 171, 177–191. [Google Scholar] [CrossRef]
- Dominguez-Escobar, J.; Chastanet, A.; Crevenna, A.H.; Fromion, V.; Wedlich-Soldner, R.; Carballido-Lopez, R. Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 2011, 333, 225–228. [Google Scholar] [CrossRef] [Green Version]
- Garner, E.C.; Bernard, R.; Wang, W.; Zhuang, X.; Rudner, D.Z.; Mitchison, T. Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 2011, 333, 222–225. [Google Scholar] [CrossRef] [Green Version]
- Van Teeffelen, S.; Wang, S.; Furchtgott, L.; Huang, K.C.; Wingreen, N.S.; Shaevitz, J.W.; Gitai, Z. The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc. Natl. Acad. Sci. USA 2011, 108, 15822–15827. [Google Scholar] [CrossRef] [Green Version]
- Gitai, Z.; Dye, N.A.; Reisenauer, A.; Wachi, M.; Shapiro, L. MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 2005, 120, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Oswald, F.; Varadarajan, A.; Lill, H.; Peterman, E.J.; Bollen, Y.J. MreB-Dependent Organization of the E. coli Cytoplasmic Membrane Controls Membrane Protein Diffusion. Biophys. J. 2016, 110, 1139–1149. [Google Scholar] [CrossRef] [Green Version]
- Strahl, H.; Burmann, F.; Hamoen, L.W. The actin homologue MreB organizes the bacterial cell membrane. Nat. Commun. 2014, 5, 3442. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Espin, D.; Daniel, R.; Kawai, Y.; Carballido-Lopez, R.; Castilla-Llorente, V.; Errington, J.; Meijer, W.J.; Salas, M. The actin-like MreB cytoskeleton organizes viral DNA replication in bacteria. Proc. Natl. Acad. Sci. USA 2009, 106, 13347–13352. [Google Scholar] [CrossRef] [Green Version]
- Madabhushi, R.; Marians, K.J. Actin homolog MreB affects chromosome segregation by regulating topoisomerase IV in Escherichia coli. Mol. Cell 2009, 33, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowles, K.N.; Gitai, Z. Surface association and the MreB cytoskeleton regulate pilus production, localization and function in Pseudomonas aeruginosa. Mol. Microbiol. 2010, 76, 1411–1426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, S.W.; Chen, S.Y.; Wong, H.C. Localization and expression of MreB in Vibrio parahaemolyticus under different stresses. Appl. Environ. Microbiol. 2008, 74, 7016–7022. [Google Scholar] [CrossRef] [Green Version]
- Kruse, T.; Moller-Jensen, J.; Lobner-Olesen, A.; Gerdes, K. Dysfunctional MreB inhibits chromosome segregation in Escherichia coli. EMBO J. 2003, 22, 5283–5292. [Google Scholar] [CrossRef] [Green Version]
- Wuichet, K.; Sogaard-Andersen, L. Evolution and diversity of the Ras superfamily of small GTPases in prokaryotes. Genome Biol. Evol. 2014, 7, 57–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiou, J.G.; Balasubramanian, M.K.; Lew, D.J. Cell Polarity in Yeast. Annu. Rev. Cell Dev. Biol. 2017, 33, 77–101. [Google Scholar] [CrossRef]
- Bonazzi, D.; Julien, J.D.; Romao, M.; Seddiki, R.; Piel, M.; Boudaoud, A.; Minc, N. Symmetry breaking in spore germination relies on an interplay between polar cap stability and spore wall mechanics. Dev. Cell 2014, 28, 534–546. [Google Scholar] [CrossRef] [Green Version]
- Craig, L.; Forest, K.T.; Maier, B. Type IV pili: Dynamics, biophysics and functional consequences. Nat. Rev. Microbiol. 2019, 17, 429–440. [Google Scholar] [CrossRef]
- Nan, B.; Zusman, D.R. Novel mechanisms power bacterial gliding motility. Mol. Microbiol. 2016, 101, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nan, B.; Zusman, D.R. Uncovering the mystery of gliding motility in the myxobacteria. Annu. Rev. Genet. 2011, 45, 21–39. [Google Scholar] [CrossRef] [Green Version]
- Wartel, M.; Ducret, A.; Thutupalli, S.; Czerwinski, F.; Le Gall, A.V.; Mauriello, E.M.; Bergam, P.; Brun, Y.V.; Shaevitz, J.; Mignot, T. A versatile class of cell surface directional motors gives rise to gliding motility and sporulation in Myxococcus xanthus. PLoS Biol. 2013, 11, e1001728. [Google Scholar] [CrossRef] [PubMed]
- Wittekind, M.; Schuch, R. Cell wall hydrolases and antibiotics: Exploiting synergy to create efficacious new antimicrobial treatments. Curr. Opin. Microbiol. 2016, 33, 18–24. [Google Scholar] [CrossRef]
- Dik, D.A.; Fisher, J.F.; Mobashery, S. Cell-Wall Recycling of the Gram-Negative Bacteria and the Nexus to Antibiotic Resistance. Chem. Rev. 2018, 118, 5952–5984. [Google Scholar] [CrossRef]
- Dworkin, M.; Voelz, H. The formation and germination of microcysts in Myxococcus xanthus. J. Gen. Microbiol. 1962, 28, 81–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Venkatesan, S.; Nan, B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms 2021, 9, 916. https://doi.org/10.3390/microorganisms9050916
Zhang H, Venkatesan S, Nan B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms. 2021; 9(5):916. https://doi.org/10.3390/microorganisms9050916
Chicago/Turabian StyleZhang, Huan, Srutha Venkatesan, and Beiyan Nan. 2021. "Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis" Microorganisms 9, no. 5: 916. https://doi.org/10.3390/microorganisms9050916
APA StyleZhang, H., Venkatesan, S., & Nan, B. (2021). Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms, 9(5), 916. https://doi.org/10.3390/microorganisms9050916