Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Diets
2.2. Plasma Samples and Fatty Acid Analysis
2.3. Milk Somatic Cell Sampling
2.4. RNA Extraction
2.5. Gene Abundance
2.6. Statistical Analysis
3. Results and Discussion
3.1. Animal Performance
3.2. Fatty Acid Profile in Plasma
3.3. Genes Selected to Study Fatty Acid Metabolism
3.4. Effects of OO and HVO on Lipid Metabolism-Related Genes in MSC
3.5. Long-Term Effects in the Relative Abundance of Lipid-Related Genes in MSC
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vargas-Bello-Perez, E.; Geldsetzer-Mendoza, C.; Morales, M.S.; Toro-Mujica, P.; Fellenberg, M.A.; Ibanez, R.A.; Gomez-Cortes, P.; Garnsworthy, P.C. Effect of olive oil in dairy cow diets on the fatty acid profile and sensory characteristics of cheese. Int. Dairy J. 2018, 85, 8–15. [Google Scholar] [CrossRef]
- Piperova, L.S.; Teter, B.B.; Bruckental, I.; Sampugna, J.; Mills, S.E.; Yurawecz, M.P.; Fritsche, J.; Ku, K.; Erdman, R.A. Mammary lipogenic enzyme activity, trans fatty acids and conjugated linoleic acids are altered in lactating dairy cows fed a milk fat-depressing diet. J. Nutr. 2000, 130, 2568–2574. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, A.A.A.; van Baal, J.; Smits, M.A.; Taweel, H.Z.H.; Hendriks, W.H.; van Vuuren, A.M.; Dijkstra, J. Effects of feeding rapeseed oil, soybean oil, or linseed oil on stearoyl-CoA desaturase abundance in the mammary gland of dairy cows. J. Dairy Sci. 2011, 94, 874–887. [Google Scholar] [CrossRef] [Green Version]
- Angulo, J.; Mahecha, L.; Nuernberg, K.; Nuernberg, G.; Dannenberger, D.; Olivera, M.; Boutinaud, M.; Leroux, C.; Albrecht, E.; Bernard, L. Effects of polyunsaturated fatty acids from plant oils and algae on milk fat yield and composition are associated with mammary lipogenic and SREBF1 gene expression. Animal 2012, 6, 1961–1972. [Google Scholar] [CrossRef] [Green Version]
- Vahmani, R.; Glover, K.E.; Fredeen, A.H. Effects of pasture versus confinement and marine oil supplementation on the expression of genes involved in lipid metabolism in mammary, liver, and adipose tissues of lactating dairy cows. J. Dairy Sci. 2014, 97, 4174–4183. [Google Scholar] [CrossRef]
- Ibeagha-Awemu, E.M.; Li, R.; Ammah, A.A.; Dudemaine, P.L.; Bissonnette, N.; Benchaar, C.; Zhao, X. Transcriptome adaptation of the bovine mammary gland to diets rich in unsaturated fatty acids shows greater impact of linseed oil over safflower oil on gene expression and metabolic pathways. BMC Genom. 2016, 17, 17. [Google Scholar] [CrossRef] [Green Version]
- Mathews, A.T.; Rico, J.E.; Sprenkle, N.T.; Lock, A.L.; McFadden, J.W. Increasing palmitic acid intake enhances milk production and prevents glucose-stimulated fatty acid disappearance without modifying systemic glucose tolerance in mid-lactation dairy cows. J. Dairy Sci. 2016, 99, 8802–8816. [Google Scholar] [CrossRef] [Green Version]
- Boutinaud, M.; Jammes, H. Potential uses of milk epithelial cells: A review. Reprod. Nutr. Dev. 2002, 42, 133–147. [Google Scholar] [CrossRef]
- Canovas, A.; Rincon, G.; Bevilacqua, C.; Islas-Trejo, A.; Brenaut, P.; Hovey, R.C.; Boutinaud, M.; Morgenthaler, C.; VanKlompenberg, M.K.; Martin, P.; et al. Comparison of five different RNA sources to examine the lactating bovine mammary gland transcriptome using RNA-Sequencing. Sci. Rep. 2014, 4. [Google Scholar] [CrossRef] [Green Version]
- Feng, S.; Salter, A.M.; Parr, T.; Garnsworthy, P.C. Extraction and quantitative analysis of stearoyl-coenzyme A desaturase mRNA from dairy cow milk somatic cells. J. Dairy Sci. 2007, 90, 4128–4136. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Vega, A.; Gutierrez-Gil, B.; Klopp, C.; Robert-Granie, C.; Tosser-Klopp, G.; Arranz, J.J. Characterization and Comparative Analysis of the Milk Transcriptome in Two Dairy Sheep Breeds using RNA Sequencing. Sci. Rep. 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Perez, E.; Iniguez-Gonzalez, G.; Cancino-Padilla, N.; Loor, J.J.; Garnsworthy, P.C. Effect of dietary vegetable oils on the fatty acid profile of plasma lipoproteins in dairy cows. Arch. Anim. Nutr. 2016, 70, 322–332. [Google Scholar] [CrossRef]
- Vargas-Bello-Perez, E.; Iniguez-Gonzalez, G.; Garnsworthy, P.C.; Loor, J.J. Transport of fatty acids within plasma lipoproteins in lactating and non-lactating cows fed on fish oil and hydrogenated palm oil. J. Anim. Physiol. Anim. Nutr. 2017, 101, 369–377. [Google Scholar] [CrossRef]
- Wickramasinghe, S.; Rincon, G.; Islas-Trejo, A.; Medrano, J.F. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genom. 2012, 13. [Google Scholar] [CrossRef] [Green Version]
- Vargas-Bello-Perez, E.; Bionaz, M.; Sciarresi-Arechabala, P.; Cancino-Padilla, N.; Morales, M.S.; Romero, J.; Leskinen, H.; Garnsworthy, P.C.; Loor, J.J. Long-Term Effects of Dietary Olive Oil and Hydrogenated Vegetable Oil on Expression of Lipogenic Genes in Subcutaneous Adipose Tissue of Dairy Cows. Vet. Sci. 2019, 6, 74. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W.; Horgan, G.W.; Dempfle, L. Relative expression software tool (REST (c)) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Bauman, D.E.; Harvatine, K.J.; Lock, A.L. Nutrigenomics, Rumen-Derived Bioactive Fatty Acids, and the Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2011, 31, 299–319. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genom. 2008, 9. [Google Scholar] [CrossRef] [Green Version]
- Mach, N.; Jacobs, A.A.A.; Kruijt, L.; van Baal, J.; Smits, M.A. Alteration of gene expression in mammary gland tissue of dairy cows in response to dietary unsaturated fatty acids. Animal 2011, 5, 1217–1230. [Google Scholar] [CrossRef] [Green Version]
- Barber, M.C.; Price, N.T.; Travers, M.T. Structure and regulation of acetyl-CoA carboxylase genes of metazoa. Biochim. Biophys. Acta (BBA)-Mol. Cell Biol. Lipids 2005, 1733, 1–28. [Google Scholar] [CrossRef]
- Badaoui, B.; Serradilla, J.M.; Tomas, A.; Urrutia, B.; Ares, J.L.; Carrizosa, J.; Sanchez, A.; Jordana, J.; Amills, M. Goat acetyl-coenzyme A carboxylase alpha: Molecular characterization, polymorphism, and association with milk traits. J. Dairy Sci. 2007, 90, 1039–1043. [Google Scholar] [CrossRef] [Green Version]
- Bernard, L.; Leroux, C.; Bonnet, M.; Rouel, J.; Martin, P.; Chilliard, Y. Expression and nutritional regulation of lipogenic genes in mammary gland and adipose tissues of lactating goats. J. Dairy Res. 2005, 72, 250–255. [Google Scholar] [CrossRef]
- Bionaz, M.; Loor, J.J. ACSL1, AGPAT6, FABP3, LPIN1, and SLC27A6 are the most abundant isoforms in bovine mammary tissue and their expression is affected by stage of lactation. J. Nutr. 2008, 138, 1019–1024. [Google Scholar] [CrossRef]
- Hanhoff, T.; Lucke, C.; Spener, F. Insights into binding of fatty acids by fatty acid binding proteins. Mol. Cell. Biochem. 2002, 239, 45–54. [Google Scholar] [CrossRef]
- Liang, M.Y.; Hou, X.M.; Qu, B.; Zhang, N.; Li, N.; Cui, Y.J.; Li, Q.Z.; Gao, X.J. Functional analysis of FABP3 in the milk fat synthesis signaling pathway of dairy cow mammary epithelial cells. In Vitro Cell. Dev. Anim. 2014, 50, 865–873. [Google Scholar] [CrossRef]
- Marchitelli, C.; Contarini, G.; De Matteis, G.; Crisà, A.; Pariset, L.; Scatà, M.C.; Catillo, G.; Napolitano, F.; Moioli, B. Milk fatty acid variability: Effect of some candidate genes involved in lipid synthesis. J. Dairy Res. 2013, 80, 165–173. [Google Scholar] [CrossRef]
- Nafikov, R.A.; Schoonmaker, J.P.; Korn, K.T.; Noack, K.; Garrick, D.J.; Koehler, K.J.; Minick-Bormann, J.; Reecy, J.M.; Spurlock, D.E.; Beitz, D.C. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk. J. Dairy Sci. 2013, 96, 6007–6021. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.J.; Liu, Z.Y.; Sun, X.; Hou, X.M.; Qu, B.; Zhao, F.; Gao, X.J.; Sun, Z.; Li, Q.Z. Thyroid hormone responsive protein spot 14 enhances lipogenesis in bovine mammary epithelial cells. In Vitro Cell. Dev. Biol.-Anim. 2015, 51, 586–594. [Google Scholar] [CrossRef]
- Harvatine, K.J.; Bauman, D.E. SREBP1 and thyroid hormone responsive spot 14 (S14) are involved in the regulation of bovine mammary lipid synthesis during diet-induced milk fat depression and treatment with CLA. J. Nutr. 2006, 136, 2468–2474. [Google Scholar] [CrossRef] [Green Version]
- Russell, T.D.; Schaack, J.; Orlicky, D.J.; Palmer, C.; Chang, B.H.J.; Chan, L.; McManaman, J.L. Adipophilin regulates maturation of cytoplasmic lipid droplets and alveolae in differentiating mammary glands. J. Cell. Sci. 2011, 124, 3247–3253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, T.D.; Palmer, C.A.; Orlicky, D.J.; Fischer, A.; Rudolph, M.C.; Neville, M.C.; McManaman, J.L. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: Roles of adipophilin and lipid metabolism. J. Lipid. Res. 2007, 48, 1463–1475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.B.; Zhu, J.J.; Luo, J.; Cao, W.T.; Shi, H.P.; Yao, D.W.; Li, J.; Sun, Y.T.; Xu, H.F.; Yu, K.; et al. Genes regulating lipid and protein metabolism are highly expressed in mammary gland of lactating dairy goats. Funct. Integr. Genom. 2015, 15, 309–321. [Google Scholar] [CrossRef] [PubMed]
- Harvatine, K.J.; Boisclair, Y.R.; Bauman, D.E. Recent advances in the regulation of milk fat synthesis. Animal 2009, 3, 40–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rudolph, M.C.; Monks, J.; Burns, V.; Phistry, M.; Marians, R.; Foote, M.R.; Bauman, D.E.; Anderson, S.M.; Neville, M.C. Sterol regulatory element binding protein and dietary lipid regulation of fatty acid synthesis in the mammary epithelium. Am. J. Physiol.-Endocrinol. Metab. 2010, 299, E918–E927. [Google Scholar] [CrossRef] [Green Version]
- Mach, N.; Goselink, R.M.A.; van Baal, J.; Kruijt, L.; van Vuuren, A.M.; Smits, M.A. Relationship between milk fatty acid composition and the expression of lipogenic genes in the mammary gland of dairy cows. Livest. Sci. 2013, 151, 92–96. [Google Scholar] [CrossRef]
Ingredient Composition (% DM) | Diet | ||
---|---|---|---|
Control | OO | HVO | |
Fresh alfalfa | 28.9 | 28.9 | 28.9 |
Corn silage | 27.0 | 27.0 | 27.0 |
Malt distillers | 23.1 | 23.1 | 23.1 |
Corn grain | 8.3 | 8.3 | 8.3 |
Wheat bran | 6.2 | 6.2 | 6.2 |
Alfalfa hay | 2.6 | 2.6 | 2.6 |
Soybean grain | 2.0 | 2.0 | 2.0 |
Rapeseed meal | 1.5 | 1.5 | 1.5 |
Vitamin and mineral premix a | 0.4 | 0.4 | 0.4 |
Olive oil | 0 | 3.0 | 0 |
Hydrogenated vegetable oil | 0 | 0 | 3.0 |
Gene | Name | Sequence | Bp (Size) | Ref. |
---|---|---|---|---|
ACACA | Acetyl-CoA carboxylase alfa | F: 3709 CATCTTGTCCGAAACGTCGAT R: 3809 CCCTTCGAACATACACCTCCA | 101 | B |
ACSL1 | Acyl-CoA Synthetase Long Chain Family Member 1 | F.1929 GTGGGCTCCTTTGAAGAACTGT R.2048 ATAGATGCCTTTGACCTGTTCAAAT | 120 | A |
ACSS2 | Acyl-CoA Synthetase Short Chain Family Member 2 | F. 1871 GGCGAATGCCTCTACTGCTT R. 1970 GGCCAATCTTTTCTCTAATCTGCTT | 100 | B |
PLIN2 (ADFP) | Adipose Differentiation-Related Protein | F. 161 TGGTCTCCTCGGCTTACATCA R. 241 TCATGCCCTTCTCTGCCATC | 81 | B |
DGAT1 | Diacylglycerol O-acyltransferase Homolog 1 | F. 190 CCACTGGGACCTGAGGTGTC R. 290 GCATCACCACACACCAATTCA | 101 | B |
DGAT2 | Diacylglycerol O-acyltransferase Homolog 2 | F: 389 CATGTACACATTCTGCACCGATT R: 488 TGACCTCCTGCCACCTTTCT | 100 | B |
FABP3 | Fatty Acid Binding Protein 3 | F. 458 GAACTCGACTCCCAGCTTGAA R. 559 AAGCCTACCACAATCATCGAAG | 102 | A |
FABP4 | Fatty Acid Binding Protein 4 | F: 401 TGGTGCTGGAATGTGTCATGA R: 501 TGGAGTTCGATGCAAACGTC | 101 | A |
FADS2 | Fatty acid desaturase 2 | F. 642 AAAGGGTGCCTCTGCCAACT R. 742 ACACGTGCAGCATGTTCACA | 101 | B |
FASN | Fatty acid synthase | F.6473 ACCTCGTGAAGGCTGTGACTCA R.6564 TGAGTCGAGGCCAAGGTCTGAA | 92 | B |
FATP (SLC27A6) | Soluble Carrier Protein 27A | F: 861 GGCAAGGGCATGGATGATC R: 956 GCGGTAGTACCTGCTGTGCAC | 96 | A |
INSIG1 | Insulin Induced Gene 1 | F. 523 AAAGTTAGCAGTCGCGTCGTC R. 630 TTGTGTGGCTCTCCAAGGTGA | 108 | C |
LPIN1 | Lipin 1 | F. 147 TGGCCACCAGAATAAAGCATG R. 247 GCTGACGCTGGACAACAGG | 101 | A |
LPL | Lipoprotein Lipase | F. 327 ACACAGCTGAGGACACTTGCC R. 427 GCCATGGATCACCACAAAGG | 101 | B |
PPARG | Peroxisome Proliferator Activated Receptor Gamma | F. 135 CCAAATATCGGTGGGAGTCG R. 235 ACAGCGAAGGGCTCACTCTC | 101 | B |
SCAP | SREBF Chaperone | F. 1188 CCATGTGCACTTCAAGGAGGA R. 1295 ATGTCGATCTTGCGTGTGGAG | 108 | C |
SCD | Stearoyl-CoA desaturase | F. 809 TCCTGTTGTTGTGCTTCATCC R. 909 GGCATAACGGAATAAGGTGGC | 101 | A |
SREBF1 | Sterol Regulatory Element Binding Transcription Factor | F. 2824 TGTCCACAAAAGCAAATCGC R. 2990 TGTCGACCACCTCTGGCTTC | 101 | A |
THRSP | Thyroid Hormone Responsive | F. 631 CTACCTTCCTCTGAGCACCAGTTC R. 781 ACACACTGACCAGGTGACAGACA | 151 | C |
VLDLR | Very Low Density Lipoprotein Receptor | F. 98 GCCCAGAACAGTGCCATATGA R. 200 TTTTCACCATCACACCGCC | 103 | B |
Fatty Acid (g/100g of Fatty Acid) | Diets 1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
Control | OO | HVO | Diet (D) | Time (T) | D × T | ||
C14:0 | 0.31 b | 0.31 b | 0.92 a | 0.13 | 0.010 | 0.972 | 0.984 |
C15:0 | 0.32 | 0.34 | 0.63 | 0.19 | 0.210 | 0.623 | 0.706 |
C15:1 cis-9 | 0.21 b | 0.88 a | 0.27 b | 0.56 | 0.042 | 0.443 | 0.394 |
C16:0 | 14.75 | 13.98 | 16.53 | 0.57 | 0.145 | 0.701 | 0.497 |
C17:0 | 0.71 | 0.61 | 0.45 | 0.16 | 0.275 | 0.275 | 0.725 |
C17:1 cis-9 | 0.33 | 0.11 | 0.2 | 0.15 | 0.372 | 0.154 | 0.155 |
C18:0 | 35.44 | 35.6 | 34.16 | 1.17 | 0.068 | 0.101 | 0.356 |
C18:1 trans-11 | 0.20 b | 0.27 a | 0.11 c | 0.04 | 0.007 | <0.001 | <0.001 |
C18:1 cis-9 | 0.32 b | 1.03 a | 0.90 b | 0.06 | 0.040 | 0.714 | 0.553 |
C18:2 cis-9, cis-12 | 46.01 | 44.31 | 44.2 | 2.04 | 0.616 | 0.026 | 0.416 |
C18:3 cis-9, cis-12, cis-15 | 0.37 b | 1.41 a | 0.56 b | 0.78 | 0.046 | 0.175 | 0.542 |
C18:2 cis-9, trans-11 | 1.02 | 1.15 | 1.07 | 0.41 | 0.970 | <0.001 | 0.469 |
Σ Saturated fatty acids | 51.5 | 50.8 | 50.4 | 1.47 | 0.751 | 0.446 | 0.364 |
Σ Monounsaturated fatty acids | 1.07 b | 2.29 a | 1.46 b | 0.66 | 0.018 | 0.027 | 0.057 |
Σ Polyunsaturated fatty acids | 47.40 | 46.84 | 45.84 | 1.82 | 0.689 | 0.071 | 0.511 |
Gene | Day | Abundance | Standard Error | p Value | Regulation |
---|---|---|---|---|---|
ACACA | 21 | 0.334 | 0.041–2.591 | 0.077 | |
42 | 20.079 | 0.244–711.375 | 0.077 | ||
63 | 0.307 | 0.038–2.074 | 0.076 | ||
PLIN2 (ADFP) | 21 | 2.485 | 0.433–7.416 | 0.059 | |
42 | 8.079 | 1.666–77.219 | <0.001 | UP | |
63 | 0.639 | 0.231–2.658 | 0.319 | ||
THRSP | 21 | 54.151 | 21.098–146.235 | <0.001 | UP |
42 | 91.637 | 26.148–402.981 | <0.001 | UP | |
63 | 1.252 | 0.005–72.772 | 0.859 | ||
FABP3 | 21 | 1.266 | 0.294–3.534 | 0.565 | |
42 | 1.266 | 0.200–13.812 | 0.713 | ||
63 | 0.586 | 0.206–3.130 | 0.199 | ||
FABP4 | 21 | 0.472 | 0.112–2.295 | 0.159 | |
42 | 1.009 | 0.200–7.091 | 0.986 | ||
63 | 0.7 | 0.158–3.246 | 0.514 |
Gene | Day | Abundance | Standard Error | p Value | Regulation |
---|---|---|---|---|---|
ACACA | 21 | 0.225 | 0.022–3.169 | 0.051 | UP |
42 | 2.021 | 0.114–54.081 | 0.506 | ||
63 | 0.608 | 0.119–2.447 | 0.349 | ||
PLIN2 (ADFP) | 21 | 0.842 | 0.223–3.708 | 0.732 | |
42 | 1.445 | 0.199–21.925 | 0.555 | ||
63 | 1.799 | 0.623–4.701 | 0.069 | ||
THRSP | 21 | 1.722 | 0.079–27.974 | 0.531 | |
42 | 8.096 | 1.274–30.976 | <0.001 | UP | |
63 | 0.055 | 0.000–1.343 | 0.018 | DOWN | |
FABP3 | 21 | 0.349 | 0.089–1.170 | 0.007 | DOWN |
42 | 0.579 | 0.170–2.806 | 0.233 | ||
63 | 0.468 | 0.143–2.135 | 0.076 | ||
FABP4 | 21 | 1.076 | 0.166–5.086 | 0.891 | |
42 | 4.089 | 0.438–19.307 | 0.053 | UP | |
63 | 0.459 | 0.185–1.455 | 0.047 | DOWN |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargas-Bello-Pérez, E.; Geldsetzer-Mendoza, C.; Cancino-Padilla, N.; Morales, M.S.; Leskinen, H.; Garnsworthy, P.C.; Loor, J.J.; Romero, J. Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows. Animals 2020, 10, 57. https://doi.org/10.3390/ani10010057
Vargas-Bello-Pérez E, Geldsetzer-Mendoza C, Cancino-Padilla N, Morales MS, Leskinen H, Garnsworthy PC, Loor JJ, Romero J. Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows. Animals. 2020; 10(1):57. https://doi.org/10.3390/ani10010057
Chicago/Turabian StyleVargas-Bello-Pérez, Einar, Carolina Geldsetzer-Mendoza, Nathaly Cancino-Padilla, María Sol Morales, Heidi Leskinen, Philip C. Garnsworthy, Juan J. Loor, and Jaime Romero. 2020. "Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows" Animals 10, no. 1: 57. https://doi.org/10.3390/ani10010057
APA StyleVargas-Bello-Pérez, E., Geldsetzer-Mendoza, C., Cancino-Padilla, N., Morales, M. S., Leskinen, H., Garnsworthy, P. C., Loor, J. J., & Romero, J. (2020). Effects of Dietary Vegetable Oils on Mammary Lipid-Related Genes in Holstein Dairy Cows. Animals, 10(1), 57. https://doi.org/10.3390/ani10010057