Smells Like Teen Spirit—A Model to Generate Laundry-Associated Malodour In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Swatches
2.2. Gas Chromatography
2.3. Sensory Analysis
2.4. Statistical Analysis
2.5. Evaluation of the Reduction of Microbial Counts after a Simulated Wash Cycle (Rotawash)
3. Results
3.1. Gas Chromatograpy–Olfactometry (GC/O)
3.2. Sensory Analysis—Free Choice Profiling
3.3. Bacterial Growth and Effects of Biocides
4. Discussion
4.1. Gas Chromatograpy–Olfactometry (GC/O)
4.2. Laundry Malodour Bacteria
4.3. Sensory Analysis—Free Choice Profiling
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bockmühl, D.P.; Schages, J.; Rehberg, L. Laundry and textile hygiene in healthcare and beyond. Microb. Cell 2019, 6, 299–306. [Google Scholar] [CrossRef]
- Bockmühl, D. Laundry hygiene-how to get more than clean. J. Appl. Microbiol. 2017, 122, 1124–1133. [Google Scholar] [CrossRef] [Green Version]
- Munk, S.; Johansen, C.; Stahnke, L.H.; Adler-Nissen, J. Microbial survival and odor in laundry. J. Surfactants Deterg. 2001, 4, 385–394. [Google Scholar] [CrossRef]
- Callewaert, C.; Van Nevel, S.; Kerckhof, F.-M.; Granitsiotis, M.S.; Boon, N. Bacterial Exchange in Household Washing Machines. Front. Microbiol. 2015, 6, 1381. [Google Scholar] [CrossRef] [Green Version]
- Van Herreweghen, F.; Amberg, C.; Marques, R.; Callewaert, C. Biological and Chemical Processes that Lead to Textile Malodour Development. Microorganism 2020, 8, 1709. [Google Scholar] [CrossRef]
- Nagoh, Y.; Tobe, S.; Watanabe, T.; Mukaiyama, T. Analysis of Odorants Produced from Indoor Drying Laundries and Effects of Enzyme for Preventing Malodor Generation. Tenside Surfactants Deterg. 2005, 42, 7–12. [Google Scholar] [CrossRef]
- Takeuchi, K.; Hasegawa, Y.; Ishida, H.; Kashiwagi, M. Identification of novel malodour compounds in laundry. Flavour Fragr. J. 2011, 27, 89–94. [Google Scholar] [CrossRef]
- Kubota, H.; Mitani, A.; Niwano, Y.; Takeuchi, K.; Tanaka, A.; Yamaguchi, N.; Kawamura, Y.; Hitomi, J. Moraxella Species Are Primarily Responsible for Generating Malodor in Laundry. Appl. Environ. Microbiol. 2012, 78, 3317–3324. [Google Scholar] [CrossRef] [Green Version]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef]
- Costello, E.K.; Lauber, C.L.; Hamady, M.; Fierer, N.; Gordon, J.I.; Knight, R. Bacterial Community Variation in Human Body Habitats Across Space and Time. Science 2009, 326, 1694–1697. [Google Scholar] [CrossRef] [Green Version]
- Cundell, A.M. Microbial Ecology of the Human Skin. Microb. Ecol. 2018, 76, 113–120. [Google Scholar] [CrossRef]
- Troccaz, M.C.; Gaïa, N.; Beccucci, S.; Schrenzel, J.; Cayeux, I.; Starkenmann, C.; Lazarevic, V. Mapping axillary microbiota responsible for body odours using a culture-independent approach. Microbiome 2015, 3, 1–15. [Google Scholar] [CrossRef] [Green Version]
- James, A.G.; Austin, C.J.; Cox, D.S.; Taylor, D.; Calvert, R. Microbiological and biochemical origins of human axillary odour. FEMS Microbiol. Ecol. 2012, 83, 527–540. [Google Scholar] [CrossRef]
- Fredrich, E.; Barzantny, H.; Brune, I.; Tauch, A. Daily battle against body odor: Towards the activity of the axillary microbiota. Trends Microbiol. 2013, 21, 305–312. [Google Scholar] [CrossRef]
- Natsch, A.; Gfeller, H.; Gygax, P.; Schmid, J.; Acuna, G. A Specific Bacterial Aminoacylase Cleaves Odorant Precursors Secreted in the Human Axilla. J. Biol. Chem. 2003, 278, 5718–5727. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Seok, H.J. Populations of malodor-forming bacteria and identification of volatile components in triolein-soiled cotton fabric. Fibers Polym. 2012, 13, 740–747. [Google Scholar] [CrossRef]
- Teufel, L.; Pipal, A.; Schuster, K.; Staudinger, T.; Redl, B. Material-dependent growth of human skin bacteria on textiles investigated using challenge tests and DNA genotyping. J. Appl. Microbiol. 2010, 108, 450–461. [Google Scholar] [CrossRef]
- Hammond, C.J. Chemical composition of household malodours—An overview. Flavour Fragr. J. 2013, 28, 251–261. [Google Scholar] [CrossRef]
- Denawaka, C.J.; Fowlis, I.A.; Dean, J.R. Source, impact and removal of malodour from soiled clothing. J. Chromatogr. A 2016, 1438, 216–225. [Google Scholar] [CrossRef] [Green Version]
- Stapleton, K.; Dean, J.R. A preliminary identification and determination of characteristic volatile organic compounds from cotton, polyester and terry-towel by headspace solid phase microextraction gas chromatography–mass spectrometry. J. Chromatogr. A 2013, 1295, 147–151. [Google Scholar] [CrossRef]
- Callewaert, C.; De Maeseneire, E.; Kerckhof, F.-M.; Verliefde, A.; Van De Wiele, T.; Boon, N. Microbial Odor Profile of Polyester and Cotton Clothes after a Fitness Session. Appl. Environ. Microbiol. 2014, 80, 6611–6619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQueen, R.H.; Laing, R.M.; Brooks, H.J.L.; Niven, B.E. Odor Intensity in Apparel Fabrics and the Link with Bacterial Populations. Text. Res. J. 2007, 77, 449–456. [Google Scholar] [CrossRef]
- Honisch, M.; Stamminger, R.; Bockmühl, D. Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol. 2014, 117, 1787–1797. [Google Scholar] [CrossRef]
- Honisch, M.; Brands, B.; Weide, M.; Speckmann, H.-D.; Stamminger, R.; Bockmühl, D.P. Antimicrobial Efficacy of Laundry Detergents with Regard to Time and Temperature in Domestic Washing Machines. Tenside Surfactants Deterg. 2016, 53, 547–552. [Google Scholar] [CrossRef]
- Honisch, M.; Stamminger, R.; Bockmühl, D. Impact of Time and Temperature on the Inactivation of Microorganisms in Domestic Washing Machines. J. Appl. Microbiol. 2016, 117, 2016. [Google Scholar]
- Lucassen, R.; Merettig, N.; Bockmühl, D.P. Antimicrobial Efficacy of Hygiene Rinsers under Consumer-Related Conditions. Tenside Surfactants Deterg. 2013, 50, 259–262. [Google Scholar] [CrossRef]
- Bloomfield, S.F.; Exner, M.; Signorelli, C.; Scott, E.A. Effectiveness of Laundering Processes Used in Domestic (Home) Settings; International Scientific Forum on Home Hygiene: Somerset, UK, 2013; pp. 1–62. [Google Scholar]
- Nix, I.D.; Frontzek, A.; Bockmühl, D.P. Characterization of Microbial Communities in Household Washing Machines. Tenside Surfactants Deterg. 2015, 52, 432–440. [Google Scholar] [CrossRef]
- Payne, J.; Kudner, D. A Durable Antoodor Finish for Cotton Textiles. Text. Chem. Color. 1996, 28, 28–30. [Google Scholar]
- Linley, J.R. Laboratory tests of the effects of p-cresol and 4-methylcyclohexanol on oviposition by three species of Toxorhynchites mosquitoes. Med. Veter. Èntomol. 1989, 3, 347–352. [Google Scholar] [CrossRef]
- Hallem, E.A.; Fox, A.N.; Zwiebel, L.J.; Carlson, J.R. Mosquito receptor for human-sweat odorant. Nature 2004, 427, 212–213. [Google Scholar] [CrossRef] [PubMed]
- D-NOSES_EU. Gas Chromatography Olfactometry. 2021. Available online: https://odourobservatory.org/measuring-odour/gas-chromatography-olfactometry/ (accessed on 22 February 2021).
- Deutsches Institut für Normung. Sensorische Prüfverfahren—Einfach Beschreibende Prüfung; Deutsches Institut für Normung: Berlin, Germany, 2014. [Google Scholar]
- Lawless, H.; Klein, B. Sensory Science Theory and Applications in Foods; Dekker, M., Ed.; CRC Press: New York, NY, USA, 1991. [Google Scholar]
- Oreskovich, D.; Klein, B.; Sutherland, J. Procrustes Analysis and it‘s Application to Free-Choice and other sensory profiling. In Sensory Science Theory and Applications in Foods; Dekker, M., Ed.; CRC Press: New York, NY, USA, 1991. [Google Scholar]
- Dijksterhuis, G. Multivariate data analysis in sensory and consumer science: An overview of developments. Trends Food Sci. Technol. 1995, 6, 206–211. [Google Scholar] [CrossRef]
- Lawless, H.; Heymann, H. Sensory Evaluation of Food. Principles and Practices, 2nd ed.; Springer: New York, NY, USA, 2010. [Google Scholar]
- Narain, C.; Paterson, A.; Reid, E. Free choice and conventional profiling of commercial black filter coffees to explore consumer perceptions of character. Food Qual. Prefer. 2004, 15, 31–41. [Google Scholar] [CrossRef]
- Addinsoft. XLSTAT Statistical and Data Analysis Solution; Addinsoft: Paris, France, 2019. [Google Scholar]
- Clarke, J.; Oakes, L.; Miller, L.; Hindley, P.; McGeechan, P.; Petkov, J.; Bockmühl, D. Towards a Lab-Scale Efficacy Test Method for the Evaluation of Hygienic Laundry Rinse-Stage Disinfectants. Tenside Surfactants Deterg. 2018, 55, 410–416. [Google Scholar] [CrossRef]
- Schages, J.; Stamminger, R.; Bockmühl, D.P. A New Method to Evaluate the Antimicrobial Efficacy of Domestic Laundry Detergents. J. Surfactants Deterg. 2020, 23, 629–639. [Google Scholar] [CrossRef]
- Gattlen, J.; Amberg, C.; Zinn, M.; Mauclaire, L. Biofilms isolated from washing machines from three continents and their tolerance to a standard detergent. Biofouling 2010, 26, 873–882. [Google Scholar] [CrossRef]
- Microbiology S for G. Bacterial Genetic Pathway Involved in Body Odor Production Discovered. ScienceDaily. 2015. Available online: https://www.sciencedaily.com/releases/2015/03/150330213947.htm (accessed on 12 May 2019).
- Symrise, A.G.; (Holzminden, Germany). Persönliche Kommunikation, 2019.
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Legrum, W. Riechstoffe, Zwischen Gestank und Duft: Vorkommen, Eigenschaften und Anwendung von Riechstoffen und Deren Gemischen; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Bundeszentrale für Gesundheit und Verbraucherschutz. Bundeslebensmittelschlüssel; Bundeszentrale für Gesundheit und Verbraucherschutz: Bonn, Germany, 2019. [Google Scholar]
- Garrido-Delgado, R.; Arce, L.; Guamán, A.; Pardo, A.; Marco, S.; Valcarcel, M. Direct coupling of a gas-liquid separator to an ion mobility spectrometer for the classification of different white wines using chemometrics tools. Talanta 2011, 84, 471–479. [Google Scholar] [CrossRef]
- Zamora, D.; Alcalà, M.; Blanco, M. Determination of trace impurities in cosmetic intermediates by ion mobility spectrometry. Anal. Chim. Acta 2011, 708, 69–74. [Google Scholar] [CrossRef]
- Stapleton, K.; Hill, K.; Day, K.; Perry, J.; Dean, J. The potential impact of washing machines on laundry malodour generation. Lett. Appl. Microbiol. 2013, 56, 299–306. [Google Scholar] [CrossRef]
- Borrel, B. Why Study Pig Odor? 2009. Available online: https://www.scientificamerican.com/article/why-study-pig-odor/ (accessed on 29 July 2019).
- Mathus, T. Anaerobic biogenesis of phenol and p-cresol from ρ-tyrosine. Fuel 1995, 74, 1505–1508. [Google Scholar] [CrossRef]
- Saito, Y.; Sato, T.; Nomoto, K.; Tsuji, H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 2018, 94, fiy125. [Google Scholar] [CrossRef]
- Natsch, A.; Gfeller, H.; Gygax, P.; Schmid, J. Isolation of a bacterial enzyme releasing axillary malodor and its use as a screening target for novel deodorant formulations1. Int. J. Cosmet. Sci. 2005, 27, 115–122. [Google Scholar] [CrossRef]
- McQueen, R.H.; Laing, R.M.; Wilson, C.A.; Niven, B.E.; Delahunty, C.M. Odor Retention on Apparel Fabrics: Development of Test Methods for Sensory Detection. Text. Res. J. 2007, 77, 645–652. [Google Scholar] [CrossRef]
- Li, M.; Budding, A.E.; Van Der Lugt-Degen, M.; Du-Thumm, L.; Vandeven, M.; Fan, A. The influence of age, gender and race/ethnicity on the composition of the human axillary microbiome. Int. J. Cosmet. Sci. 2019, 41, 371–377. [Google Scholar] [CrossRef]
- Marmann, A.; Aly, A.H.; Lin, W.; Wang, B.; Proksch, P. Co-Cultivation—A Powerful Emerging Tool for Enhancing the Chemical Diversity of Microorganisms. Mar. Drugs 2014, 12, 1043–1065. [Google Scholar] [CrossRef] [Green Version]
- Knight, V.; Sanglier, J.-J.; DiTullio, D.; Braccili, S.; Bonner, P.; Waters, J.; Hughes, D.; Zhang, L. Diversifying microbial natural products for drug discovery. Appl. Microbiol. Biotechnol. 2003, 62, 446–458. [Google Scholar] [CrossRef] [PubMed]
- Brakhage, A.A.; Schuemann, J.; Bergmann, S.; Scherlach, K.; Schroeckh, V.; Hertweck, C. Activation of fungal silent gene clusters: A new avenue to drug discovery. Nat. Compd. Drugs 2008, 66, 1–12. [Google Scholar]
- Brakhage, A.A.; Schroeckh, V. Fungal secondary metabolites—Strategies to activate silent gene clusters. Fungal Genet. Biol. 2011, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Schroeckh, V.; Scherlach, K.; Nützmann, H.-W.; Shelest, E.; Schmidt-Heck, W.; Schuemann, J.; Martin, K.; Hertweck, C.; Brakhage, A.A. Intimate bacterial-fungal interaction triggers biosynthesis of archetypal polyketides in Aspergillus nidulans. Proc. Natl. Acad. Sci. USA 2009, 106, 14558–14563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ola, A.R.B.; Thomy, D.; Lai, D.; Brötz-Oesterhelt, H.; Proksch, P. Inducing Secondary Metabolite Production by the Endophytic Fungus Fusarium tricinctum through Coculture with Bacillus subtilis. J. Nat. Prod. 2013, 76, 2094–2099. [Google Scholar] [CrossRef] [PubMed]
- McQueen, R.H.; Vaezafshar, S. Odor in textiles: A review of evaluation methods, fabric characteristics, and odor control technologies. Text. Res. J. 2020, 90, 1157–1173. [Google Scholar] [CrossRef]
- Abdul-Bari, M.M.; McQueen, R.H.; De La Mata, A.P.; Batcheller, J.C.; Harynuk, J.J. Retention and release of odorants in cotton and polyester fabrics following multiple soil/wash procedures. Text. Res. J. 2020, 90, 2212–2222. [Google Scholar] [CrossRef]
- Munk, S.; Münch, P.; Stahnke, L.; Adler-Nissen, J.; Schieberle, P. Primary odorants of laundry soiled with sweat/sebum: Influence of lipase on the odor profile. J. Surfactants Deterg. 2000, 3, 505–515. [Google Scholar] [CrossRef]
- Pugliese, S.; Jespersen, M.F.; Pernov, J.B.; Shenolikar, J.; Nygaard, J.; Nielsen, O.J.; Johnson, M.S. Chemical analysis and origin of the smell of line-dried laundry. Environ. Chem. 2020, 17, 355. [Google Scholar] [CrossRef]
- Dijksterhuis, G. Procrustes Analysis in Sensory Research; Elsevie: Amsterdam, The Netherlands, 1996; Volume 16, pp. 185–219. [Google Scholar]
- Meilgaard, M.C.; Carr, B.T. Sensory Evaluation Techniques; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
Strains | Code |
---|---|
Corynebacterium jeikeium | DSM 7171, ATCC 43734 |
Micrococcus luteus | DSM 1790, ATCC 10240 |
Moraxella osloensis | DSM 6998, ATCC 19976 |
Pseudomonas aeruginosa | DSM 939, ATCC 15442 |
Staphylococcus epidermidis | DSM 1798, ATCC 12228 |
Staphylococcus hominis | DSM 20329, ATCC 27845 |
Program Step/Device Setting | Parameter |
---|---|
Oven program |
|
TDU tube |
|
Universal injector |
|
Desorption of the TDU tube |
|
Mass spectrometer |
|
Combination of Microorganisms | Abbreviation | Evaluation after Three Days | Evaluation after Seven Days |
---|---|---|---|
M. luteus + S. epidermidis + M. osloensis | MlSeMo | 0 | 1 |
M. luteus + S. epidermidis + S. hominis | MlSeSh | 0 | 3 |
M. luteus + S. epidermidis + P. aeruginosa | MlSePa | 0 | 2 |
M. luteus + S. epidermidis + C. jeikeium | MlSeCj | 0 | 2 |
M. luteus + M. osloensis + S. hominis | MlMoSh | 2 | 0 |
M. luteus + M. osloensis + P. aeruginosa | MlMoPa | 0 | 0 |
M. luteus + S. hominis + C. jeikeium | MlShCj | 3 | 3 |
M. luteus + P. aeruginosa + C. jeikeium | MlPaCj | 1 | 1 |
S. epidermidis + M. osloensis + S. hominis | SeMoSh | 2 | 1 |
S. epidermidis + M. osloensis + P. aeruginosa | SeMoPa | 2 | 2 |
S. epidermidis + M. osloensis + C. jeikeium | SeMoCj | 2 | 2 |
S. epidermidis + S. hominis + C. jeikeium | SeShCj | 1 | 2 |
S. epidermidis + P. aeruginosa + C. jeikeium | SePaCj | 1 | 1 |
M. osloensis + S. hominis + P. aeruginosa | MoShPa | 0 | 1 |
M. osloensis + P. aeruginosa + C. jeikeium | MoPaCj | 0 | 0 |
S. hominis + P. aeruginosa + C. jeikeium | ShPaCj | 0 | 0 |
M. luteus | ML | 1 | 2 |
M. osloensis | Mo | 1 | 2 |
P. aeruginosa | Pa | 0 | 0 |
C. jeikeium | Cj | 0 | 0 |
S. hominis | Sh | 0 | 0 |
S. epidermidis | Se | 0 | 0 |
Control | 0 | 1 |
Sample | Microbial Count (cfu/cm2) |
---|---|
MlShCj before incubation | 4.15 × 107 |
MlShCj after incubation | 1.04 × 108 |
Control (beef tallow only) | 0 |
Retention Time (min) | Identified Substance | Intensity | Odour Description |
---|---|---|---|
2.62 | n.A. | 1 | fatty, waxy |
3.67 | n.A. | 1 | mouldy |
4.07 | Dimethyl Disulphide | 1 | cabbage |
5.88 | n.A. | 1 | acidic, penetrative |
6.61 | n.A. | 1 | acidic, mouldy |
7.65 | n.A. | 1 | acidic, waxy |
8.19 | Dimethyl Trisulphide | 1 | mouldy, cabbage |
8.86 | n.A. | 3 | mouldy, fatty, rotten |
10.02 | n.A. | 2 | fatty, meaty, metalic |
10.48 | n.A. | 2 | fatty, green, cucumber, aldehyde |
12.89 | n.A. | 1 | fatty, meaty |
14.72 | n.A. | 1 | animalic, scratchy, urine |
15.12 | n.A. | 3 | acidic, fatty, wet fabric malodour |
17.07 | n.A. | 1 | roasted, caramel |
17.72 | p-Cresol | 2 | animalic, urine |
17.98 | n.A. | 1 | powdery, scratchy |
18.49 | n.A. | 1 | acidic, fatty |
18.90 | n.A. | 2 | technical, phenolic |
21.85 | Indole | 4 | technical Indole |
22.31 | n.A. | 3 | phenolic, technical, like Indole |
23.23 | n.A. | 2 | technical, acidic |
23.62 | n.A. | 1 | sweet, phenylic, honey, fruity |
26.78 | n.A. | 2 | phenolic, smokey, burnt |
26.96 | n.A. | 2 | phenolic, smokey, burnt |
28.60 | n.A. | 2 | mouldy, acidic |
Sample | Dimethyl Disulphide (%) | Dimethyl Trisulfide (%) | Indole (%) |
---|---|---|---|
MlShCj | 0.36 | 0.10 | 0.24 |
MlSeCj | 0.08 | 0.00 | 0.17 |
SeMoPa | 0.07 | 0.00 | 0.56 |
MlSeSh | 0.04 | 0.01 | 0.12 |
SeShCj | 0.06 | 0.00 | 0.07 |
MoShPa | 0.03 | 0.00 | 0.23 |
Ml | 0.05 | 0.01 | 0.13 |
Mo | 0.02 | 0.00 | 0.03 |
SeMoCj | 0.04 | 0.02 | 0.15 |
ShPaCj | 0.02 | 0.00 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinn, M.-K.; Singer, M.; Bockmühl, D. Smells Like Teen Spirit—A Model to Generate Laundry-Associated Malodour In Vitro. Microorganisms 2021, 9, 974. https://doi.org/10.3390/microorganisms9050974
Zinn M-K, Singer M, Bockmühl D. Smells Like Teen Spirit—A Model to Generate Laundry-Associated Malodour In Vitro. Microorganisms. 2021; 9(5):974. https://doi.org/10.3390/microorganisms9050974
Chicago/Turabian StyleZinn, Marc-Kevin, Marco Singer, and Dirk Bockmühl. 2021. "Smells Like Teen Spirit—A Model to Generate Laundry-Associated Malodour In Vitro" Microorganisms 9, no. 5: 974. https://doi.org/10.3390/microorganisms9050974
APA StyleZinn, M. -K., Singer, M., & Bockmühl, D. (2021). Smells Like Teen Spirit—A Model to Generate Laundry-Associated Malodour In Vitro. Microorganisms, 9(5), 974. https://doi.org/10.3390/microorganisms9050974