Effects of B-Wave Ultraviolet Supplementation Using Light-Emitting Diodes on Caged Laying Hens during the Later Phase of the Laying Cycle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Treatments
2.2. Bone Collection and Tibia Traits Test
2.3. Blood Sample Collection and Analysis
2.4. Egg Sample Collection and Analysis
2.5. Statistical Analysis
3. Results
3.1. Bone Traits
3.2. Vitamin D Metabolites and Photoproducts in the Serum
3.3. Laying Performance and Egg Quality and Vitamin D Metabolites in the Egg Yolk
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Geng, Y.Q.; Ma, Q.G.; Wang, Z.; Guo, Y.M. Dietary vitamin D3 supplementation protects laying hens against lipopolysaccharide-induced immunological stress. Nutr. Metab. 2018, 15, 58–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.X.; Shi, Z.X.; Wang, X.Y.; Geng, A.L.; Li, B.M. Effects of ultraviolet radiation on skeleton development of broiler chickens. Agric. Sci. China 2006, 5, 313–317. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D deficiency—NEJM. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Janjetovic1, Z.; Fullerl, B.E.; Holick, F. Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome p450scc show anti-Leukemia effects, having low or absent calcemic activity. PLoS ONE 2010, 5. [Google Scholar] [CrossRef]
- Mitchell, R.; Edwards, H.; Mcdaniel, G. The effects of ultraviolet light and cholecalciferol and its metabolites on the development of leg abnormalities in chickens genetically selected for a high and low incidence of tibial dyschondroplasia. Poult. Sci. 1997, 76, 346–354. [Google Scholar] [CrossRef]
- Edwards, H.M. Effects of u.v. irradiation of very young chickens on growth and bone development. Br. J. Nutr. 2003, 90, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Maddocks, S.A.; Cuthill, I.C.; Goldsmith, A.R.; Sherwin, C.M. Behavioural and physiological effects of absence of ultraviolet wavelengths for domestic chicks. Anim. Behav. 2001, 62, 1013–1019. [Google Scholar] [CrossRef] [Green Version]
- Lewis, P.D.; Gous, R.M. Responses of poultry to ultraviolet radiation. Worlds. Poult. Sci. J. 2009, 65, 499–510. [Google Scholar] [CrossRef]
- McKenzie, R.L.; Aucamp, P.J.; Bais, A.F.; Björn, L.O.; Ilyas, M. Changes in biologically-active ultraviolet radiation reaching the Earth’s surface. J. Photochem. Photobiol. B Biol. Sci. 2007, 6, 218–231. [Google Scholar] [CrossRef] [Green Version]
- Gil, E.M.; Kim, T.H. UV-induced immune suppression and sunscreen. Photodermatolphoto 2000, 16, 101–110. [Google Scholar] [CrossRef]
- Holick, M.F. Resurrection of vitamin D deficiency and rickets. J. Clin. Investig. 2006, 116, 2062–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lietzow, J.; Kluge, H.; Brandsch, C.; Seeburg, N.; Hirche, F.; Glomb, M.; Stangl, J.I. Effect of Short-Term UVB exposure on vitamin D concentration of eggs and vitamin D status of laying hens. J. Agric. Food Chem. 2012, 60, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Kühn, J.; Schutkowski, A.; Hirche, F.; Baur, A.C.; Mielenz, N.; Stangl, G.I. Non-linear increase of vitamin D content in eggs from chicks treated with increasing exposure times of ultraviolet light. J. Steroid Biochem. Mol. Biol. 2015, 148, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Xin, H.; Sekhon, J.; Wang, T. Effect of fluorescent vs. poultry-specific light-emitting diode lights on production performance and egg quality of W-36 laying hens. Poult. Sci. 2017, 97, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Song, K.; Mohseni, M.; Taghipour, F. Application of ultraviolet light-emitting diodes (UV-LEDs) for water disinfection: A review. Water Res. 2016, 94, 341–349. [Google Scholar] [CrossRef]
- Kühn, J.; Wassermann, C.; Ebschke, S.; Schutkowski, A.; Thamm, K.; Wensch-Dorendorf, M.; von Borell, E.; Stangl, G.I. Feasibility of artificial light regimes to increase the vitamin D content in indoor-laid eggs. Poult. Sci. 2019, 0, 1–11. [Google Scholar] [CrossRef]
- Hester, P.Y.; Wilson, D.A.; Settar, P.; Arango, J.A.; O’Sullivan, N.P. Effect of lighting programs during the pullet phase on skeletal integrity of egg-laying strains of chickens. Poult. Sci. 2011, 90, 1645–1651. [Google Scholar] [CrossRef]
- Whitehead, C.C.; Fleming, R.H. Osteoporosis in Cage Layers. Poult. Sci. 2000, 79, 1033–1041. [Google Scholar] [CrossRef]
- Webster, A.B. Welfare implications of avian osteoporosis. Poult. Sci. 2004, 83, 184–192. [Google Scholar] [CrossRef]
- Bishop, S.C.; Fleming, R.H.; McCormack, H.A.; Flock, D.K.; Whitehead, C.C. Inheritance of bone characteristics affecting osteoporosis in laying hens. Br. Poult. Sci. 2000, 41, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Mccoy, M.A.; Reilly, G.A.C.; Kilpatrick, D.J. Density and breaking strength of bones of mortalities among caged layers. Res. Vet. Sci. 1996, 60, 185–186. [Google Scholar] [CrossRef]
- Canalis, E. The hormonal and local regulation of bone formation*. Endocr. Rev. 1983, 4, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Rennie, J.S.; Fleming, R.H.; McCormack, H.A.; McCorquodale, C.C.; Whitehead, C.C. Studies on effects of nutritional factors on bone structure and osteoporosis in laying hens. Br. Poult. Sci. 1997, 38, 417–424. [Google Scholar] [CrossRef]
- Barott, H.G.; Schoenleber, L.G.; Campbell, L.E. The Effect of Ultraviolet Radiation on Egg Production of Hens. Poult. Sci. 1951, 30, 409–416. [Google Scholar] [CrossRef]
- Riczu, C.M.; Saunders-Blades, J.L.; Yngvesson, K.; Robinson, F.E.; Korver, D.R. End-of-Cycle bone quality in White- and Brown-Egg laying hens. Poult. Sci. 2004, 83, 375–383. [Google Scholar] [CrossRef]
- Rayan, G.N.; Galal, A.; Fathi, M.M.; El-Attar, A.H. Effect of layer breeder strain and age on tibia bone characteristics of chicks. J. Agric. Vet. Sci. 2013, 6, 111–124. [Google Scholar] [CrossRef]
- Huber-Eicher, B.; Suter, A.; Spring-Stahli, P. Effects of colored light-emitting diode illumination on behavior and performance of laying hens. Poult. Sci. 2013, 92, 869–873. [Google Scholar] [CrossRef]
- Lewis, P.D.; Morris, T.R. Responses of domestic poultry to various light sources. Worlds Poult. Sci. J. 1998, 54, 7–25. [Google Scholar] [CrossRef]
- Li, M.; Gao, Y.; Lan, G.; Gu, Z.B. Effects of ultraviolet-B radiation on immunity and carcass characteristics in quail. J. Appl. Poult. Res. 2014, 23, 429–436. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L.; Drezner, M.K.; Binkley, N.C. Circulating vitamin D3 and 25-hydroxyvitamin D in humans: An important tool to define adequate nutritional vitamin D status. J. Steroid Biochem. 2007, 103, 631–634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bär, M.; Domaschke, D.; Meye, A.; Lehmann, B.; Meurer, M. Wavelength-dependent induction of CYP24A1-mRNA after UVB-triggered calcitriol synthesis in cultured human keratinocytes. J. Investig. Dermatol. 2006, 127, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, L.; Ariki, J.; Machado, C.; Silva, L.D.P.G.D.; Rezende, M.J.M. Effect of oils sources on blood lipid parameters of commercial laying hens. Rev. Bras. Ciência Avícola 2003, 5, 203–206. [Google Scholar] [CrossRef] [Green Version]
- Ghaly, S.; Kaakoush, N.O.; Lloyd, F.; Gordon, L.; Forest, C.; Lawrance, I.C.; Hart, P.H. Ultraviolet irradiation of skin alters the faecal microbiome independently of vitamin D in mice. Nutrients 2018, 10, 1069. [Google Scholar] [CrossRef] [Green Version]
- Kühn, J.; Schutkowski, A.; Kluge, H.; Hirche, F.; Stangl, G.I. Free-range farming: A natural alternative to produce vitamin D-enriched eggs. Nutrition 2014, 30, 481–484. [Google Scholar] [CrossRef]
- Cashman, K.D. The role of vitamers and dietary-based metabolites of vitamin D in prevention of vitamin D deficiency. Food Nutr. Res. 2012, 56, 5383. [Google Scholar] [CrossRef]
- Fraser, D.R.; Emtage, J.S. Vitamin D in the avian egg. Its molecular identity and mechanism of incorporation into yolk. Biochem. J. 1976, 160, 671–682. [Google Scholar] [CrossRef] [Green Version]
- Tian, X.Q.; Chen, T.C.; Lu, Z.; Shao, Q.; Holick, M.F. Characterization of the translocation process of vitamin D3 from the skin into the circulation. Endocrinology 1994, 135, 655–661. [Google Scholar] [CrossRef]
- Lewis, P.D.; Morris, T.R. Light intensity and performance of domestic pullets. Worlds Poult. Sci. J. 1999, 55, 241–250. [Google Scholar] [CrossRef]
- Benoit, J. The role of the eye and of the hypothalamus in the photostimulation of gonads in the duck. Ann. N. Y. Acad. Sci. 1964, 117, 204–215. [Google Scholar] [CrossRef]
Parameters | Duration (Week) | UV-LED Exposure Time | |||
---|---|---|---|---|---|
1 h/day | 2 h/day | 3 h/day | 0 h/day | ||
Bone mineral density (g/cm2) | 0 week | 0.245 ± 0.004 c,A | 0.230 ± 0.003 d,C | 0.253 ± 0.005 a,B | 0.248 ± 0.003 b,A |
4 weeks | 0.233 ± 0.002 c,B | 0.235 ± 0.002 c,B | 0.255 ± 0.003 a,B | 0.245 ± 0.002 b,B | |
8 weeks | 0.233 ± 0.003 d,B | 0.244 ± 0.006 b,A | 0.264 ± 0.008 a,A | 0.241 ± 0.001 c,C | |
Bone mineral content (g) | 0 week | 1.87 ± 0.08 b,A | 1.70 ± 0.03 c,B | 1.97 ± 0.05 a,A | 1.73 ± 0.06 c |
4 weeks | 1.66 ± 0.005 B | 1.65 ± 0.05 AB | 1.69 ± 0.06 B | 1.74 ± 0.03 | |
8 weeks | 1.57 ± 0.03 c,C | 1.80 ± 0.04 b,A | 2.04 ± 0.05 a,A | 1.75 ± 0.02 b | |
Bone area (cm2) | 0 week | 7.59 ± 0.20 a,A | 7.39 ± 0.05 a | 7.78 ± 0.05 a,A | 6.98 ± 0.26 b |
4 weeks | 7.12 ± 0.03 AB | 7.04 ± 0.23 | 6.75 ± 0.15 B | 7.08 ± 0.14 | |
8 weeks | 6.76 ± 0.04 b,B | 7.38 ± 0.10 a | 7.49 ± 0.12 a,A | 7.25 ± 0.04 a |
Parameters | Duration (Week) | UVB-LED Exposure Time | |||
---|---|---|---|---|---|
1 h/d | 2 h/d | 3 h/d | 0 h/d | ||
P (mmol/L) | 0 week | 2.41 ± 0.09 a,B | 1.99 ± 0.02 b,B | 2.20 ± 0.03 ab,B | 2.43 ± 0.04 a,B |
4 weeks | 3.31 ± 0.05 A | 3.37 ± 0.06 A | 3.11 ± 0.04 A | 3.00 ± 0.05 A | |
8 weeks | 2.00 ± 0.08 B | 1.87 ± 0.06 B | 1.85 ± 0.05 B | 2.22 ± 0.04 B | |
Ca (mmol/L) | 0 week | 8.16 ± 0.07 a,B | 7.37 ± 0.08 b,B | 7.40 ± 0.17 b,B | 8.03 ± 0.10 a,A |
4 weeks | 8.91 ± 0.10 a,A | 8.42 ± 0.12 ab,A | 8.54 ± 0.11 ab,A | 8.14 ± 0.14 b,A | |
8 weeks | 3.82 ± 0.01 C | 3.85 ± 0.03 C | 3.83 ± 0.04 C | 3.86 ± 0.03 B | |
1,25(OH)2D3 (pg/mL) | 0 week | 51.54 ± 2.6 a,B | 30.62 ± 2.9 c,B | 34.21 ± 0.4 c,B | 43.94 ± 4.1 b,B |
4 weeks | 69.91 ± 1.8 a,A | 59.91 ± 3.5 c,A | 62.74 ± 3.3 b,A | 49.58 ± 3.8 d,A | |
8 weeks | 35.20 ± 1.3 C | 35.62 ± 1.4 B | 35.35 ± 1.5 B | 35.85 ± 1.4 C | |
25(OH)D3 (ng/mL) | 0 week | 37.11 ± 1.1 | 29.04 ± 1.6 | 33.07 ± 0.7 | 33.64 ± 1.9 |
4 weeks | 48.02 ± 1.5 | 40.85 ± 1.8 | 42.62 ± 1.7 | 36.23 ± 2.2 | |
8 weeks | 21.06 ± 1.4 | 21.02 ± 1.4 | 21.05 ± 1.6 | 20.10 ± 1.4 | |
7-DHC (mg/g) | 8 weeks | 19.00 ± 1.8 b | 17.25 ± 3.4 b | 14.20 ± 1.2 b | 33.50 ± 3.6 a |
Parameters | Duration (Week) | UV-LED Exposure Time | |||
---|---|---|---|---|---|
1 h/day | 2 h/day | 3 h/day | 0 h/day | ||
Egg shell thickness (mm) | 0 week | 0.28 ± 0.02 | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.02 |
4 weeks | 0.27 ± 0.03 | 0.27 ± 0.02 | 0.29 ± 0.02 | 0.30 ± 0.01 | |
8 weeks | 0.26 ± 0.02 | 0.26 ± 0.01 | 0.28 ± 0.01 | 0.28 ± 0.02 | |
Egg shell weight (g) | 0 week | 6.5 ± 0.37 | 6.8 ± 0.26 | 6.6 ± 0.54 | 6.4 ± 0.64 |
4 weeks | 6.4 ± 0.72 | 6.8 ± 0.40 | 6.9 ± 0.84 | 7.0 ± 0.35 | |
8 weeks | 6.0 ± 0.43 | 6.3 ± 0.26 | 6.4 ± 0.63 | 6.7 ± 0.39 | |
Egg weight (g) | 0 week | 63.9 ± 2.55 | 66.9 ± 4.77 | 64.5 ± 4.75 | 59.6 ± 3.75 |
4 weeks | 64.3 ± 3.34 | 68.3 ± 1.93 | 65.3 ± 4.65 | 65.0 ± 3.23 | |
8 weeks | 60.0 ± 1.97 | 63.7 ± 2.14 | 61.1 ± 4.77 | 64.2 ± 1.14 | |
Egg yolk weight (g) | 0 week | 16.7 ± 1.00 | 16.9 ± 1.03 | 16.7 ± 0.98 | 15.9 ± 1.37 |
4 weeks | 16.9 ± 1.01 | 18.5 ± 1.21 | 18.0 ± 1.17 | 17.6 ± 0.64 | |
8 weeks | 17.8 ± 0.56 | 18.2 ± 0.97 | 17.4 ± 1.92 | 17.9 ± 1.07 | |
Egg shell strength (kg/cm3) | 0 week | 2.88 ± 0.53 b,A | 2.77 ± 0.65 c,A | 3.17 ± 0.48 a,A | 3.10 ± 0.71 a,B |
4 weeks | 2.72 ± 0.64 c,B | 2.50 ± 0.40 d,B | 2.95 ± 1.08 b,B | 3.30 ± 0.58 a,A | |
8 weeks | 2.70 ± 0.71 b,B | 2.30 ± 0.79 d,C | 2.56 ± 0.56 c,C | 3.37 ± 0.85 a,A |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Y.; Zheng, W.; Li, B.; Tong, Q.; Shi, H.; Li, X. Effects of B-Wave Ultraviolet Supplementation Using Light-Emitting Diodes on Caged Laying Hens during the Later Phase of the Laying Cycle. Animals 2020, 10, 15. https://doi.org/10.3390/ani10010015
Wei Y, Zheng W, Li B, Tong Q, Shi H, Li X. Effects of B-Wave Ultraviolet Supplementation Using Light-Emitting Diodes on Caged Laying Hens during the Later Phase of the Laying Cycle. Animals. 2020; 10(1):15. https://doi.org/10.3390/ani10010015
Chicago/Turabian StyleWei, Yongxiang, Weichao Zheng, Baoming Li, Qin Tong, Haipeng Shi, and Xuanyang Li. 2020. "Effects of B-Wave Ultraviolet Supplementation Using Light-Emitting Diodes on Caged Laying Hens during the Later Phase of the Laying Cycle" Animals 10, no. 1: 15. https://doi.org/10.3390/ani10010015
APA StyleWei, Y., Zheng, W., Li, B., Tong, Q., Shi, H., & Li, X. (2020). Effects of B-Wave Ultraviolet Supplementation Using Light-Emitting Diodes on Caged Laying Hens during the Later Phase of the Laying Cycle. Animals, 10(1), 15. https://doi.org/10.3390/ani10010015