Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washing Machine Sampling
2.2. Colony Counting
2.3. Identification of Isolates by MALDI Biotyping
2.4. Statistical Analyses
3. Results and Discussion
3.1. Colony counts at the Different Sampling Sites
3.2. Identification of Microbial Isolates
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Babič, M.N.; Zalar, P.; Ženko, B.; Schroers, H.-J.; Džeroski, S.; Gunde-Cimerman, N. Candida and Fusarium species known as opportunistic human pathogens from customer-accessible parts of residential washing machines. Fungal Biol. 2015, 119, 95–113. [Google Scholar] [CrossRef]
- Babič, M.N.; Gostinčar, C.; Gunde-Cimerman, N. Microorganisms populating the water-related indoor biome. Appl. Microbiol. Biotechnol. 2020, 104, 6443–6462. [Google Scholar] [CrossRef]
- Egert, M. The BE-Microbiome-Communities with Relevance for Laundry and Home Care. SOFW J. 2017, 143, 44–48. [Google Scholar]
- Munk, S.; Johansen, C.; Stahnke, L.H.; Adler-Nissen, J. Microbial survival and odor in laundry. J. Surfact. Deterg. 2001, 4, 385–394. [Google Scholar] [CrossRef]
- Bloomfield, S.F.; Exner, M.; Goroncy-Bermes, P.; Hartemann, P.; Heeg, P.; Ilschner, C.; et al. Lesser-known or hidden reservoirs of infection and implications for adequate prevention strategies: Where to look and what to look for. GMS Hyg. Infect. Control 2015, 10, Doc04. [Google Scholar] [CrossRef]
- Gibson, L.L.; Rose, J.B.; Haas, C.N. Use of quantitative microbial risk assessment for evaluation of the benefits of laundry sanitation. Am. J. Infect Control. 1999, 27, S34–S39. [Google Scholar] [CrossRef]
- Callewaert, C.; van Nevel, S.; Kerckhof, F.M.; Granitsiotis, M.S.; Boon, N. Bacterial Exchange in Household Washing Machines. Front. Microbiol. 2015, 6, 1381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gattlen, J.; Amberg, C.; Zinn, M.; Mauclaire, L. Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling 2010, 26, 873–882. [Google Scholar] [CrossRef] [PubMed]
- Jacksch, S.; Kaiser, D.; Weis, S.; Weide, M.; Rtering, S.; Schnell, S.; Egert, M. Influence of Sampling Site and other Environmental Factors on the Bacterial Community Composition of Domestic Washing Machines. Microorganisms 2020, 8, 30. [Google Scholar] [CrossRef] [Green Version]
- Nix, I.D.; Frontzek, A.; Bockmühl, D.P. Characterization of Microbial Communities in Household Washing Machines. Tenside Surfactants Deterg. 2015, 52, 432–440. [Google Scholar] [CrossRef]
- Schmithausen, R.M.; Sib, E.; Exner, M.; Hack, S.; Rösing, C.; Ciorba, P.; Bierbaum, G.; Savin, M.; Bloomfield, S.F.; Kaase, M.; et al. The Washing Machine as a Reservoir for Transmission of Extended-Spectrum-Beta-Lactamase (CTX-M-15)-Producing Klebsiella oxytoca ST201 to Newborns. Appl. Environ. Microbiol. 2019, 85, e01435–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, C.; Tauchnitz, S.; Kunzelmann, H.; Horn, C.; Blessing, F.; Kohl, M.; Egert, M. Quantification and identification of aerobic bacteria in holy water samples from a German environment. J. Water Health 2017, 15, 823–828. [Google Scholar] [CrossRef] [Green Version]
- Egert, M.; Späth, K.; Weik, K.; Kunzelmann, H.; Horn, C.; Kohl, M.; Blessing, F. Bacteria on smartphone touchscreens in a German university setting and evaluation of two popular cleaning methods using commercially available cleaning products. Folia Microbiol. 2015, 60, 159–164. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Cai, K.; Yu, P.; Liu, Y.; Zhao, G.; Chen, R.; Xu, R.; Yu, M. Evaluation of three sample preparation methods for the identification of clinical strains by using two MALDI-TOF MS systems. J. Mass Spectrom. 2021, 56, e4696. [Google Scholar] [CrossRef] [PubMed]
- Fritz, B.; Jenner, A.; Wahl, S.; Lappe, C.; Zehender, A.; Horn, C.; Blessing, F.; Kohl, M.; Ziemssen, F.; Egert, M. A view to a kill?—Ambient bacterial load of frames and lenses of spectacles and evaluation of different cleaning methods. PLoS ONE 2018, 13, e0207238. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2018. Available online: https://cran.r-project.org/ (accessed on 22 April 2021).
- RStudio Team. RStudio: Integrated Development for R. R Studio; PBC: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 22 April 2021).
- Wickham, H.; Sievert, C. ggplot2: Elegant Graphics for Data Analysis; Springer-Verlag: New York, NY, USA, 2016. [Google Scholar]
- Wickham, H. Reshaping Data with the reshape Package. J. Stat. Soft. 2007, 21. [Google Scholar] [CrossRef]
- Wickham, H.; Seidel, D. scales: Scale Functions for Visualization. 2018. Available online: https://www.rdocumentation.org/packages/scales (accessed on 17 April 2021).
- Stapleton, K.; Hill, K.; Day, K.; Perry, J.D.; Dean, J.R. The potential impact of washing machines on laundry malodour generation. Lett Appl Microbiol. 2013, 56, 299–306. [Google Scholar] [CrossRef]
- BAuA—German Federal Institute for Occupational Safety and Health. Technical Rule for biological agents (TRBA) # 466: Classification of Prokaryotes (Bacteria and Archaea) into Risk Groups. 2015. Available online: https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/TRBA-466.html (accessed on 9 September 2020).
- BAuA—German Federal Institute for Occupational Safety and Health. Technical Rule for Biological Agents (TRBA) #460: Classification of Fungi into Risk Groups. 2016. Available online: https://www.baua.de/DE/Angebote/Rechtstexte-und-Technische-Regeln/Regelwerk/TRBA/TRBA-460.html. (accessed on 7 April 2021).
- Lloyd, K.G.; Ladau, J.; Steen, A.D.; Yin, J.; Crosby, L. Phylogenetically Novel Uncultured Microbial Cells Dominate Earth Microbiomes. mSystems 2018, 3, e00055–18. [Google Scholar] [CrossRef] [Green Version]
- Otto, M. Staphylococcal biofilms. Curr. Top Microbiol. Immunol. 2008, 322, 207–228. [Google Scholar] [CrossRef]
- Vlamakis, H.; Chai, Y.; Beauregard, P.; Losick, R.; Kolter, R. Sticking together: Building a biofilm the Bacillus subtilis way. Nat. Rev. Microbiol. 2013, 11, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Matsuura, K.; Asano, Y.; Yamada, A.; Naruse, K. Detection of Micrococcus luteus biofilm formation in microfluidic environments by pH measurement using an ion-sensitive field-effect transistor. Sensors 2013, 13, 2484–2493. [Google Scholar] [CrossRef]
- Mann, E.E.; Wozniak, D.J. Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol. Rev. 2012, 36, 893–916. [Google Scholar] [CrossRef] [Green Version]
- Chiller, K.; Selkin, B.A.; Murakawa, G.J. Skin microflora and bacterial infections of the skin. J. Investig. Dermatol. Symp. Proc. 2001, 6, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Götz, F.; Bannerman, T.; Schleifer, K.-H. The Genera Staphylococcus and Macrococcus. In The Prokaryotes; Dworkin, M., Falkowm, S., Rosenbergm, E., Schleifer, K.-H., Stackebrandt, E., Eds.; Volume 4: Bacteria: Firmicutes, Cyanobacteria; Springer: New York, NY, USA, 2006; pp. 5–75. [Google Scholar] [CrossRef]
- Fang, Z.; Ouyang, Z.; Zheng, H.; Wang, X.; Hu, L. Culturable airborne bacteria in outdoor environments in Beijing, China. Microb. Ecol. 2007, 54, 487–496. [Google Scholar] [CrossRef]
- Kaprelyants, A.S.; Kell, D.B. Dormancy in Stationary-Phase Cultures of Micrococcus luteus: Flow Cytometric Analysis of Starvation and Resuscitation. Appl. Environ. Microbiol. 1993, 59, 3187–3196. [Google Scholar] [CrossRef] [Green Version]
- Cerca, F.; França, Â.; Pérez-Cabezas, B.; Carvalhais, V.; Ribeiro, A.; Azeredo, J.; Pier, G.; Cerca, N.; Vilanova, M. Dormant bacteria within Staphylococcus epidermidis biofilms have low inflammatory properties and maintain tolerance to vancomycin and penicillin after entering planktonic growth. J. Med. Microbiol. 2014, 63, 1274–1283. [Google Scholar] [CrossRef] [Green Version]
- Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ. Res 2018, 160, 282–291. [Google Scholar] [CrossRef]
- Kooken, J.M.; Fox, K.F.; Fox, A. Characterization of Micrococcus strains isolated from indoor air. Mol. Cell Probes. 2012, 26, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brandl, H.; Fricker-Feer, C.; Ziegler, D.; Mandal, J.; Stephan, R.; Lehner, A. Distribution and identification of culturable airborne microorganisms in a Swiss milk processing facility. J. Dairy Sci. 2014, 97, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Rehberg, L.; Frontzek, A.; Melhus, Å.; Bockmühl, D.P. Prevalence of β-lactamase genes in domestic washing machines and dishwashers and the impact of laundering processes on antibiotic-resistant bacteria. J. Appl. Microbiol. 2017, 1396–1406. [Google Scholar] [CrossRef] [PubMed]
- Boonstra, M.B.; Spijkerman, D.C.M.; Voor In ’t Holt, A.F.; van der Laan, R.J.; Bode, L.G.M.; van Vianen, W.; et al. An outbreak of ST307 extended-spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae in a rehabilitation center: An unusual source and route of transmission. Infect. Control. Hosp. Epidemiol. 2020, 41, 31–36. [Google Scholar] [CrossRef]
- Bockmühl, D.P. Laundry hygiene-how to get more than clean. J. Appl. Microbiol. 2017, 122, 1124–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velazquez, S.; Griffiths, W.; Dietz, L.; Horve, P.; Nunez, S.; Hu, J.; Shen, J.; Fretz, M.; Bi, C.; Xu, Y.; et al. From one species to another: A review on the interaction between chemistry and microbiology in relation to cleaning in the built environment. Indoor Air. 2019, 29, 880–894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latgé, J.P. Aspergillus fumigatus and aspergillosis. Clin. Microbiol. Rev. 1999, 12, 310–350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Phylum | Class | Order | Family | Genus | Species | DD | DC | RDST | RDSB |
---|---|---|---|---|---|---|---|---|---|
Actino-bacteria | Actinobacteria | Actinomycetales | Dermacoccaceae | Dermacoccus | Dermacoccus sp. | - | - | 1 | - |
Dermacoccus nishinomiyaensis | - | - | - | 1 | |||||
Corynebacteriales | Corynebacteriaceae | Coryne-bacterium | Corynebacterium sp. | - | 2 | 1 | - | ||
Corynebacterium lipophiloflavum | - | - | 1 | - | |||||
Micrococcales | Brevibacteriaceae | Brevibacterium | Brevibacterium celere | - | 1 | - | - | ||
Dermatophilaceae | Arsenicicoccus | Arsenicicoccus bolidensis | 1 | - | - | - | |||
Micrococcaceae | Kocuria | Kocuria sp. | - | 1 | 1 | 3 | |||
Kocuria rhizophila | - | 1 | 2 | 1 | |||||
Micrococcus | Micrococcus sp. | - | 10 | 3 | |||||
Micrococcus luteus | 2 | 2 | 13 | 11 | |||||
Bactero-idetes | Sphingobacteriia | Sphingomonadales | Sphingobacteriaceae | Sphingo-bacterium | Sphingobacterium spiritivorum * | 1 | - | - | - |
Firmicutes | Bacilli | Bacillales | Bacillaceae | Bacillus | Bacillus sp. | 5 | 2 | 2 | |
Bacillus cereus * | 1 | 3 | 1 | 1 | |||||
Bacillus licheniformis | - | 1 | - | - | |||||
Bacillus megaterium | 1 | - | 1 | 1 | |||||
Lysinibacillus | Lysinibacillus sp. | - | - | - | 1 | ||||
Paenibacillaceae | Paenibacillus | Paenibacillus residui | - | - | - | 1 | |||
Planococcaceae | Solibacillus | Solibacillus sp. | 1 | - | - | - | |||
Staphylococcaceae | Staphylococcus | Staphylococcus sp. | 2 | 5 | 5 | 4 | |||
Staphylococcus capitis | - | - | 1 | ||||||
Staphylococcus epidermidis * | - | 1 | - | 3 | |||||
Staphylococcus haemolyticus * | 2 | - | - | - | |||||
Staphylococcus hominis * | - | 1 | - | 1 | |||||
Staphylococcus lugdunensis * | 1 | - | - | - | |||||
Staphylococcus saprophyticus | - | - | - | 1 | |||||
Staphylococcus warneri | 1 | 2 | 3 | ||||||
Proteo-bacteria | Alphaproteobacteria | Rhizobiales | Rhizobiaceae | Rhizobium | Rhizobium radiobacter | - | 1 | - | 3 |
Rhodospirillales | Acetobacteraceae | Roseomonas | Roseomonas mucosa * | - | 2 | - | - | ||
Sphingomonadales | Sphingomonadaceae | Sphingomonas | Sphingomonas sp. | 1 | - | - | - | ||
Sphingomonas paucimobilis * | 1 | - | - | - | |||||
Sphingomonas pseudosanguinis | 1 | - | - | - | |||||
Betaproteobacteria | Burkholderiales | Alcaligenaceae | Achromobacter | Achromobacter sp. | - | - | 1 | - | |
Achromobacter mucicolens * | - | 1 | - | - | |||||
Comamonadaceae | Delftia | Delftia acidovorans | 2 | - | - | - | |||
Gammaproteobacteria | Aeromonadales | Aeromon-adaceae | Aeromonas | Aeromonas caviae * | - | - | - | 1 | |
Phylum | Class | Order | Family | Genus | Species | DD | DC | RDST | RDSB |
Proteo-bacteria | Gammaproteobacteria | Alteromonadales | Alteromonadaceae | Alishewanella | Alishewanella sp. | 1 | - | - | - |
Shewanellaceae | Shewanella | Shewanella putrefaciens * | - | - | - | 1 | |||
Enterobacteriales | Enterobacteriaceae | Citrobacter | Citrobacter freundii * | - | - | - | 1 | ||
Citrobacter gillenii * | - | - | - | 2 | |||||
Klebsiella | Klebsiella oxytoca * | - | 1 | - | 2 | ||||
Pantoea | Pantoea agglomerans * | 1 | - | - | - | ||||
Pseudomonadales | Moraxellaceae | Acinetobacter | Acinetobacter johnsonii * | 1 | - | - | - | ||
Acinetobacter lwoffii * | 1 | - | - | 1 | |||||
Acinetobacter parvus * | - | - | - | 1 | |||||
Acinetobacter ursingii * | - | - | - | 5 | |||||
Moraxella | Moraxella sp. | - | 1 | 1 | - | ||||
Moraxella osloensis * | 1 | 1 | - | 2 | |||||
Pseudomonadaceae | Pseudomonas | Pseudomonas sp. | 4 | - | - | - | |||
Pseudomonas alcaliphila | 5 | 1 | - | - | |||||
Pseudomonas oleovorans | 2 | 3 | - | 1 | |||||
Pseudomonas stutzeri | 1 | 2 | - | ||||||
Xanthomonadales | Xanthomonadaceae | Stenotro-phomonas | Stenotrophomonas maltophilia * | 1 | 1 | 1 | 1 | ||
Asco-mycota | Eurotiomycetes | Eurotiales | Trichocomaceae | Aspergillus | Aspergillus sp. | - | - | - | 1 |
Aspergillus fumigatus * | 1 | - | - | - | |||||
Saccharomycetes | Saccharomycetales | Debaryomycetaceae | Candida | Candida sp. | - | 1 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jacksch, S.; Zohra, H.; Weide, M.; Schnell, S.; Egert, M. Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines. Microorganisms 2021, 9, 905. https://doi.org/10.3390/microorganisms9050905
Jacksch S, Zohra H, Weide M, Schnell S, Egert M. Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines. Microorganisms. 2021; 9(5):905. https://doi.org/10.3390/microorganisms9050905
Chicago/Turabian StyleJacksch, Susanne, Huzefa Zohra, Mirko Weide, Sylvia Schnell, and Markus Egert. 2021. "Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines" Microorganisms 9, no. 5: 905. https://doi.org/10.3390/microorganisms9050905
APA StyleJacksch, S., Zohra, H., Weide, M., Schnell, S., & Egert, M. (2021). Cultivation-Based Quantification and Identification of Bacteria at Two Hygienic Key Sides of Domestic Washing Machines. Microorganisms, 9(5), 905. https://doi.org/10.3390/microorganisms9050905