A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions
2.2. Recombinant NetB Production
2.3. Assessing the Potential of Avian Blood Agar Plates to Discriminate between NetB-Negative and NetB-Positive C. perfringens Strains
2.4. Determination of the C. perfringens Haemolytic Activity towards Chicken Erythrocytes in a 96-Well Plate-Based Format
2.5. Assessing the NetB-Specific Haemolytic Activity in C. perfringens Supernatants by Blocking Alpha Toxin and Perfringolysin-Induced Haemolysis
2.6. Final Doubling Dilution Assay Protocol to Determine the NetB Titre in C. perfringens Culture Supernatants
2.7. Detection of Alpha Toxin Activity
2.8. Statistical Analysis
3. Results
3.1. Assessing the C. perfringens Haemolysis Patterns on Avian Blood Agar Plates
3.2. NetB-Positive Strains Show Stronger Haemolysis on Avian Blood Agar Plates as Compared to NetB-Negative Strains
3.3. Assessing the Haemolytic Activity of NetB in C. perfringens Supernatants and rNetB against Chicken RBCs
3.4. Inhibition of Non-NetB Haemolysins Is Needed to Quantify NetB Activity in C. perfringens Culture Supernatants
3.5. Maximal NetB Toxin Activity Was Observed in the Late Stationary Phase
3.6. The In Vitro NetB Production Correlates with C. perfringens Virulence
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Kiu, R.; Brown, J.; Bedwell, H.; Leclaire, C.; Caim, S.; Pickard, D.; Dougan, G.; Dixon, R.A.; Hall, L.J. Genomic analysis on broiler-associated Clostridium perfringens strains and exploratory caecal microbiome investigation reveals key factors linked to poultry necrotic enteritis. Anim. Microbiome 2019, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Rood, J.I.; Adams, V.; Lacey, J.; Lyras, D.; McClane, B.A.; Melville, S.B.; Moore, R.J.; Popoff, M.R.; Sarker, M.R.; Songer, J.G.; et al. Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 2018, 53, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Parreira, V.R.; Costa, M.; Eikmeyer, F.; Blom, J.; Prescott, J.F. Sequence of Two Plasmids from Clostridium perfringens Chicken Necrotic Enteritis Isolates and Comparison with C. perfringens Conjugative Plasmids. PLoS ONE 2012, 7, e49753. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, R.M.; Brooker, J.D.; Acamovic, T.; Sparks, N.H.C. Necrotic enteritis; a continuing challenge for the poultry industry. Worlds Poult. Sci. J. 2006, 62, 221–247. [Google Scholar] [CrossRef]
- Timbermont, L.; Haesebrouck, F.; Ducatelle, R.; van Immerseel, F. Necrotic enteritis in broilers: An updated review on the pathogenesis. Avian Pathol. 2011, 40, 341–347. [Google Scholar] [CrossRef] [PubMed]
- To, H.; Suzuki, T.; Kawahara, F.; Uetsuka, K.; Nagai, S.; Nunoya, T. Experimental induction of necrotic enteritis in chickens by a netB-positive Japanese isolate of Clostridium perfringens. J. Vet. Med. Sci. 2017, 79, 350–358. [Google Scholar] [CrossRef] [Green Version]
- M’Sadeq, S.A.; Wu, S.; Swick, R.A.; Choct, M. Towards the control of necrotic enteritis in broiler chickens with in-feed antibiotics phasing-out worldwide. Anim. Nutr. 2015, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, P.; Kiess, A.; Adhikari, R.; Jha, R. An approach to alternative strategies to control avian coccidiosis and necrotic enteritis. J. Appl. Poult. Res. 2020, 29, 515–534. [Google Scholar] [CrossRef]
- Gantois, I.; Ducatelle, R.; Pasmans, F.; Haesebrouck, F.; Hautefort, I.; Thompson, A.; Hinton, J.C.; van Immerseel, F. Butyrate Specifically Down-Regulates Salmonella Pathogenicity Island 1 Gene Expression. Appl. Environ. Microbiol. 2006, 72, 946. [Google Scholar] [CrossRef] [Green Version]
- Njoroge, J.W.; Nguyen, Y.; Curtis, M.M.; Moreira, C.G.; Sperandio, V. Virulence meets metabolism: Cra and KdpE gene regulation in enterohemorrhagic Escherichia coli. mBio 2012, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Dorman, C.J.; McKenna, S.; Beloin, C. Regulation of virulence gene expression in Shigella flexneri, a facultative intracellular pathogen. Int. J. Med. Microbiol. 2001, 291, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Guiney, D.G. Regulation of bacterial virulence gene expression by the host environment. J. Clin. Investig. 1997, 99, 565. [Google Scholar] [CrossRef]
- Keyburn, A.L.; Boyce, J.D.; Vaz, P.; Bannam, T.L.; Ford, M.E.; Parker, D.; di Rubbo, A.; Rood, J.I.; Moore, R.J. NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PLoS Pathog. 2008, 4, e26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanckriet, A.; Timbermont, L.; Eeckhaut, V.; Haesebrouck, F.; Ducatelle, R.; van Immerseel, F. Variable protection after vaccination of broiler chickens against necrotic enteritis using supernatants of different Clostridium perfringens strains. Vaccine 2010, 28, 5920–5923. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.-W.; Kim, W.H.; Li, C.; Lillehoj, H.S. Detection of Necrotic Enteritis B–like Toxin Secreted by Clostridium perfringens Using Capture Enzyme-Linked Immunosorbent Assay. Avian Dis. 2020, 64, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.W.; Lillehoj, H.S.; Kim, W.; Park, I.; Li, C.; Lu, M.; Hofacre, C.L. Research Note: First report on the detection of necrotic enteritis (NE) B-like toxin in biological samples from NE-afflicted chickens using capture enzyme-linked immunosorbent assay. Poult. Sci. 2021, 100, 101190. [Google Scholar] [CrossRef]
- Liu, S.; Yang, X.; Zhang, H.; Zhang, J.; Zhou, Y.; Wang, T.; Hu, N.; Deng, X.; Bai, X.; Wang, J. Amentoflavone Attenuates Clostridium perfringens Gas Gangrene by Targeting Alpha-Toxin and Perfringolysin O. Front. Pharmacol. 2020, 11, 179. [Google Scholar] [CrossRef]
- Awad, M.M.; Rood, J.I. Perfringolysin O Expression in Clostridium perfringens Is Independent of the Upstream pfoR Gene. J. Bacteriol. 2002, 184, 2034. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.K.; Keyburn, A.L.; Carter, G.P.; Lanckriet, A.L.; van Immerseel, F.; Moore, R.J.; Rood, J.I. The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens. Infect. Immun. 2010, 78, 3064–3072. [Google Scholar] [CrossRef] [Green Version]
- Cheung, J.K.; Awad, M.M.; McGowan, S.; Rood, J.I. Functional Analysis of the VirSR Phosphorelay from Clostridium perfringens. PLoS ONE 2009, 4, e5849. [Google Scholar] [CrossRef]
- Awad, M.M.; Bryant, A.E.; Stevens, D.L.; Rood, J.I. Virulence studies on chromosomal alpha-toxin and theta-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of alpha-toxin in Clostridium perfringens-mediated gas gangrene. Mol. Microbiol. 1995, 15, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.X.; Porter, C.J.; Hardy, S.P.; Steer, D.; Smith, A.I.; Quinsey, N.S.; Hughes, V.; Cheung, J.K.; Keyburn, A.L.; Kaldhusdal, M.; et al. Structural and functional analysis of the pore-forming toxin NetB from Clostridium perfringens. mBio 2013, 4, e00019-13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keyburn, A.L.; Yan, X.X.; Bannam, T.L.; van Immerseel, F.; Rood, J.I.; Moore, R.J. Association between avian necrotic enteritis and Clostridium perfringens strains expressing NetB toxin. Vet. Res. 2010, 41, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abildgaard, L.; Sondergaard, T.E.; Engberg, R.M.; Schramm, A.; Højberg, O. In vitro production of necrotic enteritis toxin B, NetB, by netB-positive and netB-negative Clostridium perfringens originating from healthy and diseased broiler chickens. Vet. Microbiol. 2010, 144, 231–235. [Google Scholar] [CrossRef] [Green Version]
- Keyburn, A.L.; Sheedy, S.A.; Ford, M.E.; Williamson, M.M.; Awad, M.M.; Rood, J.I.; Moore, R.J. Alpha-toxin of Clostridium perfringens is not an essential virulence factor in necrotic enteritis in chickens. Infect. Immun. 2006, 74, 6496–6500. [Google Scholar] [CrossRef] [Green Version]
- van Damme, L.; Cox, N.; Callens, C.; Haesebrouck, F.; Dargatz, M.; Ducatelle, R.; van Immerseel, F.; Goossens, E.C. perfringens challenge reduces matrix metalloproteinase activity in the jejunal mucosa of Eimeria-infected broiler chickens. Vet. Res. 2020, 51, 100. [Google Scholar] [CrossRef]
- Gholamiandekhordi, A.R.; Ducatelle, R.; Heyndrickx, M.; Haesebrouck, F.; van Immerseel, F. Molecular and phenotypical characterization of Clostridium perfringens isolates from poultry flocks with different disease status. Vet. Microbiol. 2006, 113, 143–152. [Google Scholar] [CrossRef]
- van Damme, L.; Cox, N.; Callens, C.; Dargatz, M.; Flügel, M.; Hark, S.; Thiemann, F.; Pelzer, S.; Haesebrouck, F.; Ducatelle, R.; et al. Protein Truncating Variants of colA in Clostridium perfringens Type G Strains. Front. Cell. Infect. Microbiol. 2021, 11, 348. [Google Scholar] [CrossRef]
- Goossens, E.; Verherstraeten, S.; Valgaeren, B.R.; Pardon, B.; Timbermont, L.; Schauvliege, S.; Rodrigo-Mocholi, D.; Haesebrouck, F.; Ducatelle, R.; Deprez, P.R.; et al. Toxin-neutralizing antibodies protect against Clostridium perfringens-induced necrosis in an intestinal loop model for bovine necrohemorrhagic enteritis. BMC Vet. Res. 2016, 12, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigby, G.J. An egg-yolk agar diffusion assay for monitoring phospholipase C in cultures of Clostridium welchii. J. Appl. Bacteriol. 1981, 50, 11–19. [Google Scholar] [CrossRef]
- Goossens, E.; Verherstraeten, S.; Timbermont, L.; Valgaeren, B.R.; Pardon, B.; Haesebrouck, F.; Ducatelle, R.; Deprez, P.R.; van Immerseel, F. Clostridium perfringens strains from bovine enterotoxemia cases are not superior in in vitro production of alpha toxin, perfringolysin O and proteolytic enzymes. BMC Vet. Res. 2014, 10, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, D.L.; Mitten, J.; Henry, C. Effects of α and θ Toxins from Clostridium perfringens on Human Polymorphonuclear Leukocytes. J. Infect. Dis. 1987, 156, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Savva, C.G.; Fernandes da Costa, S.P.; Bokori-Brown, M.; Naylor, C.E.; Cole, A.R.; Moss, D.S.; Titball, R.W.; Basak, A.K. Molecular architecture and functional analysis of NetB, a pore-forming toxin from Clostridium perfringens. J. Biol. Chem. 2013, 288, 3512–3522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtani, K.; Shimizu, T. Regulation of Toxin Production in Clostridium perfringens. Toxins 2016, 8, 207. [Google Scholar] [CrossRef]
- Abildgaard, L.; Engberg, R.M.; Pedersen, K.; Schramm, A.; Hojberg, O. Sequence variation in the α-toxin encoding plc gene of Clostridium perfringens strains isolated from diseased and healthy chickens. Vet. Microbiol. 2009, 136, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Timbermont, L.; Lanckriet, A.; Gholamiandehkordi, A.R.; Pasmans, F.; Martel, A.; Haesebrouck, F.; Ducatelle, R.; van Immerseel, F. Origin of Clostridium perfringens isolates determines the ability to induce necrotic enteritis in broilers. Comp. Immunol. Microbiol. Infect Dis. 2009, 32, 503–512. [Google Scholar] [CrossRef] [PubMed]
Strain ID (Alternative Name) | NetB d | netB Sequence a | Description | Origin | Reference |
---|---|---|---|---|---|
JIR4869 (EHE-NE18) | + | Con b | Necrotic enteritis, broiler | Australia | [25] |
JIR12071 (NE18 Δα, NE18-M1) | + | Con b | Alpha toxin mutant from strain JIR4869 | Australia | [25] |
JIR12331 (NE18 ΔnetB) | − | NetB toxin mutant from strain JIR4869 | Australia | [13] | |
JIR4860 (EHE-NE5) | + | Con b | Necrotic enteritis, broiler | Australia | [25] |
JIR4866 (EHE-NE15) | + | Con b | Necrotic enteritis, broiler | Australia | [25] |
JIR12058 (UNK-NE30) | + | G502A (A168T) c | Necrotic enteritis, broiler | Australia | [23] |
JIR4857 | − | Necrotic enteritis, broiler | Australia | [26] | |
CP3 | − | Healthy broiler | Belgium | [27] | |
CP4 | − | Healthy broiler | Belgium | [27] | |
CP23 | + | G502A (A168T) c | Healthy broiler | Belgium | [14] |
CP56 (JIR12037) | + | Con b | Necrotic enteritis, broiler | Belgium | [27] |
D3 (99.63206-34) | + | G502A (A168T) b | Necrotic enteritis, broiler | Denmark | [23] |
S2 | − | Necrotic enteritis, broiler | Denmark | [28] | |
S36 | + | G502A (A168T) c | Necrotic enteritis, broiler | Denmark | - |
JGS4100 | + | G502A (A168T) c | Necrotic enteritis, broiler | USA | G. Songer, pers.com. |
JGS4121 | − | Necrotic enteritis, broiler | USA | G. Songer, pers. com. |
Strain ID | NetB Titre | CPA U/mL | % Disease Induction |
---|---|---|---|
JIR12058 | 588 ± 54 | 0.048 ± 0.03 | 154 |
NE18 | 466 ± 115 | 0.102 ± 0.04 | 100 |
CP56 | 337 ± 60 | 0.119 ± 0.05 | 80 |
JIR4866 | 436 ± 103 | 0.118 ± 0.03 | 75 |
JIR4860 | 200 ± 57 | 0.646 ± 0.10 | 47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hustá, M.; Ducatelle, R.; Van Immerseel, F.; Goossens, E. A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens. Microorganisms 2021, 9, 1708. https://doi.org/10.3390/microorganisms9081708
Hustá M, Ducatelle R, Van Immerseel F, Goossens E. A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens. Microorganisms. 2021; 9(8):1708. https://doi.org/10.3390/microorganisms9081708
Chicago/Turabian StyleHustá, Martina, Richard Ducatelle, Filip Van Immerseel, and Evy Goossens. 2021. "A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens" Microorganisms 9, no. 8: 1708. https://doi.org/10.3390/microorganisms9081708
APA StyleHustá, M., Ducatelle, R., Van Immerseel, F., & Goossens, E. (2021). A Rapid and Simple Assay Correlates In Vitro NetB Activity with Clostridium perfringens Pathogenicity in Chickens. Microorganisms, 9(8), 1708. https://doi.org/10.3390/microorganisms9081708