Friends with Benefits: An Inside Look of Periodontal Microbes’ Interactions Using Fluorescence In Situ Hybridization—Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Focused Question
2.2. Search Strategy and Information Sources
2.3. Eligibility Criteria
2.4. Screening and Selection of Sources of Evidence
2.5. Data Extraction and Analysis
2.6. Synthesis of Results
3. Results
3.1. Selection of Sources of Evidence
3.2. Characteristics of Sources of Evidence
4. Discussion
4.1. Summary of Evidence
4.2. Microbes’ Herd Mentality Behavior
4.3. Limitations
5. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vartoukian, S.R.; Palmer, R.M.; Wade, W.G. Diversity and morphology of members of the phylum “synergistetes” in periodontal health and disease. Appl. Environ. Microbiol. 2009, 75, 3777–3786. [Google Scholar] [CrossRef] [Green Version]
- Bostanci, N.; Bao, K.; Greenwood, D.; Silbereisen, A.; Belibasakis, G.N. Periodontal disease: From the lenses of light microscopy to the specs of proteomics and next-generation sequencing. In Advances in Clinical Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; Volume 93, pp. 263–290. [Google Scholar]
- Schlafer, S.; Riep, B.; Griffen, A.L.; Petrich, A.; Hübner, J.; Berning, M.; Friedmann, A.; Göbel, U.B.; Moter, A. Filifactor alocis—Involvement in periodontal biofilms. BMC Microbiol. 2010, 10, 66. [Google Scholar] [CrossRef] [Green Version]
- Curtis, M.A.; Diaz, P.I.; Van Dyke, T.E. The role of the microbiota in periodontal disease. Periodontology 2000 2020, 83, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Mendes, L.; Rocha, R.; Azevedo, A.S.; Ferreira, C.; Henriques, M.; Pinto, M.G.; Azevedo, N.F. Novel strategy to detect and locate periodontal pathogens: The PNA-FISH technique. Microbiol. Res. 2016, 192, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Hajishengallis, G.; Lamont, R.J. Beyond the red complex and into more complexity: The polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. Mol. Oral Microbiol. 2012, 27, 409–419. [Google Scholar] [CrossRef] [Green Version]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A New Classification Scheme for Periodontal and Peri-Implant Diseases and Conditions—Introduction and Key Changes from the 1999 Classification; Wiley Online Library: Hoboken, NJ, USA, 2018. [Google Scholar]
- Sanz, M.; Marco del Castillo, A.; Jepsen, S.; Gonzalez-Juanatey, J.R.; D’Aiuto, F.; Bouchard, P.; Chapple, I.; Dietrich, T.; Gotsman, I.; Graziani, F. Periodontitis and cardiovascular diseases: Consensus report. J. Clin. Periodontol. 2020, 47, 268–288. [Google Scholar] [CrossRef]
- Escapa, I.F.; Chen, T.; Huang, Y.; Gajare, P.; Dewhirst, F.E.; Lemon, K.P. New insights into human nostril microbiome from the expanded human oral microbiome database (eHOMD): A resource for the microbiome of the human aerodigestive tract. Msystems 2018, 3, e00187-18. [Google Scholar] [CrossRef] [Green Version]
- Moter, A.; Göbel, U.B. Fluorescence In Situ Hybridization (FISH) for Direct Visualization of Microorganisms; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Levsky, J.M.; Singer, R.H. Fluorescence in situ hybridization: Past, present and future. J. Cell Sci. 2003, 116, 2833–2838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azevedo, A.S.; Sousa, I.M.; Fernandes, R.M.; Azevedo, N.F.; Almeida, C. Optimizing locked nucleic acid/2′-O-methyl-RNA fluorescence in situ hybridization (LNA/2′OMe-FISH) procedure for bacterial detection. PLoS ONE 2019, 14, e0217689. [Google Scholar] [CrossRef]
- Dickinson, M.; Bearman, G.; Tille, S.; Lansford, R.; Fraser, S. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. Biotechniques 2001, 31, 1272–1278. [Google Scholar] [CrossRef]
- Valm, A.M.; Welch, J.L.M.; Borisy, G.G. CLASI-FISH: Principles of combinatorial labeling and spectral imaging. Syst. Appl. Microbiol. 2012, 35, 496–502. [Google Scholar] [CrossRef] [Green Version]
- Valm, A.M.; Welch, J.L.M.; Rieken, C.W.; Hasegawa, Y.; Sogin, M.L.; Oldenbourg, R.; Dewhirst, F.E.; Borisy, G.G. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl. Acad. Sci. USA 2011, 108, 4152–4157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valm, A.M.; Oldenbourg, R.; Borisy, G.G. Multiplexed spectral imaging of 120 different fluorescent labels. PLoS ONE 2016, 11, e0158495. [Google Scholar]
- Tricco, A.C.; Lillie, E.; Zarin, W.; O’Brien, K.K.; Colquhoun, H.; Levac, D.; Moher, D.; Peters, M.D.; Horsley, T.; Weeks, L. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann. Intern. Med. 2018, 169, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Mark Welch, J.L.; Rossetti, B.J.; Rieken, C.W.; Dewhirst, F.E.; Borisy, G.G. Biogeography of a human oral microbiome at the micron scale. Proc. Natl. Acad. Sci. USA 2016, 113, E791–E800. [Google Scholar] [CrossRef] [Green Version]
- Gmür, R.; Lüthi-Schaller, H. A combined immunofluorescence and fluorescent in situ hybridization assay for single cell analyses of dental plaque microorganisms. J. Microbiol. Methods 2007, 69, 402–405. [Google Scholar] [CrossRef] [PubMed]
- Machado, F.C.; Cesar, D.E.; Assis, A.V.; Diniz, C.G.; Ribeiro, R.A. Detection and enumeration of periodontopathogenic bacteria in subgingival biofilm of pregnant women. Braz. Oral Res. 2012, 26, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Gmür, R.; Wyss, C.; Xue, Y.; Thurnheer, T.; Guggenheim, B. Gingival crevice microbiota from Chinese patients with gingivitis or necrotizing ulcerative gingivitis. Eur. J. Oral Sci. 2004, 112, 33–41. [Google Scholar] [CrossRef]
- Lepp, P.W.; Brinig, M.M.; Ouverney, C.C.; Palm, K.; Armitage, G.C.; Relman, D.A. Methanogenic Archaea and human periodontal disease. Proc. Natl. Acad. Sci. USA 2004, 101, 6176–6181. [Google Scholar] [CrossRef] [Green Version]
- Drescher, J.; Schlafer, S.; Schaudinn, C.; Riep, B.; Neumann, K.; Friedmann, A.; Petrich, A.; Göbel, U.B.; Moter, A. Molecular epidemiology and spatial distribution of Selenomonas spp. in subgingival biofilms. Eur. J. Oral Sci. 2010, 118, 466–474. [Google Scholar] [CrossRef] [PubMed]
- Moter, A.; Hoenig, C.; Choi, B.-K.; Riep, B.; Göbel, U.B. Molecular epidemiology of oral treponemes associated with periodontal disease. J. Clin. Microbiol. 1998, 36, 1399–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wecke, J.; Kersten, T.; Madela, K.; Moter, A.; Göbel, U.B.; Friedmann, A.; Bernimoulin, J. A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol. Lett. 2000, 191, 95–101. [Google Scholar] [CrossRef]
- Zijnge, V.; van Leeuwen, M.B.; Degener, J.E.; Abbas, F.; Thurnheer, T.; Gmür, R.; Harmsen, H.J. Oral biofilm architecture on natural teeth. PLoS ONE 2010, 5, e9321. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; He, J.; Xue, J.; Wang, Y.; Li, K.; Zhang, K.; Guo, Q.; Liu, X.; Zhou, Y.; Cheng, L. Oral cavity contains distinct niches with dynamic microbial communities. Environ. Microbiol. 2015, 17, 699–710. [Google Scholar] [CrossRef]
- Bik, E.M.; Long, C.D.; Armitage, G.C.; Loomer, P.; Emerson, J.; Mongodin, E.F.; Nelson, K.E.; Gill, S.R.; Fraser-Liggett, C.M.; Relman, D.A. Bacterial diversity in the oral cavity of 10 healthy individuals. ISME J. 2010, 4, 962–974. [Google Scholar] [CrossRef]
- Ge, X.; Rodriguez, R.; Trinh, M.; Gunsolley, J.; Xu, P. Oral microbiome of deep and shallow dental pockets in chronic periodontitis. PLoS ONE 2013, 8, e65520. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; He, J.; He, Z.; Zhou, Y.; Yuan, M.; Xu, X.; Sun, F.; Liu, C.; Li, J.; Xie, W. Phylogenetic and functional gene structure shifts of the oral microbiomes in periodontitis patients. ISME J. 2014, 8, 1879–1891. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.; Andes, D.R.; Krysan, D.J. Candida–streptococcal interactions in biofilm-associated oral diseases. PLoS Pathog. 2018, 14, e1007342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valm, A.M. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J. Mol. Biol. 2019, 431, 2957–2969. [Google Scholar] [CrossRef]
- Jakubovics, N.S. Saliva as the sole nutritional source in the development of multispecies communities in dental plaque. Metab. Bact. Pathog. 2015, 263–277. [Google Scholar] [CrossRef]
- Chawhuaveang, D.D.; Yu, O.Y.; Yin, I.X.; Lam, W.Y.-H.; Mei, M.L.; Chu, C.-H. Acquired salivary pellicle and oral diseases: A literature review. J. Dent. Sci. 2020, 16, 523–529. [Google Scholar] [CrossRef]
- Katharios-Lanwermeyer, S.; Xi, C.; Jakubovics, N.; Rickard, A. Mini-review: Microbial coaggregation: Ubiquity and implications for biofilm development. Biofouling 2014, 30, 1235–1251. [Google Scholar] [CrossRef]
- Borisy, G.G.; Valm, A.M. Spatial scale in analysis of the dental plaque microbiome. Periodontology 2000 2021, 86, 97–112. [Google Scholar] [CrossRef]
- Socransky, S.; Haffajee, A.; Cugini, M.; Smith, C.; Kent, R., Jr. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 1998, 25, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Vielkind, P.; Jentsch, H.; Eschrich, K.; Rodloff, A.C.; Stingu, C.-S. Prevalence of Actinomyces spp. in patients with chronic periodontitis. Int. J. Med Microbiol. 2015, 305, 682–688. [Google Scholar] [CrossRef]
- Takahashi, N.; Yamada, T. Glucose and lactate metabolism by Actinomyces naeslundii. Crit. Rev. Oral Biol. Med. 1999, 10, 487–503. [Google Scholar] [CrossRef] [PubMed]
- Palmer, R.J., Jr.; Gordon, S.M.; Cisar, J.O.; Kolenbrander, P.E. Coaggregation-mediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 2003, 185, 3400–3409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, P.; Valm, A. Microbial interactions in oral communities mediate emergent biofilm properties. J. Dent. Res. 2020, 99, 18–25. [Google Scholar] [CrossRef]
- Marsh, P.D. Are dental diseases examples of ecological catastrophes? Microbiology 2003, 149, 279–294. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S74–S84. [Google Scholar] [CrossRef] [PubMed]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S173–S182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jepsen, S.; Caton, J.G.; Albandar, J.M.; Bissada, N.F.; Bouchard, P.; Cortellini, P.; Demirel, K.; de Sanctis, M.; Ercoli, C.; Fan, J. Periodontal manifestations of systemic diseases and developmental and acquired conditions: Consensus report of workgroup 3 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45, S219–S229. [Google Scholar] [CrossRef] [PubMed]
- Berglundh, T.; Armitage, G.; Araujo, M.G.; Avila-Ortiz, G.; Blanco, J.; Camargo, P.M.; Chen, S.; Cochran, D.; Derks, J.; Figuero, E. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S313–S318. [Google Scholar] [CrossRef]
- Fine, D.H.; Patil, A.G.; Loos, B.G. Classification and diagnosis of aggressive periodontitis. J. Clin. Periodontol. 2018, 45, S95–S111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Case Series (6) | |||||||
Authors (Year) | Sample | Exclusion Criteria | Cases | Aim | |||
Characteristics | n | ||||||
Wecke, J., et al. (2000) | Subgingival | Chronic diseases; antimicrobial therapy within the past 6 months | PPD means of 8.07 ± 1.63 mm | 52 | Assess the frequency and spatial organization of specific treponemes in RPP | ||
Gmür, R., et al. (2004) | Supragingival | Chronic diseases; Antimicrobial therapy within the past 3 months | Gingival pain, gingival ulcers or necrosis, pseudomembranes, fetid odor, loss of gingival papillae, PPD ≤ 4 mm, having at least 20 natural teeth, BOP, and plaque index | 42 | Compare the distribution of periodontal pathogens in gingivitis and NUG | ||
Gmür, R. and Lüthi-Schaller, H. (2007) | Subgingival | NAI | Patients with ACP | NAI | Develop an IF-FISH protocol | ||
Schlafer, S., et al. (2010) | Subgingival | Chronic diseases; Antimicrobial/anti-inflammatory therapy within the past 6 months; pregnant or lactating women | GAP: having a disease onset estimated at <30 years and PPD ≥ 6 mm at more than 3 permanent teeth (other than first molars or incisors) | 11 | Study the architectural function of Filifactor alocis in GAP | ||
Zjinge, V., et al. (2010) | Supra- and subgingival | Chronic diseases; antimicrobial therapy within the past 3 months | PPD > 6 mm RBL > 30% | 10 | Study the biofilm architecture of predominant periodontal taxa | ||
Mark Welch, J.L., et al. (2016) | Supragingival | Subjects suffering from chronic diseases | Subjects refrained from oral hygiene for 12 to 48 h before sample collection | 22 | |||
Case-Control Studies (3) | |||||||
Authors (Year) | Sample | Exclusion Criteria | Cases | Controls | Aim | ||
Characteristics | n | Characteristics | n | ||||
Moter, A., et al. (1998) | Subgingival | Chronic diseases; antimicrobial/anti-inflammatory therapy within the past 6 months | PPD ≥ 6 mm BOP | 200 | Site clinically not affected | 44 | Assess the frequency of specific treponemes in RPP |
Lepp, P.W., et al. (2004) | Subgingival | Chronic diseases; antimicrobial therapy within the past 3 months; pregnant or lactating women; diabetes or HIV-positive | Gingivitis (BOP; CAL ≤ 1 mm; PPD ≤ 4 mm); Slight periodontitis (BOP; CAL 2–3 mm; PPD ≥ 4 mm); Moderate periodontitis (BOP; CAL 4–5 mm; PPD ≥ 4 mm); Severe periodontitis (BOP; CAL ≥ 6 mm; PPD ≥ 4 mm) | 167 | Healthy (BOP; CAL ≤ 1 mm; PPD ≤ 3 mm) | 67 | Identify populations of Archaea in periodontal pockets |
Drescher, J., et al. (2010) | Subgingival | Chronic diseases; antimicrobial/anti-inflammatory therapy within the past 6 months; pregnant or lactating women | GAP: having a disease onset estimated at <30 years and PPD ≥ 6 mm at more than 3 permanent teeth (other than first molars or incisors); CP: PPD of ≥4 mm at 30% or more of the residual teeth | 144 | PR subjects: (age ≥ 65 years; at least 20 natural teeth; CAL ≤ 2 mm; PPD ≤ 5 mm) | 19 | Study the spatial organization of Selenomonas sp. in GAP |
Cross-Sectional Study (1) | |||||||
Authors (Year) | Sample | Exclusion Criteria | Subjects’ Condition | n | Aim | ||
Machado, F.C., et al. (2012) | Subgingival | Chronic diseases; antimicrobial/psychotropic/anticonvulsant therapy within the past 3 months; professional tooth-cleaning in the previous 6 months or were receiving orthodontic treatment | Pregnant | 20 | Study the qualitative/quantitative differences of eight periodontal pathogens | ||
Non-pregnant | 20 |
Authors (Year) | Site | Microorganisms | Shape and Spatial Organization of Microorganisms | Relevant Interactions | Microscopic Technique |
---|---|---|---|---|---|
Moter, A., et al. (1998) | SUBG | Group I of oral treponemes | Large and dense | These organisms are present in high proportions in subgingival plaque samples and thus represent the predominant flora. Group I treponemes outnumbered group II treponemes. All the treponemes identified predominated at diseased sites but were found infrequently at periodontally stable sites | Dark-field |
Group II of oral treponemes | Thin, slender, wavily | ||||
Wecke, J., et al. (2000) | SUBG | Group I of oral treponemes | Large and undulated | Treponemes appeared spread between Gram-negative bacteria in the deepest parts of the periodontal pockets. Gram-positive cocci were located on the most coronal section of the specimens | CLSM |
Bacteria | Rods and coccoid | ||||
Lepp, P.W., et al. (2004) | SUBG | Methanobrevibacter oralis | Diplococcobacilli | Treponemal rDNA was found in significantly lower abundance in sites with archaeal rDNA than in sites without archaeal rDNA | CLSM |
Gmür, R., et al. (2004) | SUPG | Leptotrichia buccalis | Wide and segmented fusiform rods | There was a significantly increased total abundance of periodontal pathogens in the NUG group compared with the gingivitis group | Dark-field |
Indistinguishable Fusobacterium nucleatum, Capnocytophaga sp., and Fusobacterium periodonticum | Smaller, thin, spindle-shaped, and dotted fusiform rods | ||||
Gmür, R. and Lüthi-Schaller, H. (2007) | SUBG | Tannerella forsythia | Clumps | Tannerella forsythia was detected in the deepest zones of the periodontal pockets | Epifluorescence |
Drescher, J., et al. (2010) | SUBG | Selenomonas sp. | Densely packed groups with a crescent-shaped structure from the cervical section to the biofilm portion derived from the pocket’s depth and both on the side facing the tooth and the side facing the soft tissue | These genera appeared spatially related and tangled with each other | Epifluorescence |
Fusobacterium sp. | Densely groups with a fusiform shape | ||||
Schlafer, S., et al. (2010) | SUBG | Filifactor alocis | (i) Short rod clustered in radial-orientated structures nearby fusiform bacteria on mushroom-shaped biofilms; (ii) Test-tube brush shapes; (iii) Branch-like structures in gingival tissue; (iv) Palisades structures nearby fusiform bacteria and eubacterial organisms | F. alocis was present in areas that corresponded to the depth of the pockets, but very occasionally in areas that corresponded to the cervical portion and the carrier’s very tip. F. alocis colonized the carrier side facing the soft tissue in most cases and was present in small numbers or not at all on the carrier side facing the root | Epifluorescence |
Zjinge, V., et al. (2010) | SUBG-FL | Actinomyces sp | Rod-shaped | Display little fluorescence | Epifluorescence |
SUBG-IL | Fusobacterium nucleatum | Fusiform cells | TL and a portion of the IL were mostly made of filamentous, rod-shaped, or even coccoid bacteria from the CFB-cluster | ||
Tannerella forsythia | |||||
Tannerella sp. | |||||
CFB-cluster | Filamentous, rod-shaped, coccoid | ||||
SUBG-TL | CFB-cluster | Filamentous, rod-shaped, coccoid, micro-colonies (Prevotella) | |||
Synergistetes group A | Wide cigar-like bacteria in a palisade lining | ||||
Parvimonas micra | Micro-colonies | ||||
SUBG-OL | Treponemes | Test-tube brush shapes | CFB-cluster cells were found perpendicularly arranged around Lactobacillus sp. in test-tube brush shape. Test-tube brushes shapes were also found in a complex mixture of cells | ||
CFB-cluster | |||||
Lactobacillus sp. | Rod-shaped | ||||
Porphyromonas gingivalis | Micro-colonies | ||||
Porphyromonas endodontalis | |||||
Tannerella forsythia | Test-tube brush shapes | ||||
Campylobacter sp. | |||||
Parvimonas micra | |||||
Fusobacterium sp. | |||||
Synergistetes group A | |||||
SUPG-BL | Actinomyces sp. | Rod-shaped | Bacterial deposits made up of early colonizers, growing perpendicularly to the tooth surface | ||
Actinomyces sp. + chains of cocci | Rod-shaped and coccoid | ||||
Streptococcus sp. + yeast and not identified bacteria | Filamentous | ||||
Streptococcus sp. + Lactobacillus sp. | |||||
SUPG-SL | Streptococcus sp. | (i) Thin coat; (ii) Colonizing biofilm’s cracks; (iii) Without clear organization | Corncob structures consisting of Streptococcus sp. adhering to a central axis of yeast/hyphae cells | ||
CFB-cluster | Heterogenous and without clear organization | ||||
Lactobacillus sp. | Long string-shape | ||||
Machado, F.C., et al. (2012) | SUBG | Prevotella intermedia | Patchy groups | P. intermedia was frequently found in the plaque of pregnant women | Epifluorescence |
Mark Welch, J.L., et al. (2016) | SUPG | Corynebacterium sp. | Continuous filaments from the base to the periphery of the structure | Corynebacterium sp. filaments were crusted at their distal tips by brilliant cocci | CLSM |
Streptococcus sp. | Coccoid | ||||
Capnocytophaga sp. | Filamentous | Part of a multi-genus halo | |||
Fusobacterium sp. | |||||
Leptotrichia sp. | |||||
Actinomyces sp. | Patchy groups | Observed in the base of the hedgehogs’ structures | |||
Haemophilus/ Aggregatibacter sp. | Filamentous | Built a periphery of corncobs structures in addiction with Streptococcus sp. cells | |||
Porphyromonas sp. | |||||
Rothia sp. | Cells of at least four different taxa interact with one another at a micron scale | ||||
Lautropia sp. | |||||
Veilonella sp. | |||||
Prevotella sp. | |||||
Neisseria sp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esteves, G.M.; Pereira, J.A.; Azevedo, N.F.; Azevedo, A.S.; Mendes, L. Friends with Benefits: An Inside Look of Periodontal Microbes’ Interactions Using Fluorescence In Situ Hybridization—Scoping Review. Microorganisms 2021, 9, 1504. https://doi.org/10.3390/microorganisms9071504
Esteves GM, Pereira JA, Azevedo NF, Azevedo AS, Mendes L. Friends with Benefits: An Inside Look of Periodontal Microbes’ Interactions Using Fluorescence In Situ Hybridization—Scoping Review. Microorganisms. 2021; 9(7):1504. https://doi.org/10.3390/microorganisms9071504
Chicago/Turabian StyleEsteves, Guilherme Melo, José António Pereira, Nuno Filipe Azevedo, Andreia Sofia Azevedo, and Luzia Mendes. 2021. "Friends with Benefits: An Inside Look of Periodontal Microbes’ Interactions Using Fluorescence In Situ Hybridization—Scoping Review" Microorganisms 9, no. 7: 1504. https://doi.org/10.3390/microorganisms9071504
APA StyleEsteves, G. M., Pereira, J. A., Azevedo, N. F., Azevedo, A. S., & Mendes, L. (2021). Friends with Benefits: An Inside Look of Periodontal Microbes’ Interactions Using Fluorescence In Situ Hybridization—Scoping Review. Microorganisms, 9(7), 1504. https://doi.org/10.3390/microorganisms9071504