Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands
Abstract
:1. Introduction
2. Common Roots of Research from Legionella Field-Based Studies
2.1. Main Research Topics
Target of Research | Main Findings | References |
---|---|---|
LegionellaWidespread | High Legionella prevalence regardless of the water system | [45,46,56,57,63,67,68,69] |
Legionella incidence seems to be seasonal dependent | [64,69,71,73] | |
Microbial Control Strategies | Chemical Disinfection Programs shape bacterial communities and reduce Legionella positivities (chlorination, chloramine, chlorine dioxide, copper-silver ionization, hydrogen peroxide and silver salts, NEOW) | [51,52,54,56,61,62,66,72,73,79,80,81] |
Effective temperature control reduces Legionella incidence | [60,70,82] | |
Water stagnation vs. water flushing | [48,59,65,71,78,83] | |
Microbiome and Bacterial Communities | Bacterial communities—antagonists or promoters of Legionella persistence | [51,55,56,58,74,76] |
Protozoa and biofilm niches for Legionella growth | [60,70,72,74,75,76,77] |
2.1.1. Legionella Widespread
High Legionella Prevalence Regardless of the Water System
Legionella Incidence Seems to Be Seasonal Dependent
2.1.2. Microbial Control Strategies
Chemical Disinfection Programs Shape Bacterial Communities and Reduce Legionella Positivities
Effective Temperature Control Reduces Legionella Incidence
Water Stagnation vs. Water Flushing
2.1.3. Microbiome and Bacterial Communities
Bacterial Communities—Antagonists or Promoters of Legionella Persistence
Protozoa and Biofilm Niches for Legionella Growth
2.2. Field-Based Studies’ Added-Value and Opportunities
3. Key Topics That Need to Be Tackled for Effective Legionella Real-Field Prevention
3.1. Legionella a Case of Resilience
3.2. The Ecological Niches of Legionella—Protozoa and Biofilms
3.3. Bottlenecks of Real-Field Legionella Control
3.4. The Scientific Perpetuation of a Water Legionella-Sampling Approach
3.5. Online Biofilm Monitoring—An Unmet Need or an Unexplored Solution?
4. New Pathways to Build an Integrated and Effective Legionella Surveillance Strategy in Water Systems
4.1. An Integrated Monitoring Physical Model for Legionella Study and Control in Real Systems
- 1st Set of Information: Water—Discrete Sampling
- 2nd Set of Information: Water—Continuous Monitoring
- 3rd Set of Information: Biofilm—Online Monitoring
- 4th Set of Information: Biofilm—Discrete Sampling
4.2. Representativeness—Worst Case Scenario Conditions
4.3. Final Disclaimer
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hughes, E.D.; Swanson, M.S. How Legionella Defend Their Turf. eLife 2019, 8, e48695. [Google Scholar] [CrossRef] [PubMed]
- Abu, A.K.; Amer, A.O. Factors Mediating Environmental Biofilm Formation by Legionella Pneumophila. Front. Cell. Infect. Microbiol. 2018, 8, 38. [Google Scholar] [CrossRef]
- Alarcon Falconi, T.M.; Cruz, M.S.; Naumova, E.N. The Shift in Seasonality of Legionellosis in the USA. Epidemiol. Infect. 2018, 146, 1824–1833. [Google Scholar] [CrossRef] [Green Version]
- Beauté, J. Legionnaires’ Disease in Europe, 2011 to 2015. Eurosurveillance 2017, 22, 1–8. [Google Scholar] [CrossRef] [Green Version]
- European Centre for Disease Prevention and Control. Legionnaires’ Disease—ECDC Annual Epidemiological Report for 2018; ECDC: Stockholm, Sweden, 2020.
- Barskey, A.; Lackraj, D.; Tripathi, P.S.; Cooley, L.; Lee, S.; Smith, J.; Edens, C. Legionnaires’ Disease Surveillance Summary Report, United States: 2016–2017; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2020.
- Shah, P.; Barskey, A.; Binder, A.; Edens, C.; Lee, S.; Smith, J.; Schrag, S.; Whitney, C.; Cooley, L. Legionnaires’ Disease Surveillance Summary Report, United States, 2014–2015; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019.
- Buse, H.Y.; Schoen, M.E.; Ashbolt, N.J. Legionellae in Engineered Systems and Use of Quantitative Microbial Risk Assessment to Predict Exposure. Water Res. 2012, 46, 921–933. [Google Scholar] [CrossRef]
- McClung, R.P.; Roth, D.M.; Vigar, M.; Roberts, V.A.; Kahler, A.M.; Cooley, L.A.; Hilborn, E.D.; Wade, T.J.; Fullerton, K.E.; Yoder, J.S. Waterborne Disease Outbreaks Associated with Environmental and Undetermined Exposures to Water—United States, 2013–2014. MMWR Morb. Mortal. Wkly. Rep. 2017, 66, 1222. [Google Scholar] [CrossRef] [Green Version]
- Whiley, H. Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. Int. J. Environ. Res. Public Health 2016, 14, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, F.F.; Hales, S.; White, P.S.; Baker, M.G. Review Global Seroprevalence of Legionellosis—A Systematic Review and Meta-Analysis. Sci. Rep. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Parr, A.; Whitney, E.A.; Berkelman, R.L. Legionellosis on the Rise: A Review of Guidelines for Prevention in the United States. J. Public Health Manag. Pract. 2015, 21, E17–E26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirschner, A.K.T. Determination of Viable Legionellae in Engineered Water Systems: Do We Find What We Are Looking For? Water Res. 2016, 93, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Koubar, M.; Rodier, M.-H.; Frere, J. Involvement of Minerals in Adherence of Legionella Pneumophila to Surfaces. Curr. Microbiol. 2013, 66, 437–442. [Google Scholar] [CrossRef]
- United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision; Highlights (ST/ESA/SER.A/352); United Nations: New York, NY, USA, 2014. [Google Scholar]
- Voulvoulis, N. Water Reuse from a Circular Economy Perspective and Potential Risks from an Unregulated Approach. Curr. Opin. Environ. Sci. Heal. 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Walker, J.T. The Influence of Climate Change on Waterborne Disease and Legionella: A Review. Perspect. Public Health 2018, 138, 282–286. [Google Scholar] [CrossRef]
- Passer, J.K.; Danila, R.N.; Laine, E.S.; Como-Sabetti, K.J.; Tang, W.; Searle, K.M. The Association between Sporadic Legionnaires’ Disease and Weather and Environmental Factors, Minnesota, 2011–2018. Epidemiol. Infect. 2020, 148, e156. [Google Scholar] [CrossRef] [PubMed]
- Hicks, L.A.; Rose, C.; Fields, B.; Drees, M.; Engel, J.; Jenkins, P.; Rouse, B.; Blythe, D.; Khalifah, A.P.; Feikin, D.; et al. Increased Rainfall Is Associated with Increased Risk for Legionellosis. Epidemiol. Infect. 2007, 135, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Borella, P.; Guerrieri, E.; Marchesi, I.; Bondi, M.; Messi, P. Water Ecology of Legionella and Protozoan: Environmental and Public Health Perspectives; Elsevier: Amsterdam, The Netherlands, 2005; Volume 11, pp. 355–380. ISBN 1387-2656. [Google Scholar]
- Ricketts, K.D.; Joseph, C.; Lee, J.; Wewalka, G. Survey on Legislation Regarding Wet Cooling Systems in European Countries. Euro Surveill. 2008, 13, 18982. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.S.; Benson, R.F.; Besser, R.E. Legionella and Legionnaires’ Disease: 25 Years of Investigation. Clin. Microbiol. Rev. 2002, 15, 506–526. [Google Scholar] [CrossRef] [Green Version]
- Bartram, J.; Chartier, Y.; Lee, J.V.; Bond, K.; Surman-Lee, S. Legionella and the Prevention of Legionellosis; Geneva World Health Organization: Geneva, Switzerland, 2007; Volume 14. [Google Scholar] [CrossRef]
- ECDC. European Technical Guidelines for the Prevention, Control and Investigation, of Infections Caused by Legionella Species. Available online: https://www.ecdc.europa.eu/sites/portal/files/documents/Legionella%20GuidelinesFinal%20updated%20for%20ECDC%20corrections.pdf (accessed on 7 April 2021).
- National Academies of Sciences, Engineering and Medicine. Management of Legionella in Water Systems; The National Academies Press: Washington, DC, USA, 2020; ISBN 978-0-309-49947-7. [Google Scholar]
- European Union. Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. 2020. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 27 May 2021).
- Bentham, R.H. Routine Sampling and the Control of Legionella spp. In Cooling Tower Water Systems. Curr. Microbiol. 2000, 41, 271–275. [Google Scholar] [CrossRef]
- Collins, S.; Walker, J. Comments on Whiley Legionella Risk Management and Control in Potable Water Systems: Argument for the Abolishment of Routine Testing. Int. J. Environ. Res. Public Health 2017, 14, 12. Int. J. Environ. Res. Public Health 2017, 14, 102. [Google Scholar] [CrossRef] [Green Version]
- Young, C.; Smith, D.; Wafer, T.; Crook, B. Rapid Testing and Interventions to Control Legionella Proliferation Following a Legionnaires’ Disease Outbreak Associated with Cooling Towers. Microorganisms 2021, 9, 615. [Google Scholar] [CrossRef]
- Lau, H.Y.; Ashbolt, N.J. The Role of Biofilms and Protozoa in Legionella Pathogenesis: Implications for Drinking Water. J. Appl. Microbiol. 2009, 107, 368–378. [Google Scholar] [CrossRef]
- Declerck, P. Biofilms: The Environmental Playground of Legionella Pneumophila. Environ. Microbiol. 2010, 12, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Azeredo, J.; Azevedo, N.F.; Briandet, R.; Cerca, N.; Coenye, T.; Costa, A.R.; Desvaux, M.; Di Bonaventura, G.; Hébraud, M.; Jaglic, Z.; et al. Critical Review on Biofilm Methods. Crit. Rev. Microbiol. 2017, 43, 313–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coenye, T.; Kjellerup, B.; Stoodley, P.; Bjarnsholt, T. The Future of Biofilm Research—Report on the ‘2019 Biofilm Bash’. Biofilm 2020, 2, 100012. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.C. Role and Levels of Real-Time Monitoring for Successful Anti-Fouling Strategies-an Overview. Water Sci. Technol. 2003, 47, 1–8. [Google Scholar] [CrossRef]
- Nisar, M.A.; Ross, K.E.; Brown, M.H.; Bentham, R.; Whiley, H. Legionella Pneumophila and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems. Pathogens 2020, 9, 286. [Google Scholar] [CrossRef]
- Sabria, M.; Alvarez, J.; Dominguez, A.; Pedrol, A.; Sauca, G.; Salleras, L.; Lopez, A.; Garcia-Nuñez, M.A.; Parron, I.; Barrufet, M.P. A Community Outbreak of Legionnaires’ Disease: Evidence of a Cooling Tower as the Source. Clin. Microbiol. Infect. 2006, 12, 642–647. [Google Scholar] [CrossRef] [Green Version]
- Weiss, D.; Boyd, C.; Rakeman, J.L.; Greene, S.K.; Fitzhenry, R.; McProud, T.; Musser, K.; Huang, L.; Kornblum, J.; Nazarian, E.J.; et al. A Large Community Outbreak of Legionnaires’ Disease Associated With a Cooling Tower in New York City, 2015. Public Health Rep. 2017, 132, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.F.; Huss, A.; Dorevitch, S.; Heijnen, L.; Arntzen, V.H.; Davies, M.; van Beest Holle, M.R.-D.R.; Fujita, Y.; Verschoor, A.M.; Raterman, B.; et al. Multiple Sources of the Outbreak of Legionnaires’ Disease in Genesee County, Michigan, in 2014 and 2015. Environ. Health Perspect. 2019, 127, 127001. [Google Scholar] [CrossRef] [Green Version]
- Tercelj-Zorman, M.; Seljak, M.; Stare, J.; Mencinger, J.; Rakovec, J.; Rylander, R.; Strle, F. A Hospital Outbreak of Legionella from a Contaminated Water Supply. Arch. Environ. Health 2004, 59, 156–159. [Google Scholar] [CrossRef] [PubMed]
- Hlavsa, M.C.; Cikesh, B.L.; Roberts, V.A.; Kahler, A.M.; Vigar, M.; Hilborn, E.D.; Wade, T.J.; Roellig, D.M.; Murphy, J.L.; Xiao, L.; et al. Outbreaks Associated with Treated Recreational Water—United States, 2000–2014. MMWR. Morb. Mortal. Wkly. Rep. 2018, 67, 547–551. [Google Scholar] [CrossRef]
- Erdoğan, H.; Arslan, H. Evaluation of a Legionella outbreak emerged in a recently opening hotel. Mikrobiyol. Bul. 2013, 47, 240–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linsak, D.T.; Kese, D.; Broznic, D.; Lusic, D.V.; Cenov, A.; Moric, M.; Gobin, I. Sea Water Whirlpool Spa as a Source of Legionella Infection. J. Water Health 2021. [Google Scholar] [CrossRef]
- Benkel, D.H.; McClure, E.M.; Woolard, D.; Rullan, J.V.; Miller, G.B., Jr.; Jenkins, S.R.; Hershey, J.H.; Benson, R.F.; Pruckler, J.M.; Brown, E.W.; et al. Outbreak of Legionnaires’ Disease Associated with a Display Whirlpool Spa. Int. J. Epidemiol. 2000, 29, 1092–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.W.; Hsu, B.M.; Wu, S.F.; Fan, C.W.; Shih, F.C.; Lin, Y.C.; Ji, D. Der Water Quality Parameters Associated with Prevalence of Legionella in Hot Spring Facility Water Bodies. Water Res. 2010, 44, 4805–4811. [Google Scholar] [CrossRef] [PubMed]
- Kyritsi, M.A.; Mouchtouri, V.A.; Katsioulis, A.; Kostara, E.; Nakoulas, V.; Hatzinikou, M.; Hadjichristodoulou, C. Legionella Colonization of Hotel Water Systems in Touristic Places of Greece: Association with System Characteristics and Physicochemical Parameters. Int. J. Environ. Res. Public Health 2018, 15, 2707. [Google Scholar] [CrossRef] [Green Version]
- Mapili, K.; Pieper, K.J.; Dai, D.; Pruden, A.; Edwards, M.A.; Tang, M.; Rhoads, W.J. Legionella Pneumophila Occurrence in Drinking Water Supplied by Private Wells. Lett. Appl. Microbiol. 2020, 70, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Völker, S.; Schreiber, C.; Kistemann, T. Modelling Characteristics to Predict Legionella Contamination Risk—Surveillance of Drinking Water Plumbing Systems and Identification of Risk Areas. Int. J. Hyg. Environ. Health 2016, 219, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Totaro, M.; Mariotti, T.; Bisordi, C.; De Vita, E.; Valentini, P.; Costa, A.L.; Casini, B.; Privitera, G.; Baggiani, A. Evaluation of Legionella Pneumophila Decrease in Hot Water Network of Four Hospital Buildings after Installation of Electron Time Flow Taps. Water 2020, 12, 210. [Google Scholar] [CrossRef] [Green Version]
- Assaidi, A.; Ellouali, M.; Latrache, H.; Zahir, H.; Karoumi, A.; Mliji, E.M. Chlorine Disinfection against Legionella Pneumophila Biofilms. J. Water Sanit. Hyg. Dev. 2020, 10, 885–893. [Google Scholar] [CrossRef]
- Paniagua, A.T.; Paranjape, K.; Hu, M.; Bédard, E.; Faucher, S.P. Impact of Temperature on Legionella Pneumophila, Its Protozoan Host Cells, and the Microbial Diversity of the Biofilm Community of a Pilot Cooling Tower. Sci. Total Environ. 2020, 712, 136131. [Google Scholar] [CrossRef]
- Paduano, S.; Marchesi, I.; Casali, M.E.; Valeriani, F.; Frezza, G.; Vecchi, E.; Sircana, L.; Romano Spica, V.; Borella, P.; Bargellini, A. Characterisation of Microbial Community Associated with Different Disinfection Treatments in Hospital Hot Water Networks. Int. J. Environ. Res. Public Health 2020, 17, 2158. [Google Scholar] [CrossRef] [Green Version]
- Lytle, D.A.; Pfaller, S.; Muhlen, C.; Struewing, I.; Triantafyllidou, S.; White, C.; Hayes, S.; King, D.; Lu, J. A Comprehensive Evaluation of Monochloramine Disinfection on Water Quality, Legionella and Other Important Microorganisms in a Hospital. Water Res. 2021, 189, 116656. [Google Scholar] [CrossRef]
- Cervero-Aragó, S.; Schrammel, B.; Dietersdorfer, E.; Sommer, R.; Lück, C.; Walochnik, J.; Kirschner, A. Viability and Infectivity of Viable but Nonculturable Legionella Pneumophila Strains Induced at High Temperatures. Water Res. 2019, 158, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Coniglio, M.A.; Ferrante, M.; Yassin, M.H. Preventing Healthcare-Associated Legionellosis: Results after 3 Years of Continuous Disinfection of Hot Water with Monochloramine and an Effective Water Safety Plan. Int. J. Environ. Res. Public Health 2018, 15, 1594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paranjape, K.; Bédard, É.; Shetty, D.; Hu, M.; Choon, F.C.P.; Prévost, M.; Faucher, S.P. Unravelling the Importance of the Eukaryotic and Bacterial Communities and Their Relationship with Legionella Spp. Ecology in Cooling Towers: A Complex Network. Microbiome 2020, 8, 157. [Google Scholar] [CrossRef]
- Paranjape, K.; Bédard, É.; Whyte, L.G.; Ronholm, J.; Prévost, M.; Faucher, S.P. Presence of Legionella Spp. in Cooling Towers: The Role of Microbial Diversity, Pseudomonas, and Continuous Chlorine Application. Water Res. 2020, 169. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, A.C.; Lucas, C.E.; Roberts, S.E.; Brown, E.W.; Nayak, B.S.; Raphael, B.H.; Winchell, J.M. Distribution of Legionella and Bacterial Community Composition among Regionally Diverse US Cooling Towers. PLoS ONE 2017, 12, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, W.; Mao, Y.; Li, Q.Y.; Meng, D.; Chen, L.; Wang, H.; Zhu, R.; Zhang, W.X. Prevalence of Opportunistic Pathogens and Diversity of Microbial Communities in the Water System of a Pulmonary Hospital. Biomed. Environ. Sci. 2020, 33, 248–259. [Google Scholar] [CrossRef] [PubMed]
- De Giglio, O.; Diella, G.; Lopuzzo, M.; Triggiano, F.; Calia, C.; Pousis, C.; Fasano, F.; Caggiano, G.; Calabrese, G.; Rafaschieri, V.; et al. Impact of Lockdown on the Microbiological Status of the Hospital Water Network during COVID-19 Pandemic. Environ. Res. 2020, 191, 110231. [Google Scholar] [CrossRef]
- Quero, S.; Párraga-Niño, N.; Garcia-Núñez, M.; Pedro-Botet, M.L.; Gavaldà, L.; Mateu, L.; Sabrià, M.; Mòdol, J.M. The Impact of Pipeline Changes and Temperature Increase in a Hospital Historically Colonised with Legionella. Sci. Rep. 2021, 11, 1916. [Google Scholar] [CrossRef]
- Vincenti, S.; de Waure, C.; Raponi, M.; Teleman, A.A.; Boninti, F.; Bruno, S.; Boccia, S.; Damiani, G.; Laurenti, P. Environmental Surveillance of Legionella Spp. Colonization in the Water System of a Large Academic Hospital: Analysis of the Four–Year Results on the Effectiveness of the Chlorine Dioxide Disinfection Method. Sci. Total Environ. 2019, 657, 248–253. [Google Scholar] [CrossRef]
- Marchesi, I.; Paduano, S.; Frezza, G.; Sircana, L.; Vecchi, E.; Zuccarello, P.; Conti, G.; Ferrante, M.; Bargellini, A. Safety and Effectiveness of Monochloramine Treatment for Disinfecting Hospital Water Networks. Int. J. Environ. Res. Public Health 2020, 17, 6116. [Google Scholar] [CrossRef] [PubMed]
- Laganà, P.; Facciolà, A.; Palermo, R.; Delia, S. Environmental Surveillance of Legionellosis within an Italian University Hospital—Results of 15 Years of Analysis. Int. J. Environ. Res. Public Health 2019, 16, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdalla, A.; Saidan, M.; Al-Alami, N.; Al-Naimat, H. Comparative Assessment of Legionella Pneumophila Prevalence among Hospitals and Hotels Water Systems. Desalin. Water Treat. 2020, 193, 432–441. [Google Scholar] [CrossRef]
- Totaro, M.; Valentini, P.; Costa, A.L.; Giorgi, S.; Casini, B.; Baggiani, A. Rate of Legionella Pneumophila Colonization in Hospital Hot Water Network after Time Flow Taps Installation. J. Hosp. Infect. 2018, 98, 60–63. [Google Scholar] [CrossRef] [PubMed]
- Bonetta, S.; Pignata, C.; Bonetta, S.; Meucci, L.; Giacosa, D.; Marino, E.; Gorrasi, I.; Gilli, G.; Carraro, E. Effectiveness of a Neutral Electrolysed Oxidising Water (NEOW) Device in Reducing Legionella Pneumophila in a Water Distribution System: A Comparison between Culture, QPCR and PMA-QPCR Detection Methods. Chemosphere 2018, 210, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Yakunin, E.; Kostyal, E.; Agmon, V.; Grotto, I.; Valinsky, L.; Moran-Gilad, J. A Snapshot of the Prevalence and Molecular Diversity of Legionella Pneumophila in the Water Systems of Israeli Hotels. Pathogens 2020, 9, 414. [Google Scholar] [CrossRef]
- Papadakis, A.; Chochlakis, D.; Sandalakis, V.; Keramarou, M.; Tselentis, Y.; Psaroulaki, A. Legionella Spp. Risk Assessment in Recreational and Garden Areas of Hotels. Int. J. Environ. Res. Public Health 2018, 15, 598. [Google Scholar] [CrossRef] [Green Version]
- De Giglio, O.; Fasano, F.; Diella, G.; Lopuzzo, M.; Napoli, C.; Apollonio, F.; Brigida, S.; Calia, C.; Campanale, C.; Marzella, A.; et al. Legionella and Legionellosis in Touristic-Recreational Facilities: Influence of Climate Factors and Geostatistical Analysis in Southern Italy (2001–2017). Environ. Res. 2019, 178, 108721. [Google Scholar] [CrossRef]
- De Filippis, P.; Mozzetti, C.; Messina, A.; D’Alò, G.L. Prevalence of Legionella in Retirement Homes and Group Homes Water Distribution Systems. Sci. Total Environ. 2018, 643, 715–724. [Google Scholar] [CrossRef]
- Ley, C.J.; Proctor, C.R.; Singh, G.; Ra, K.; Noh, Y.; Odimayomi, T.; Salehi, M.; Julien, R.; Mitchell, J.; Nejadhashemi, A.P.; et al. Drinking Water Microbiology in a Water-Efficient Building: Stagnation, Seasonality, and Physicochemical Effects on Opportunistic Pathogen and Total Bacteria Proliferation. Environ. Sci. Water Res. Technol. 2020, 6, 2902–2913. [Google Scholar] [CrossRef]
- Waak, M.B.; LaPara, T.M.; Hallé, C.; Hozalski, R.M. Occurrence of Legionella Spp. in Water-Main Biofilms from Two Drinking Water Distribution Systems. Environ. Sci. Technol. 2018, 52, 7630–7639. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xing, X.; Hu, C.; Wang, H. One-Year Survey of Opportunistic Premise Plumbing Pathogens and Free-Living Amoebae in the Tap-Water of One Northern City of China. J. Environ. Sci. 2019, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, S.; Tang, W.; Yang, Y.; Zhao, J.; Xia, S.; Zhang, W.; Wang, H. Influence of Secondary Water Supply Systems on Microbial Community Structure and Opportunistic Pathogen Gene Markers. Water Res. 2018, 136, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Gomes, T.S.; Vaccaro, L.; Magnet, A.; Izquierdo, F.; Ollero, D.; Martínez-Fernández, C.; Mayo, L.; Moran, M.; Pozuelo, M.J.; Fenoy, S.; et al. Presence and Interaction of Free-Living Amoebae and Amoeba-Resisting Bacteria in Water from Drinking Water Treatment Plants. Sci. Total Environ. 2020, 719, 137080. [Google Scholar] [CrossRef] [PubMed]
- Garner, E.; McLain, J.; Bowers, J.; Engelthaler, D.M.; Edwards, M.A.; Pruden, A. Microbial Ecology and Water Chemistry Impact Regrowth of Opportunistic Pathogens in Full-Scale Reclaimed Water Distribution Systems. Environ. Sci. Technol. 2018, 52, 9056–9068. [Google Scholar] [CrossRef]
- Moreno, Y.; Moreno-Mesonero, L.; García-Hernández, J. DVC-FISH to Identify Potentially Pathogenic Legionella inside Free-Living Amoebae from Water Sources. Environ. Res. 2019, 176, 108521. [Google Scholar] [CrossRef]
- Hozalski, R.M.; LaPara, T.M.; Zhao, X.; Kim, T.; Waak, M.B.; Burch, T.; McCarty, M. Flushing of Stagnant Premise Water Systems after the COVID-19 Shutdown Can Reduce Infection Risk by Legionella and Mycobacterium Spp. Environ. Sci. Technol. 2020, 54, 15914–15924. [Google Scholar] [CrossRef]
- Girolamini, L.; Dormi, A.; Pellati, T.; Somaroli, P.; Montanari, D.; Costa, A.; Savelli, F.; Martelli, A.; Grottola, A.; Fregni Serpini, G.; et al. Advances in Legionella Control by a New Formulation of Hydrogen Peroxide and Silver Salts in a Hospital Hot Water Network. Pathogens 2019, 8, 209. [Google Scholar] [CrossRef] [Green Version]
- Cloutman-Green, E.; Barbosa, V.L.; Jimenez, D.; Wong, D.; Dunn, H.; Needham, B.; Ciric, L.; Hartley, J.C. Controlling Legionella Pneumophila in Water Systems at Reduced Hot Water Temperatures with Copper and Silver Ionization. Am. J. Infect. Control. 2019, 47, 761–766. [Google Scholar] [CrossRef] [Green Version]
- LeChevallier, M.W. Occurrence of Culturable Legionella Pneumophila in Drinking Water Distribution Systems. AWWA Water Sci. 2019, 1, e1139. [Google Scholar] [CrossRef] [Green Version]
- Gavaldà, L.; Garcia-Nuñez, M.; Quero, S.; Gutierrez-Milla, C.; Sabrià, M. Role of Hot Water Temperature and Water System Use on Legionella Control in a Tertiary Hospital: An 8-Year Longitudinal Study. Water Res. 2019, 149, 460–466. [Google Scholar] [CrossRef]
- Xue, J.; Zhang, B.; Lamori, J.; Shah, K.; Zabaleta, J.; Garai, J.; Taylor, C.M.; Sherchan, S.P. Molecular Detection of Opportunistic Pathogens and Insights into Microbial Diversity in Private Well Water and Premise Plumbing. J. Water Health 2020, 18, 820–834. [Google Scholar] [CrossRef] [PubMed]
- Bentham, R.H. Environmental Factors Affecting the Colonization of Cooling Towers by Legionella Spp. in South Australia. Int. Biodeterior. Biodegrad. 1993, 31, 55–63. [Google Scholar] [CrossRef]
- Carlson, K.M.; Boczek, L.A.; Chae, S.; Ryu, H. Legionellosis and Recent Advances in Technologies for Legionella Control in Premise Plumbing Systems: A Review. Water 2020, 12, 676. [Google Scholar] [CrossRef] [Green Version]
- Mouchtouri, V.A.; Goutziana, G.; Kremastinou, J.; Hadjichristodoulou, C. Legionella Species Colonization in Cooling Towers: Risk Factors and Assessment of Control Measures. Am. J. Infect. Control. 2010, 38, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Shuval, H.; Yarom, R.; Shenman, R. An Innovative Method for the Control of Legionella Infections in the Hospital Hot Water Systems with a Stabilized Hydrogen Peroxide-Silver Formulation. Int. J. Infect. Control. 2009, 5. [Google Scholar] [CrossRef]
- Guentzel, J.L.; Lam, K.L.; Callan, M.A.; Emmons, S.A.; Dunham, V.L. Reduction of Bacteria on Spinach, Lettuce, and Surfaces in Food Service Areas Using Neutral Electrolyzed Oxidizing Water. Food Microbiol. 2008, 25, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Machado, I.; Meireles, A.; Fulgêncio, R.; Mergulhão, F.; Simões, M.; Melo, L.F. Disinfection with Neutral Electrolyzed Oxidizing Water to Reduce Microbial Load and to Prevent Biofilm Regrowth in the Processing of Fresh-Cut Vegetables. Food Bioprod. Process. 2016, 98, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Cossali, G.; Routledge, E.J.; Ratcliffe, M.S.; Blakes, H.; Fielder, J.E.; Karayiannis, T.G. Inactivation of E. Coli, Legionella, and Pseudomonas in Tap Water Using Electrochemical Disinfection. J. Environ. Eng. 2016, 142, 4016063. [Google Scholar] [CrossRef]
- Meireles, A.; Ferreira, C.; Melo, L.; Simões, M. Comparative Stability and Efficacy of Selected Chlorine-Based Biocides against Escherichia Coli in Planktonic and Biofilm States. Food Res. Int. 2017, 102, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Farhat, M.; Trouilhé, M.-C.; Briand, E.; Moletta-Denat, M.; Robine, E.; Frère, J. Development of a Pilot-Scale 1 for Legionella Elimination in Biofilm in Hot Water Network: Heat Shock Treatment Evaluation. J. Appl. Microbiol. 2010, 108, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Rhoads, W.J.; Hammes, F. Growth of Legionella during COVID-19 Lockdown Stagnation. Environ. Sci. Water Res. Technol. 2021, 7, 10–15. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Technologies for Legionella Control in Premise Plumbing Systems: Scientific Literature Review; United States Environmental Protection Agency Office of Water: Washington, DC, USA, 2016; p. 139.
- Berjeaud, J.-M.; Chevalier, S.; Schlusselhuber, M.; Portier, E.; Loiseau, C.; Aucher, W.; Lesouhaitier, O.; Verdon, J. Legionella Pneumophila: The Paradox of a Highly Sensitive Opportunistic Waterborne Pathogen Able to Persist in the Environment. Front. Microbiol. 2016, 7, 486. [Google Scholar] [CrossRef] [Green Version]
- Amaro, F.; Wang, W.; Gilbert, J.A.; Roger Anderson, O.; Shuman, H.A. Diverse Protist Grazers Select for Virulence-Related Traits in Legionella. ISME J. 2015, 9, 1607–1618. [Google Scholar] [CrossRef] [PubMed]
- Richardson, I.R. The Incidence of Bdellovibrio Spp. in Man-Made Water Systems: Coexistence with Legionellas. J. Appl. Bacteriol. 1990, 69, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Stewart, C.R.; Muthye, V.; Cianciotto, N.P. Legionella Pneumophila Persists within Biofilms Formed by Klebsiella Pneumoniae, Flavobacterium Sp., and Pseudomonas Fluorescens under Dynamic Flow Conditions. PLoS ONE 2012, 7, e50560. [Google Scholar] [CrossRef] [Green Version]
- Toze, S.; Sly, L.I.; MacRae, I.C.; Fuerst, J.A. Inhibition of Growth of Legionella Species by Heterotrophic Plate Count Bacteria Isolated from Chlorinated Drinking Water. Curr. Microbiol. 1990, 21, 139–143. [Google Scholar] [CrossRef]
- Atlas, R.M. Legionella: From Environmental Habitats to Disease Pathology, Detection and Control. Environ. Microbiol. 1999, 1, 283–293. [Google Scholar] [CrossRef]
- Taylor, M.; Ross, K.; Bentham, R. Legionella, Protozoa, and Biofilms: Interactions within Complex Microbial Systems. Microb. Ecol. 2009, 58, 538–547. [Google Scholar] [CrossRef]
- Xue, Z.; Lee, W.H.; Coburn, K.M.; Seo, Y. Selective Reactivity of Monochloramine with Extracellular Matrix Components Affects the Disinfection of Biofilm and Detached Clusters. Environ. Sci. Technol. 2014, 48, 3832–3839. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Nour, M.; Duncan, C.; Low, D.E.; Guyard, C. Biofilms: The Stronghold of Legionella pneumophila. Int. J. Mol. Sci. 2013, 14, 21660–21675. [Google Scholar] [CrossRef] [Green Version]
- Surman, S.; Mortin, G.; Keevil, C.W.; Fitzgeorge, R. Legionella pneumophila Proliferation Is Not Dependent on Intracellular Replication. In Legionella; Marre, R., Kwaik, Y.A., Bartlett, C., Cianciotto, N.P., Fields, B.S., Frosch, M., Hacker, J., Lück, P.C., Eds.; American Society of Microbiology: Washington, DC, USA, 2002; pp. 86–89. [Google Scholar]
- Schrammel, B.; Cervero-Aragó, S.; Dietersdorfer, E.; Walochnik, J.; Lück, C.; Sommer, R.; Kirschner, A. Differential Development of Legionella Sub-Populations during Short- and Long-Term Starvation. Water Res. 2018, 141, 417–427. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.B. Legionella Biofilms: Their Implications, Study and Control. Biofilms Recent Adv. Study Control. 2000, 17, 291–310. [Google Scholar]
- Surman, S.B.; Morton, L.H.G.; Keevil, C.W. The Dependence of Legionella Pneumophila on Other Aquatic Bacteria for Survival on R2A Medium. Int. Biodeterior. Biodegrad. 1994, 33, 223–236. [Google Scholar] [CrossRef]
- Alleron, L.; Merlet, N.; Lacombe, C.; Frère, J. Long-Term Survival of Legionella Pneumophila in the Viable but Nonculturable State after Monochloramine Treatment. Curr. Microbiol. 2008, 57, 497–502. [Google Scholar] [CrossRef]
- Epalle, T.; Girardot, F.; Allegra, S.; Maurice-Blanc, C.; Garraud, O.; Riffard, S. Viable but Not Culturable Forms of Legionella Pneumophila Generated After Heat Shock Treatment Are Infectious for Macrophage-Like and Alveolar Epithelial Cells After Resuscitation on Acanthamoeba Polyphaga. Microb. Ecol. 2014, 69, 215–224. [Google Scholar] [CrossRef]
- Shaheen, M.; Scott, C.; Ashbolt, N.J. Long-Term Persistence of Infectious Legionella with Free-Living Amoebae in Drinking Water Biofilms. Int. J. Hyg. Environ. Health 2019, 222, 678–686. [Google Scholar] [CrossRef]
- Dietersdorfer, E.; Kirschner, A.; Schrammel, B.; Ohradanova-Repic, A.; Stockinger, H.; Sommer, R.; Walochnik, J.; Cervero-Aragó, S. Starved Viable but Non-Culturable (VBNC) Legionella Strains Can Infect and Replicate in Amoebae and Human Macrophages. Water Res. 2018, 141, 428–438. [Google Scholar] [CrossRef]
- Declerck, P.; Behets, J.; Delaedt, Y.; Margineanu, A.; Lammertyn, E.; Ollevier, F. Impact of Non-Legionella Bacteria on the Uptake and Intracellular Replication of Legionella Pneumophila in Acanthamoeba Castellanii and Naegleria Lovaniensis. Microb. Ecol. 2005, 50, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Oliva, G.; Sahr, T.; Buchrieser, C. The Life Cycle of L. Pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism. Front. Cell. Infect. Microbiol. 2018, 8, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, M.S.; Hammer, B.K. Legionella Pneumophila Pathogenesis: A Fateful Journey from Amoebae to Macrophages. Annu. Rev. Microbiol. 2000, 54, 567–613. [Google Scholar] [CrossRef] [PubMed]
- Ashbolt, N.J. Environmental (Saprozoic) Pathogens of Engineered Water Systems: Understanding Their Ecology for Risk Assessment and Management. Pathogens 2015, 4, 390–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogers, J.; Keevil, C.W. Immunogold and Fluorescein Immunolabelling of Legionella Pneumophila within an Aquatic Biofilm Visualized by Using Episcopic Differential Interference Contrast Microscopy. Appl. Environ. Microbiol. 1992, 58, 2326–2330. [Google Scholar] [CrossRef] [Green Version]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef]
- Bott, T.R. Industrial Biofouling; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 0080932606. [Google Scholar]
- Flemming, H.-C.; Wingender, J.; Griegbe, T.; Mayer, C. Physico-Chemical Properties of Biofilms. In Biofilms Recent Advances in their Study and Control; Harwood Academic Publishers: Amsterdam, The Netherland, 2000; Volume 2000, pp. 19–34. [Google Scholar]
- Watnick, P.; Kolter, R. Biofilm, City of Microbes. J. Bacteriol. 2000, 182, 2675–2679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melo, L.F.; Bott, T.R. Biofouling in Water Systems. Exp. Therm. Fluid Sci. 1997, 14, 375–381. [Google Scholar] [CrossRef] [Green Version]
- Coetser, S.E.; Cloete, T.E. Biofouling and Biocorrosion in Industrial Water Systems. Crit. Rev. Microbiol. 2005, 31, 213–232. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.-C.C.; Percival, S.L.; Walker, J.T. Contamination Potential of Biofilms in Water Distribution Systems. Water Sci. Technol. Water Supply 2002, 2, 271–280. [Google Scholar] [CrossRef]
- Arndt, H.; Schmidt-Denter, K.; Auer, B.; Weitere, M. Protozoans and Biofilms. In Fossil and Recent Biofilms, A Natural History of Life on Earth; Springer: Dordrecht, The Netherlands, 2003; pp. 173–189. ISBN 978-90-481-6412-7. [Google Scholar]
- Murga, R.; Forster, T.S.; Brown, E.; Pruckler, J.M.; Fields, B.S.; Donlan, R.M. Role of Biofilms in the Survival of Legionella Pneumophila in a Model Potable-Water System. Microbiology 2001, 147, 3121–3126. [Google Scholar] [CrossRef] [Green Version]
- Declerck, P.; Behets, J.; Margineanu, A.; van Hoef, V.; De Keersmaecker, B.; Ollevier, F. Replication of Legionella Pneumophila in Biofilms of Water Distribution Pipes. Microbiol. Res. 2009, 164, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Van der Kooij, D.; Bakker, G.L.; Italiaander, R.; Veenendaal, H.R.; Wullings, B.A. Biofilm Composition and Threshold Concentration for Growth of Legionella Pneumophila on Surfaces Exposed to Flowing Warm Tap Water without Disinfectant. Appl. Environ. Microbiol. 2017, 83. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, M.W.; Wullings, B.A.; Akkermans, A.D.L.; Beumer, R.R.; Van Der Kooij, D. Intracellular Proliferation of Legionella Pneumophila in Hartmannella Vermiformis in Aquatic Biofilms Grown on Plasticized Polyvinyl Chloride. Appl. Environ. Microbiol. 2004, 70, 6826–6833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadowsky, R.M.; Yee, R.B. Satellite Growth of Legionella Pneumophila with an Environmental Isolate of Flavobacterium Breve. Appl. Environ. Microbiol. 1983, 46, 1447–1449. [Google Scholar] [CrossRef] [Green Version]
- Boudarel, H.; Mathias, J.D.; Blaysat, B.; Grédiac, M. Towards Standardized Mechanical Characterization of Microbial Biofilms: Analysis and Critical Review. NPJ Biofilm. Microbiom. 2018, 4. [Google Scholar] [CrossRef]
- Gião, M.S.; Wilks, S.; Azevedo, N.F.; Vieira, M.J.; Keevil, C.W. Incorporation of Natural Uncultivable Legionella Pneumophila into Potable Water Biofilms Provides a Protective Niche against Chlorination Stress. Biofouling 2009, 25, 335–341. [Google Scholar] [CrossRef]
- Wright, J.B.; Ruseska, I.; Costerton, J.W. Decreased Biocide Susceptibility of Adherent Legionella Pneumophila. J. Appl. Bacteriol. 1991, 71, 531–538. [Google Scholar] [CrossRef]
- Donlan, R.M.; Costerton, J.W. Biofilms: Survival Mechanisms of Clinically Relevant Microorganisms. Clin. Microbiol. Rev. 2002, 15, 167–193. [Google Scholar] [CrossRef] [Green Version]
- Bridier, A.; Briandet, R.; Thomas, V.; Dubois-Brissonnet, F. Resistance of Bacterial Biofilms to Disinfectants: A Review. Biofouling 2011, 27, 1017–1032. [Google Scholar] [CrossRef] [PubMed]
- McCoy, W.F.; Downes, E.L.; Leonidas, L.F.; Cain, M.F.; Sherman, D.L.; Chen, K.; Devender, S.; Neville, M.J. Inaccuracy in Legionella Tests of Building Water Systems Due to Sample Holding Time. Water Res. 2012, 46, 3497–3506. [Google Scholar] [CrossRef]
- Flemming, H.-C. Microbial Biofouling: Unsolved Problems, Insufficient Approaches, and Possible Solutions. In Biofilm Highlights; Springer: Berlin/Heidelberg, Germany, 2011; Volume 5, pp. 81–110. ISBN 978-3-642-19939-4. [Google Scholar]
- Bonadonna, L.; Briancesco, R.; Libera, S.D.; Lacchetti, I.; Paradiso, R.; Semproni, M. Microbial Characterization of Water and Biofilms in Drinking Water Distribution Systems at Sport Facilities. Cent. Eur. J. Public Health 2009, 17, 99–102. [Google Scholar] [CrossRef]
- Kirschner, A.K.T.; Rameder, A.; Schrammel, B.; Indra, A.; Farnleitner, A.H.; Sommer, R. Development of a New CARD-FISH Protocol for Quantification of Legionella Pneumophila and Its Application in Two Hospital Cooling Towers. J. Appl. Microbiol. 2012, 112, 1244–1256. [Google Scholar] [CrossRef]
- Collins, S.; Stevenson, D.; Walker, J.; Bennett, A. Evaluation of Legionella Real-Time PCR against Traditional Culture for Routine and Public Health Testing of Water Samples. J. Appl. Microbiol. 2017, 122, 1692–1703. [Google Scholar] [CrossRef] [PubMed]
- Fisher, K.E.; Wickenberg, L.P.; Leonidas, L.F.; Ranz, A.A.; Habib, M.A.; Buford, R.M.; McCoy, W.F. Next Day Legionella PCR: A Highly Reliable Negative Screen for Legionella in the Built Environment. J. Water Health 2020, 18, 345–357. [Google Scholar] [CrossRef] [PubMed]
- Olabarria, G.; Eletxigerra, U.; Rodriguez, I.; Bilbao, A.; Berganza, J.; Merino, S. Highly Sensitive and Fast Legionella Spp. in Situ Detection Based on a Loop Mediated Isothermal Amplification Technique Combined to an Electrochemical Transduction System. Talanta 2020, 217, 121061. [Google Scholar] [CrossRef] [PubMed]
- Strathmann, M.; Mittenzwey, K.-H.; Sinn, G.; Papadakis, W.; Flemming, H.-C. Simultaneous Monitoring of Biofilm Growth, Microbial Activity, and Inorganic Deposits on Surfaces with an in Situ, Online, Real-Time, Non-Destructive, Optical Sensor. Biofouling 2013, 29, 573–583. [Google Scholar] [CrossRef] [PubMed]
- Janknecht, P.; Melo, L.F. Online Biofilm Monitoring. Rev. Environ. Sci. Biotechnol. 2003, 2, 269–283. [Google Scholar] [CrossRef] [Green Version]
- Nivens, D.E.; Palmer, R.J.; White, D.C. Continuous Nondestructive Monitoring of Microbial Biofilms: A Review of Analytical Techniques. J. Ind. Microbiol. 1995, 15, 263–276. [Google Scholar] [CrossRef]
- Flemming, H.C. Biofouling and Me: My Stockholm Syndrome with Biofilms. Water Res. 2020, 173, 115576. [Google Scholar] [CrossRef]
- Walker, J.T.; McDermott, P. Confirming the Presence of Legionella Pneumophila in Your Water System: A Review of Current Legionella Testing Methods. J. AOAC Int. 2021. [Google Scholar] [CrossRef] [PubMed]
- LeChevallier, M.W. Guidance on Developing a Legionella Pneumophila Monitoring Program for Utility Distribution Systems. Health. Educ. Public. Health 2021, 4, 369–376. [Google Scholar]
- Shaheen, M.; Ashbolt, N.J. Differential Bacterial Predation by Free-Living Amoebae May Result in Blooms of Legionella in Drinking Water Systems. Microorganisms 2021, 9, 174. [Google Scholar] [CrossRef] [PubMed]
- Valster, R.M.; Wullings, B.A.; van der Kooij, D. Detection of Protozoan Hosts for Legionella Pneumophila in Engineered Water Systems by Using a Biofilm Batch Test. Appl. Environ. Microbiol. 2010, 76, 7144–7153. [Google Scholar] [CrossRef] [Green Version]
- Cunliffe, D.; Bartram, J.; Briand, E.; Chartier, Y.; Colbourne, J.; Drury, D.; Lee, J.; Schaefer, B.; Surman-Lee, S. Water Safety in Buildings; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Whiley, H.; Hinds, J.; Xi, J.; Bentham, R. Real-Time Continuous Surveillance of Temperature and Flow Events Presents a Novel Monitoring Approach for Hospital and Healthcare Water Distribution Systems. Int. J. Environ. Res. Public Health 2019, 16, 1332. [Google Scholar] [CrossRef] [Green Version]
- Flemming, H.-C.; Griebe, T.; Schaule, G. Antifouling Strategies in Technical Systems—A Short Review. Water Sci. Technol. 1996, 34, 517–524. [Google Scholar] [CrossRef]
- Pereira, A.; Melo, L.F.; Martins, J.; Freire, M. Fouling and Cleaning Monitoring Using the MSS—Industrial Perspective. In Proceedings of the Heat exchangers fouling and cleaning, Schladming, Austria, 14–19 June 2009. [Google Scholar]
- Pereira, A.; Mendes, J.; Melo, L.F. Using Nanovibrations to Monitor Biofouling. Biotechnol. Bioeng. 2008, 99, 1407–1415. [Google Scholar] [CrossRef] [PubMed]
- Pavanello, G.; Faimali, M.; Pittore, M.; Mollica, A.; Mollica, A.; Mollica, A. Exploiting a New Electrochemical Sensor for Biofilm Monitoring and Water Treatment Optimization. Water Res. 2011, 45, 1651–1658. [Google Scholar] [CrossRef]
- Bierganns, P.; Beardwood, E. A New and Novel Abiotic-Biotic Fouling Sensor for Aqueous Systems. In Proceedings of the Heat Exchanger Fouling and Cleaning, Aranjuez, Spain, 11–16 June 2017. [Google Scholar]
- Gomes, I.B.; Simões, M.; Simões, L.C. An Overview on the Reactors to Study Drinking Water Biofilms. Water Res. 2014, 62, 63–87. [Google Scholar] [CrossRef] [Green Version]
- Deines, P.; Sekar, R.; Husband, P.S.; Boxall, J.B.; Osborn, A.M.; Biggs, C.A. A New Coupon Design for Simultaneous Analysis of in Situ Microbial Biofilm Formation and Community Structure in Drinking Water Distribution Systems. Appl. Microbiol. Biotechnol. 2010, 87, 749–756. [Google Scholar] [CrossRef]
- Pereira, M.O.; Vieira, M.J.; Beleza, V.M.; Melo, L.F. Comparison of Two Biocides—Carbamate and Glutaraldehyde—In the Control of Fouling in Pulp and Paper Industry. Environ. Technol. 2001, 22, 781–790. [Google Scholar] [CrossRef] [PubMed]
- Teodósio, J.S.; Silva, F.C.; Moreira, J.M.R.; Simões, M.; Melo, L.F.; Alves, M.A.; Mergulhão, F.J. Flow Cells as Quasi-Ideal Systems for Biofouling Simulation of Industrial Piping Systems. Biofouling 2013, 29, 953–966. [Google Scholar] [CrossRef] [PubMed]
- Ginige, M.P.; Garbin, S.; Wylie, J.; Krishna, K.C.B. Effectiveness of Devices to Monitor Biofouling and Metals Deposition on Plumbing Materials Exposed to a Full-Scale Drinking Water Distribution System. PLoS ONE 2017, 12, e0169140. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, S.; Stewart, P.S.; Hozalski, R.M. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned? Microbiol. Insights 2016, 8, 29–32. [Google Scholar] [CrossRef]
- Picioreanu, C.; van Loosdrecht, M.; Heijnen, S. Modelling and Predicting Biofilm Structure; Cambridge University Press: Cambridge, UK, 1999; pp. 129–166. ISBN 9780521793025. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, A.; Silva, A.R.; Melo, L.F. Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms 2021, 9, 1212. https://doi.org/10.3390/microorganisms9061212
Pereira A, Silva AR, Melo LF. Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms. 2021; 9(6):1212. https://doi.org/10.3390/microorganisms9061212
Chicago/Turabian StylePereira, Ana, Ana Rosa Silva, and Luis F. Melo. 2021. "Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands" Microorganisms 9, no. 6: 1212. https://doi.org/10.3390/microorganisms9061212
APA StylePereira, A., Silva, A. R., & Melo, L. F. (2021). Legionella and Biofilms—Integrated Surveillance to Bridge Science and Real-Field Demands. Microorganisms, 9(6), 1212. https://doi.org/10.3390/microorganisms9061212