Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains and Culture Conditions
2.2. Isolation and Identification of Fungal Contaminants from Industrial Bakery
2.3. Screening of LAB for Antifungal Activity against Moulds from A Bakery Environment
2.4. Screening of LAB for Mannitol Production
2.5. Screening of LAB for EPS Production and Detection of Dextran Encoding Genes
2.6. Lab-Scale Sourdough Fermentations with Selected Leuconostoc Strains
2.7. Determination of Antifungal Compounds in Sourdough
2.8. Determination of Fructose, Mannitol, and Acids in Sourdoughs
2.9. Determination of EPS in Sourdoughs
2.10. Statistical Analysis
3. Results
3.1. Isolated LAB Strains from Cereal-Based Products
3.2. Analysis of the Fungal Microbiota in an Industrial Bakery
3.3. Antifungal Activities of LAB Determined on A Cereal-Based Medium
3.4. Exopolysaccharides Production by LAB and Detection of Dextransucrase Genes
3.5. Mannitol Production of Lactic acid Bacteria
3.6. Production of Techno-Functional Metabolites in Lab-Scale Sourdoughs Inoculated with Lc. citreum Strains DCM49, DCM65, MA079, or MA113
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty years of knowledge on sourdough fermentation: A systematic review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.-M.; Weckx, S. Microbial ecology of sourdough fermentations: Diverse or uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef] [PubMed]
- Montemurro, M.; Celano, G.; De Angelis, M.; Gobbetti, M.; Rizzello, C.G.; Pontonio, E. Selection of non-Lactobacillus strains to be used as starters for sourdough fermentation. Food Microbiol. 2020, 90. [Google Scholar] [CrossRef] [PubMed]
- Wisselink, H.W.; Weusthuis, R.A.; Eggink, G.; Hugenholtz, J.; Grobben, G.J. Mannitol production by lactic acid bacteria: A review. Int. Dairy J. 2002, 12, 151–161. [Google Scholar] [CrossRef]
- Sahin, A.W.; Rice, T.; Zannini, E.; Axel, C.; Coffey, A.; Lynch, K.M.; Arendt, E.K. Leuconostoc citreum TR116: In-situ production of mannitol in sourdough and its application to reduce sugar in burger buns. Int. J. Food Microbiol. 2019, 302, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Levy, C.; Gänzle, M.G. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application. Int. J. Food Microbiol. 2016, 239, 95–102. [Google Scholar] [CrossRef]
- Bounaix, M.-S.; Gabriel, V.; Morel, S.; Robert, H.; Rabier, P.; Remaud-Siméon, M.; Gabriel, B.; Fontagné-Faucher, C. Biodiversity of exopolysaccharides produced from sucrose by sourdough lactic acid bacteria. J. Agric. Food Chem. 2009, 57, 10889–10897. [Google Scholar] [CrossRef]
- Hu, Y.; Gänzle, M.G. Effect of temperature on production of oligosaccharides and dextran by Weissella cibaria 10 M. Int. J. Food Microbiol. 2018, 280, 27–34. [Google Scholar] [CrossRef]
- İspirli, H.; Özmen, D.; Yılmaz, M.T.; Sağdıç, O.; Dertli, E. Impact of glucan type exopolysaccharide (EPS) production on technological characteristics of sourdough bread. Food Control. 2020, 107, 106812. [Google Scholar] [CrossRef]
- Malang, S.K.; Maina, N.H.; Schwab, C.; Tenkanen, M.; Lacroix, C. Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella. Food Microbiol. 2015, 46, 418–427. [Google Scholar] [CrossRef]
- Manini, F.; Casiraghi, M.C.; Poutanen, K.; Brasca, M.; Erba, D.; Plumed-Ferrer, C. Characterization of lactic acid bacteria isolated from wheat bran sourdough. LWT Food Sci. Technol. 2016, 66, 275–283. [Google Scholar] [CrossRef]
- Coda, R.; Xu, Y.; Moreno, D.S.; Mojzita, D.; Nionelli, L.; Rizzello, C.G.; Katina, K. Performance of Leuconostoc citreum FDR241 during wheat flour sourdough type I propagation and transcriptional analysis of exopolysaccharides biosynthesis genes. Food Microbiol. 2018, 76, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P.; Daifas, D.P.; El-Khoury, W.; Koukoutsis, J.; El-Khoury, A. Shelf life and safety concerns of bakery products—A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 19–55. [Google Scholar] [CrossRef]
- Axel, C.; Röcker, B.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol. 2015, 47, 36–44. [Google Scholar] [CrossRef]
- Ryan, L.A.M.; Zannini, E.; Dal Bello, F.; Pawlowska, A.; Koehler, P.; Arendt, E.K. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products. Int. J. Food Microbiol. 2011, 146, 276–283. [Google Scholar] [CrossRef]
- Sadeghi, A.; Ebrahimi, M.; Mortazavi, S.A.; Abedfar, A. Application of the selected antifungal LAB isolate as a protective starter culture in pan whole-wheat sourdough bread. Food Control 2019, 95, 298–307. [Google Scholar] [CrossRef]
- Schmidt, M.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Fundamental study on the improvement of the antifungal activity of Lactobacillus reuteri R29 through increased production of phenyllactic acid and reuterin. Food Control 2018, 88, 139–148. [Google Scholar] [CrossRef]
- Dal Bello, F.; Clarke, C.I.; Ryan, L.A.M.; Ulmer, H.; Schober, T.J.; Ström, K.; Sjögren, J.; van Sinderen, D.; Schnürer, J.; Arendt, E.K. Improvement of the quality and shelf life of wheat bread by fermentation with the antifungal strain Lactobacillus plantarum FST 1.7. J. Cereal Sci. 2007, 45, 309–318. [Google Scholar] [CrossRef]
- Lavermicocca, P.; Valerio, F.; Evidente, A.; Lazzaroni, S.; Corsetti, A.; Gobbetti, M. Purification and characteriation of novel antifungal compounds from the sourdough. Appl. Environ. Microbiol. 2000, 66, 4084–4090. [Google Scholar] [CrossRef] [Green Version]
- Black, B.A.; Zannini, E.; Curtis, J.M.; Gänzle, M.G. Antifungal hydroxy fatty acids produced during sourdough fermentation: Microbial and enzymatic pathways, and antifungal activity in bread. Appl. Environ. Microbiol. 2013, 79, 1866–1873. [Google Scholar] [CrossRef] [Green Version]
- Sadiq, F.A.; Yan, B.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W. Lactic acid bacteria as antifungal and anti-mycotoxigenic agents: A comprehensive review. Compr. Rev. Food Sci. Food Saf. 2019, 18, 1403–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choi, H.; Kim, Y.-W.; Hwang, I.; Kim, J.; Yoon, S. Evaluation of Leuconostoc citreum HO12 and Weissella koreensis HO20 isolated from kimchi as a starter culture for whole wheat sourdough. Food Chem. 2012, 134, 2208–2216. [Google Scholar] [CrossRef] [PubMed]
- Ouiddir, M.; Bettache, G.; Leyva Salas, M.; Pawtowski, A.; Donot, C.; Brahimi, S.; Mabrouk, K.; Coton, E.; Mounier, J. Selection of Algerian lactic acid bacteria for use as antifungal bioprotective cultures and application in dairy and bakery products. Food Microbiol. 2019, 82, 160–170. [Google Scholar] [CrossRef]
- Valerio, F.; Favilla, M.; De Bellis, P.; Sisto, A.; de Candia, S.; Lavermicocca, P. Antifungal activity of strains of lactic acid bacteria isolated from a semolina ecosystem against Penicillium roqueforti, Aspergillus niger and Endomyces fibuliger contaminating bakery products. Syst. Appl. Microbiol. 2009, 32, 438–448. [Google Scholar] [CrossRef]
- Miescher Schwenninger, S.; Freimüller Leischtfeld, S.; Gantenbein-Demarchi, C. high-throughput identification of the microbial biodiversity of cocoa bean fermentation by MALDI-TOF MS. Lett. Appl. Microbiol. 2016, 63, 347–355. [Google Scholar] [CrossRef] [PubMed]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. ISBN 978-0-12-372180-8. [Google Scholar]
- Susette, F.L.; Susanne, M.S. Bread Relevant Moulds. Bak+. Biscuit. Int. 2020, 2020, 40–43. [Google Scholar]
- Inglin, R.C.; Stevens, M.J.A.; Meile, L.; Lacroix, C.; Meile, L. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species. J. Microbiol. Methods 2015, 114, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Saha, B.C.; Nakamura, L.K. Production of mannitol and lactic acid by fermentation with Lactobacillus intermedius NRRL B-3693. Biotechnol. Bioeng. 2003, 82, 864–871. [Google Scholar] [CrossRef]
- Brosnan, B.; Coffey, A.; Arendt, E.K.; Furey, A. The QuEChERS approach in a novel application for the identification of antifungal compounds produced by lactic acid bacteria Cultures. Talanta 2014, 129, 364–373. [Google Scholar] [CrossRef]
- Müller, D.C.; Nguyen, H.; Li, Q.; Schönlechner, R.; Miescher Schwenninger, S.; Wismer, W.; Gänzle, M. Enzymatic and microbial conversions to achieve sugar reduction in bread. Food Res. Int. 2021, 143, 110296. [Google Scholar] [CrossRef] [PubMed]
- Galli, V.; Venturi, M.; Coda, R.; Maina, N.H.; Granchi, L. Isolation and characterization of indigenous Weissella confusa for in situ bacterial exopolysaccharides (EPS) production in chickpea sourdough. Food Res. Int. 2020, 138, 109785. [Google Scholar] [CrossRef] [PubMed]
- Sheikha, A.E.; Mahmoud, Y.A.-G. Bread fungal contamination: Risk of mycotoxins, protection of anti-fungal and need to fungal identification. In Bread and Its Fortification; Rosell, C.M., Bajerska, J., El Sheikha, A.F., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 160–172. ISBN 978-0-429-17255-7. [Google Scholar]
- Mahato, D.K.; Kamle, M.; Sharma, B.; Pandhi, S.; Devi, S.; Dhawan, K.; Selvakumar, R.; Mishra, D.; Kumar, A.; Arora, S.; et al. Patulin in food: A Mycotoxin concern for human health and its management strategies. Toxicon 2021, 198, 12–23. [Google Scholar] [CrossRef] [PubMed]
- Le Lay, C.; Mounier, J.; Vasseur, V.; Weill, A.; Le Blay, G.; Barbier, G.; Coton, E. In vitro and in situ screening of lactic acid bacteria and propionibacteria antifungal activities against bakery product Spoilage Molds. Food Control 2016, 60, 247–255. [Google Scholar] [CrossRef]
- Santos, J.L.P.d.; Bernardi, A.O.; Pozza Morassi, L.L.; Silva, B.S.; Copetti, M.V.; Sant’Ana, A.S. Incidence, populations and diversity of fungi from raw materials, final products and air of processing environment of multigrain whole meal bread. Food Res. Int. 2016, 87, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Samapundo, S.; Devlieghere, F.; Vroman, A.; Eeckhout, M. Antifungal activity of fermentates and their potential to replace propionate in bread. LWT Food Sci. Technol. 2017, 76, 101–107. [Google Scholar] [CrossRef]
- Axel, C.; Brosnan, B.; Zannini, E.; Peyer, L.C.; Furey, A.; Coffey, A.; Arendt, E.K. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough. Appl. Microbiol. Biotechnol. 2016, 100, 1701–1711. [Google Scholar] [CrossRef]
- Gänzle, M.G. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2015, 2, 106–117. [Google Scholar] [CrossRef]
- Zannini, E.; Waters, D.M.; Coffey, A.; Arendt, E.K. Production, properties, and industrial food application of lactic acid bacteria-derived exopolysaccharides. Appl. Microbiol. Biotechnol. 2016, 100, 1121–1135. [Google Scholar] [CrossRef]
- Quattrini, M.; Liang, N.; Fortina, M.G.; Xiang, S.; Curtis, J.M.; Gänzle, M. Exploiting synergies of sourdough and antifungal organic acids to delay fungal spoilage of bread. Int. J. Food Microbiol. 2019, 302, 8–14. [Google Scholar] [CrossRef]
- Lou, X.; Si, G.; Yu, H.; Qi, J.; Liu, T.; Fang, Z. Possible reservoir and routes of transmission of Cronobacter (Enterobacter sakazakii) via wheat flour. Food Control 2014, 43, 258–262. [Google Scholar] [CrossRef]
- Garófalo, L.; Vazquez, D.; Ferreira, F.; Soule, S. Wheat flour non-starch polysaccharides and their effect on dough rheological properties. Ind. Crop. Prod. 2011, 34, 1327–1331. [Google Scholar] [CrossRef]
- Jung, J.-H.; Choi, N.-Y.; Lee, S.-Y. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions. Food Microbiol. 2013, 34, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Almutairi, M.H.; Helal, M.M.I. Exopolysaccharide production from isolated Enterobacter sp. strain ACD2 from the northwest of Saudi Arabia. J. King Saud Univ. Sci. 2021, 33, 101318. [Google Scholar] [CrossRef]
Genus and Species 1 | Former Genus (Incl. Species) | Total No. of Isolates | No. of Isolates Used in Screenings | Isolation Source | References | ||
---|---|---|---|---|---|---|---|
Antifungal | EPS | Mannitol | |||||
Lev. brevis | Lb. brevis | 73 | 4 | 73 | 3 | Wheat sourdough/Rye sourdough | ZHAW collection 2 |
Lacticaseibacillus (Lac.) paracasei subsp. paracasei | Lb. paracasei | 58 | 2 | 58 | 3 | Wheat sourdough/Rye sourdough | This study/ ZHAW collection |
Li. fermentum | Lb. fermentum | 1 | 1 | - 3 | 1 | Baker’s yeast | ZHAW collection |
Lpb. plantarum subsp. plantarum | Lb. plantarum | 33 | 10 | 33 | 12 | Malt/baker’s yeast | ZHAW collection |
Lactococcus (L.) lactis | 19 | 1 | 19 | 19 | Wheat soudough | This study | |
Latilactobacillus (Llb.) curvatus | Lb. curvatus | 11 | - | 11 | 8 | Wheat sourdough/baker’s yeast | This study/ ZHAW collection |
Loigolactobacillus (Lo.) coryniformis subsp. coryniformis | Lb. coryniformis | 6 | - | 6 | 4 | Wheat sourdough | This study/ ZHAW collection |
Lentilactobacillus (Le.) parabuchneri | Lb. parabuchneri | 4 | 1 | 4 | 1 | Rye sourdough | ZHAW collection |
Lb. delbrueckii subsp. delbrueckii | Lb. delbrueckii | 1 | - | - | 1 | Brewer’s spent grain | ZHAW collection |
Compani-lactobacillus (C.) paralimentarius | Lb. paralimentarius | 2 | - | 2 | - | Rye sourdough | ZHAW collection |
C. kimchii | Lb. kimchii | 3 | - | 3 | 1 | Rye sourdough | ZHAW collection |
F. fructivorans | Lb. fructivorans | 2 | 1 | - | 2 | Wheat sourdough | This study |
F. sanfranciscensis | Lb. sanfranciscenis | 2 | 1 | - | 2 | Rye sourdough | ZHAW collection |
Furfurilactobacillus (Fu.) rossiae | Lb. rossiae | 1 | - | - | 1 | Rye sourdough | ZHAW collection |
Pediococcus (P.) pentosaceus | 43 | - | 43 | 2 | Wheat sourdough | ZHAW collection | |
Lc.lactis | 14 | - | - | 14 | Brewer’s spent grain | ZHAW collection | |
Lc. citreum | 68 | 68 | 56 | 54 | Wheat sourdough/malt | This study/ ZHAW collection | |
Lc. mesenteroides | 5 | 3 | 3 | 5 | Wheat sourdough/baker’s yeast | This study/ ZHAW collection | |
Lc. pseudo-mesenteroides | 3 | 3 | - | 1 | Wheat sourdough/malt | This study/ ZHAW collection | |
Lc. palmae | 2 | 2 | 2 | 2 | Wheat sourdough | This study | |
W. confusa | 2 | 2 | 1 | 1 | Wheat sourdough/malt | This study/ ZHAW collection |
Macroscopic Groups | No. of Isolates per Group | Genus/Species | Identified Strain | Isolation Location |
---|---|---|---|---|
Isolated before baking | ||||
1 | 2 | Vishniacozyma victoriae | F9 | Facility air |
2 | 5 | Aspergillus sp. (A. austwickii/A. aflatoxiformans) 2 | F17 | Facility air |
3 | 3 | Aspergillus sp. (A. tennesseensis/A. jensenii) 2 | F18 | Facility air |
Isolated after baking | ||||
4 | 2 | Aspergillus welwitschiae | F32 | Facility air |
5 | 7 | Aspergillus sp. (A. austwickii/A. aflatoxiformans) 2 | F55 | Facility air |
6 | 4 | Penicillium sp. (P. fuscoglaucum/P. palitans/P. commune) 2 | F26 | Facility air |
7 | 3 | Penicillium chrysogenum | F27 | Facility air |
8 1 | 11 | Penicillium rubens Penicillium sp.(P. fuscoglaucum/P. palitans)2 | F43 B3 | Facility air Soft rolls |
9 | 4 | Penicillium sp. (P. fuscoglaucum/P. palitans/P. commune) 2 | F66 | Facility air |
10 | 2 | Penicillium rubens | B4 | Soft rolls |
11 | 1 | Cladosporium antarcticum | F61 | Facility air |
12 1 | 7 | Cladosporium sp. (C. subcinereum/C. antarcticum) 2 Cladosporium domesticum | B1 F40 | Soft rolls Facility air |
13 | 1 | Aureobasidium melanogenum | F47 | Facility air |
14 | 3 | Byssochlamys spectabilis | F57 | Facility air |
15 | 1 | Hannaella oryzae | F33 | Facility air |
16 | 2 | Rhodotorula mucilaginosa | F20 | Facility air |
Mould Contaminants | |||||||
---|---|---|---|---|---|---|---|
P. crustosum FB005 | A. flavus IB1 | A. tritici IB12 | |||||
Genus and Species | Total Strains | Inhibition | No. of Strains | Inhibition | No. of Strains | Inhibition | No. of Strains |
Lev. brevis | 4 | - 1 | 4 | − + | 3 1 | +++ | 4 |
Li. fermentum | 1 | +/− | 1 | + | 1 | ++(+) | 1 |
F. fructivorans | 1 | - | 1 | - | 1 | - | 1 |
Le. parabuchneri | 1 | +/− | 1 | + | 1 | +++ | 1 |
Lac. paracasei subsp. paracasei | 2 | - | 2 | - | 2 | + | 2 |
Lpb. plantarum subsp. plantarum | 10 | - | 10 | - | 10 | +/− + | 1 9 |
F. sanfranciscensis | 1 | - | 1 | - | 1 | - | 1 |
L. lactis | 1 | - | 1 | - | 1 | +/− | 1 |
Lc. citreum | 68 | - +/- | 62 6 | - + | 64 4 | + ++ ++(+) +++ | 3 17 8 40 |
Lc. mesenteroides | 3 | - | 3 | - + | 2 1 | + ++ ++(+) | 1 1 1 |
Lc. palmae | 2 | − +/− | 1 1 | − + | 1 1 | +++ | 2 |
Lc. pseudo-mesenteroides | 3 | - | 3 | − + | 2 1 | +/− +++ | 1 2 |
W. confusa | 2 | - | 2 | - | 2 | ++(+) +++ | 1 1 |
Isolated Fungi from Bakery Environment | ||||||
---|---|---|---|---|---|---|
Genus/Species | Cladosporium sp. B1 1 | Cladosporium domesticum F40 | Vishniacozyma victoriae F9 | Penicillium chrysogenum F27 | Penicillium rubens F43 | Aspergillus sp. F18 2 |
Lc. citreum DCM49 | +++ | +++ | +++ | + 3 | +/− 3 | +++ |
Lc. citreum DCM65 | +++ | +++ | +++ | +++ | +++ | + 3 |
Lc. citreum MA113 | +++ | +++ | +++ | +++ | ++ | ++ 3 |
Lc. citreum MA079 | +++ | +++ | +++ | ++(+) 3 | ++ | ++(+) |
Lc. citreum DCM63 | +++ | +++ | +++ | ++(+) 3 | +/− 3 | ++ 3 |
Lc. citreum DCM74 | +++ | +++ | +++ | + 3 | ++ | ++(+) |
Lc. citreum DCM83 | +++ | +++ | +++ | +++ | +/− 3 | + 3 |
Lc. mesenteroides DCM27 | +++ | +++ | +++ | +++ | ++ | + 3 |
Lc. palmae DCM85 | +++ | +++ | +++ | + 3 | ++ 3 | + 3 |
LAB Strains | Slimy Colony | Precipitation with ETOH 1 | Dextransucrase-Encoding Genes | |||
---|---|---|---|---|---|---|
dsrM | dsrB | |||||
Present | Absent | Present | Absent | |||
Lc. citreum (56) | + | + | 28 | 28 | 56 | 0 |
Lc. mesenteroides (1) | + | + | 0 | 1 | 1 | 0 |
Lc. palmae (2) | + | + | 0 | 2 | 2 | 0 |
Mannitol | ||||
---|---|---|---|---|
Genus/Species | No. of Strains Tested | 0–20 g/L | 20–30 g/L | >30 g/L |
L. lactis | 19 | 19 1 | ||
Lpb. plantarum subsp. plantarum | 12 | 12 | ||
Llb. curvatus | 8 | 8 | ||
Lo. coryniformis subsp. coryniformis | 4 | 4 | ||
Lac. paracasei subsp. paracasei | 3 | 3 | ||
Lev. brevis | 3 | 1 | 2 | |
F. fructivorans | 2 | 2 | ||
F. sanfranciscensis | 2 | 1 | 1 | |
P. pentosaceus | 2 | 2 | ||
Lb. delbrueckii subsp. delbrueckii | 1 | 1 | ||
Li. fermentum | 1 | 1 | ||
C. kimchii | 1 | 1 | ||
Le. parabuchneri | 1 | 1 | ||
Fu. rossiae | 1 | 1 | ||
W. confusa | 1 | 1 | ||
Lc. lactis | 14 | 14 | ||
Lc. citreum | 54 | 11 | 43 | |
Lc. palmae | 2 | 1 | 1 | |
Lc. mesenteroides | 5 | 1 | 4 | |
Lc. pseudomesenteroides | 1 | 1 |
Lc. citreum DCM49 | Lc. citreum DCM65 | Lc. citreum MA079 | Lc. citreum MA113 | No Inoculum | ||
---|---|---|---|---|---|---|
LAB (log CFU/g) | t0 | 7.2 ± 0.0 a | 7.1 ± 0.3 a | 7.2 ± 0.1 a | 7.2 ± 0.2 a | <5 b |
t24 | 9.2 ± 0.1 a | 9.1 ± 0.1 ab | 9.0 ± 0.1 ab | 8.9 ± 0.1 b | 7.5 ± 0.1 c | |
pH | t0 | 6.4 ± 0.0 a | 6.4 ± 0.1 a | 6.3 ± 0.0 a | 6.2 ± 0.0 a | 6.3 ± 0.0 a |
t24 | 4.0 ± 0.0 a | 4.0 ± 0.0 a | 4.0 ± 0.0 a | 4.1 ± 0.0 a | 5.6 ± 0.2 b | |
TTA | t0 | 2.2 ± 0.1 b | 2.3 ± 0.1 ab | 2.4 ± 0.1 ab | 2.6 ± 0.2 a | 2.1 ± 0.1 b |
t24 | 12.4 ± 0.1 b | 12.1 ± 0.1 ab | 11.6 ± 0.3 a | 11.8 ± 0.3 ab | 5.5 ± 0.2 c | |
Antifungal compounds (μg/g sourdough) | ||||||
HPLA | t0 | n.d. | 0.0 ± 0.1 a | n.d. | 0.2 ± 0.2 a | n.d. |
t24 | 1.1 ± 0.2 ab | 0.6 ± 0.5 ab | 1.3 ± 0.1 a | 1.2 ± 0.6 a | 0.2 ± 0.3 b | |
PLA | t0 | n.d. | n.d. | n.d. | n.d. | n.d. |
t24 | 1.6 ± 0.4 ab | 1.8 ± 0.5 a | 2.1 ± 0.4 a | 1.3 ± 0.0 ab | 0.7 ± 0.7 b | |
Acids (mg/g sourdough) | ||||||
t0 | n.d. | n.d. | n.d. | n.d. | n.d. | |
Lactic acid | t24 | 3.0 ± 0.0 a | 3.1 ±0.0 a | 3.1 ± 0.3 a | 3.3 ± 0.4 a | 0.4 ± 0.1 b |
t0 | n.d. | n.d. | n.d. | n.d. | n.d. | |
Acetic acid | t24 | 1.6 ± 0.0 a | 1.5 ± 0.0 a | 1.7 ± 0.1 a | 1.6 ± 0.1 a | 0.2 ± 0.1 b |
Carbohydrates (mg/g sourdough) | ||||||
Fructose | t0 | 10.0 ± 0.9 a | 9.7 ± 1.9 a | 10.5 ± 1.7 a | 8.2 ± 1.7 a | 9.3 ± 1.0 a |
t24 | n.d. | 2.03 ± 0.1 a | n.d. | 2.4 ± 0.3 a | 9.2 ± 0.5 b | |
t0 | n.d. | n.d. | n.d. | n.d. | n.d. | |
Mannitol | t24 | 7.8 ± 0.5 a | 8.3 ± 0.2 a | 7.9 ± 0.8 a | 8.6 ± 1.0 a | n.d. |
EPS formation (g/100 g sourdough | ||||||
t0 | 0.09 ± 0.05 ab | 0.13 ± 0.05 ab | 0.16 ± 0.01 a | 0.07 ± 0.01 b | 0.11 ± 0.01 ab | |
t24 | 0.36 ± 0.04 a | 0.45 ± 0.46 a | 0.25 ± 0.06 a | 0.62 ± 0.37 a | 0.77 ± 0.19 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Müller, D.C.; Mischler, S.; Schönlechner, R.; Miescher Schwenninger, S. Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations. Microorganisms 2021, 9, 1633. https://doi.org/10.3390/microorganisms9081633
Müller DC, Mischler S, Schönlechner R, Miescher Schwenninger S. Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations. Microorganisms. 2021; 9(8):1633. https://doi.org/10.3390/microorganisms9081633
Chicago/Turabian StyleMüller, Denise C., Sandra Mischler, Regine Schönlechner, and Susanne Miescher Schwenninger. 2021. "Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations" Microorganisms 9, no. 8: 1633. https://doi.org/10.3390/microorganisms9081633
APA StyleMüller, D. C., Mischler, S., Schönlechner, R., & Miescher Schwenninger, S. (2021). Multiple Techno-Functional Characteristics of Leuconostoc and Their Potential in Sourdough Fermentations. Microorganisms, 9(8), 1633. https://doi.org/10.3390/microorganisms9081633