Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Animals
2.3. Data
2.4. Pedigree Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Falconer, D.S.; MacKay, T.F.C. Introduction to Quantitative Genetics, 4th ed.; Longmans Green: Harlow, UK, 1996. [Google Scholar]
- Hill, W.G. Maintenance of quantitative genetic variation in animal breeding programmes. Livest. Prod. Sci. 2000, 63, 99–109. [Google Scholar] [CrossRef]
- Leroy, G.; Carroll, E.L.; Bruford, M.W.; DeWoody, J.A.; Strand, A.; Waits, L.; Wang, J. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. J. Evol. Appl. 2018, 11, 1066–1083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burrow, H.M. The effects of inbreeding in beef cattle. Anim. Breed. Abstr. 1993, 61, 737–751. [Google Scholar]
- Carolino, N.; Gama, L.T. Indicators of genetic erosion in an endangered population: The Alentejana cattle breed in Portugal. J. Anim. Sci. 2008, 86, 47–56. [Google Scholar] [CrossRef] [PubMed]
- Goyache, F.; Gutiérrez, J.P.; Fernández, I.; Gomez, E.; Alvarez, I.; Díaz, C.; Royo, L.J. Using pedigree information to monitor genetic variability of endangered populations: The Xalda sheep breed of Asturias. J. Anim. Breed. Genet. 2003, 120, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.A.; Carolino, N.; Gama, L.T. Genetic diversity in the Lusitano horse breed assessed by pedrigree analysis. J. Live Sci. 2012, 148, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Oldenbroek, K.; Van der Waaij, L. Chapter 14: Maintenance of genetic diversity. In Textbook Animal Breeding and Genetics for BSc Students; Centre for Genetic Resources and Animal Breeding and Genomics Group, Wageningen University and Research Centre: Wageningen, The Netherlands, 2014; pp. 208–280. [Google Scholar]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 2013, 45, 1. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Mena, B.; Schad, K.; Hanna, N.; Lacy, R.C. Pedigree analysis for the genetic management of group-living species. Ecol. Evol. 2016, 6, 3067–3078. [Google Scholar]
- Robertson, A. A numerical description of breed structure. J. Agric. Sci. 1953, 43, 334–336. [Google Scholar] [CrossRef]
- James, J.W. Computation of genetic contributions from pedigrees. Theor. Appl. Genet. 1972, 42, 272–273. [Google Scholar] [CrossRef]
- Lacy, R.C. Analysis of founder representations in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989, 8, 111–123. [Google Scholar]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5–23. [Google Scholar]
- Dunner, S.; Checa, M.L.; Gutiérrez, J.P.; Martín, J.P.; Cañón, J. Genetic analysis and management in small populations: The Asturcon pony as an example. Genet. Sel. Evol. 1998, 30, 397–405. [Google Scholar]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar]
- Gutiérrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realised effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet. 2011, 128, 56–63. [Google Scholar]
- Carolino, N.; Pais, J.; Ventura, P.; Henriques, N.; Gama, L.; Matos, C.E.F. Avaliação genética e efeitos fixos para o peso ao desmame em bovinos da raça Mertolenga. In Proceedings of the XIII Congresso de Zootecnia Associação Portuguesa de Engenheiros Zootécnicos, Évora, Portugal, 1–4 October 2003. [Google Scholar]
- Silveira, M.; Melo, G.; Carolino, N.E.F. Genpro—Plataforma on-line de apoio à avaliação genética de espécies pecuárias. In Anais do XX Simpósio Iberoamericano sobre Conservação e Uso de Recursos Zoogenéticos Locais, Empresa Brasileira de Pesquisa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento; Embrapa Pantanal: Corumbá, Brasil, 2020; ISSN 1981-7233. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/212162/1/-Anais-XX-Simposio-Rec-Zoogeneticos-DOC-163-2020.pdf (accessed on 27 October 2020).
- Gutierrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar]
- Van Vleck, L.D. Selection Index and Introduction to Mixed Model Methods; CRC Press: Boca Raton, FL, USA, 1993. [Google Scholar]
- SAS Institute Inc. Copyright® 2019; SAS Institute Inc.: Cary, NC, USA, 2019. [Google Scholar]
- Monteiro, A.P.; Bettencourt, A.J.; Pereira, R. Raça bovina Mertolenga. In Bovinos em Portugal; Rodrigues, A., Ed.; Direcção Geral dos Serviços Veterinários—Direcção de Serviços de Fomento e Melhoramento Animal: Lisboa, Portugal, 1981; pp. 197–216. [Google Scholar]
- Danchin-Burge, C.; Leroy, G.; Brochard, M.; Moureaux, S.; Verrier, E. Evolution of the genetic variability of eight French dairy cattle breeds assessed by pedigree analysis. J. Anim. Breed. Genet. 2012, 129, 206–217. [Google Scholar]
- Meuwissen, T.H.E.; Woolliams, J.A. Effective sizes of livestock populations to prevent a decline in fitness. Theor. Appl. Genet. 1994, 89, 1019–1026. [Google Scholar]
- Leroy, G. Inbreeding depression in livestock species: Review and meta-analysis. Anim. Genet. 2014, 45, 618–628. [Google Scholar]
- Delgado, J.F.; De Andrés, N.; Valera, M.; Gutiérrez, J.P.; Cervantes, I. Assessment of population structure depending on breeding objectives in Spanish Arabian horse by genealogical and molecular information. Live Sci. 2014, 168, 9–16. [Google Scholar] [CrossRef]
- Cervantes, I.; Gutiérrez, J.P.; Meuwissen, T.H.E. Response to selection while maximizing genetic variance in small populations. Genet. Sel. Evol. 2016, 48, 69. [Google Scholar] [CrossRef] [Green Version]
- Kamiti, D.; Ilatsia, E.; Bett, R.; Kahi, A. Population structure and demographic trends of the registered Sahiwal cattle in Kenya. Trop. Anim. Health Prod. 2016, 48, 1029–1036. [Google Scholar] [CrossRef] [PubMed]
- Araujo Neto, F.R.; Alves Vieira, D.; Abreu Santos, D.J.; Pessoa, M.C.; Borquis, R.R.A.; Nunes de Oliveira, H.; Aarão Marques, L.F. Population structure of Simmental beef cattle using pedigree analysis. Trop. Anim. Health Prod. 2020, 52, 1513–1517. [Google Scholar] [CrossRef]
- Villanueva, B.; Pong-Wong, J.A.; Woolliams, J.A.; Avendaño, S. Managing genetic resources in selected and conserved populations. In Farm Animal Genetic Resources; Simm, G., Villanueva, B., Sinclair, K.D., Townsend, S., Eds.; Nottingham University Press: Nottingham, UK, 2004; pp. 113–131. [Google Scholar]
- Carolino, N.; Gama, L. Inbreeding depression on beef cattle traits: Estimates, linearity of effects and heterogeneity among sire-families. Genet. Sel. Evol. 2008, 40, 511–528. [Google Scholar]
- Hinrichs, D.; Thaller, G. Pedigree analysis and inbreeding effects on calving traits in large dairy herds in Germany. J. Dairy Sci. 2011, 94, 4726–4733. [Google Scholar] [CrossRef]
- Khaw, H.L.; Ponzoni, R.W.; Bijma, P. Indirect genetic effects and inbreeding: Consequences of BLUP selection for socially affected traits on rate of inbreeding. Genet. Sel. Evol. 2014, 46, 39. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, I.; Fernandez, E.N.; Blasco, A.; Ravagnolo, O.; Legarra, A. Effects of ignoring inbreeding in model-based accuracy for BLUP and SSGBLUP. J. Anim. Breed. Gemet. 2020, 137, 356–364. [Google Scholar] [CrossRef]
- Weigel, K.A. Controlling Inbreeding in Modern Breeding Programs. J. Dairy Sci. 2001, 84, 177–184. [Google Scholar] [CrossRef]
- Carolino, N.; Espadinha, P.; Silveira, M. Raça bovina Alentejana—Caracterização genética por análise demográfica—2016; Instituto Nacional de Investigação Agrária e Veterinária, I.P.—Polo de Investigação da Fonte Boa: Vale de Santarém, Portugal, 2016; p. 31. [Google Scholar]
- Carolino, N.; Matos Vieira Leite, J.A.; Vieira Dantas, R.J.; Silveira, M. Raça Bovina Barrosã—Caracterização Genética por Análise Demográfica—2016; Instituto Nacional de Investigação Agrária e Veterinária, I.P.—Polo de Investigação da Fonte Boa: Vale de Santarém, Portugal, 2016; p. 33. [Google Scholar]
- Carolino, N.; Santos-Silva, F.; Carolino, I.; Ferreira, F.; Silveira, M. Raça bovina Preta—Caracterização Genética Por Análise Demográfica 2017; Instituto Nacional de Investigação Agrária e Veterinária, I.P.—Polo de Investigação da Fonte Boa: Vale de Santarém, Portugal, 2017; p. 43. [Google Scholar]
- Malagueira, R.J.P. Caracterização Genética por Análise Demográfica da Raça Bovina Jarmelista. Degree on Animal Science; Escola Superior Agrária de Santarém—Instituto Politécnico de Santarém: Santarém, Portugal, 2018. [Google Scholar]
- Carolino, N.; Vitorino, A.; Guicho, E.; Silveira, M. Raça Bovina Marinhoa—Caracterização Genética Por Análise Demográfica 2019; Instituto Nacional de Investigação Agrária e Veterinária, I.P; Polo de Investigação da Fonte Boa: Vale de Santarém, Portugal, 2019; p. 32. [Google Scholar]
- Carolino, N.; Santos-Silva, F.; Carolino, I.; Borges, A.; Cirnes, M. Indicadores Demográficos da Raça Bovina Autóctone Arouquesa em Portugal. In Anais do XX Simpósio Iberoamericano sobre Conservação e Uso de Recursos Zoogenéticos Locais; Empresa Brasileira de Pesquisa Agropecuária, Ministério da Agricultura, Pecuária e Abastecimento: Corunbá, Brasil, 2020; ISSN 1981-7233. Available online: https://ainfo.cnptia.embrapa.br/digital/bitstream/item/212162/1/-Anais-XX-Simposio-Rec-Zoogeneticos-DOC-163-2020.pdf (accessed on 27 October 2020).
- Carolino, N.; Machado, R.; Dantas, R.; Silveira, M. Raça bovina Cachena—Caracterização Genética por Análise Demográfica—2020; Instituto Nacional de Investigação Agrária e Veterinária, I.P.—Polo de Investigação da Fonte Boa: Vale de Santarém, Portugal, 2020; p. 35. [Google Scholar]
- Santana Junior, M.L.; Oliveira, P.S.; Eler, J.P.; Gutiérrez, J.P.; Ferraz, J.B.S. Pedigree analysis and inbreeding depression on growth traits in Brazilian Marchigiana and Bonsmara breeds. J. Anim. Sci. 2012, 90, 99–108. [Google Scholar] [CrossRef]
- Santana Junior, M.L.; Pereira, R.J.; Bignardi, A.B.; Ayres, D.R.; Menezes, G.D.O.; Silva, L.O.C.; Josahkian, L.A.; Albuquerque, L.G. Structure and genetic diversity of Brazilian Zebu cattle breeds assessed by pedigree analysis. J. Live Sci. 2016, 187, 6–15. [Google Scholar] [CrossRef] [Green Version]
- Utrera, A.R.; Murillo, V.E.V.; Bermúdez, M.M.; Velásquez, G.M.; Ponce, S.I.R. Genetic diversity assessment of the Mexican Simmental population through pedigree analysis. R. Bras. Zootec. 2018, 47. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.P.; Altarriba, J.; Díaz, C.; Quintanilla, R.; Cañón, J.; Piedrafita, J. Pedigree analysis of eight Spanish beef cattle breeds. Genet. Sel. Evol. 2003, 35, 43–63. [Google Scholar] [CrossRef] [Green Version]
- Cañas-Álvarez, J.J.; Gónzalez-Rodríguez, D.; Martín-Collado, D.; Avilés, C.; Altarriba, J.; Baro, J.A.; De la Fuente, L.F.; Díaz, C.; Molina, A.; Varona, L.; et al. Monitoring changes in the demographic and genealogical structure of the main Spanish local beef breeds. J. Anim. Sci. 2014, 92, 4364–4374. [Google Scholar] [CrossRef]
- Cortés, O.; Sevane, N.; Baro, J.A.; Cañón, J. Pedigree analysis of a highly fragmented population, the Lidia cattle breed. J. Live Sci. 2014, 167, 1–8. [Google Scholar] [CrossRef]
- Bouquet, A.; Venot, E.; Laloe, D.; Forabosco, F.; Fogh, A.; Pabiou, T.; Moore, J.; Eriksson, A.; Renand, G.; Phocas, F. Genetic structure of the European Charolais and Limousin cattle metapopulations using pedigree analyses. J. Anim. Sci. 2011, 89, 1719–1730. [Google Scholar] [CrossRef]
- Honda, T.; Fujii, T.; Nomura, T.; Mukai, F. Evaluation of genetic diversity in Japanese Brown cattle population by pedigree analysis. J. Anim. Breed. Genet. 2006, 123, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Sölkner, J.; Filipcic, L.; Hampshire, N. Genetic variability of populations and similarity of subpopulations in Austrian cattle breeds determined by analysis of pedigrees. Anim. Sci. 1998, 67, 249–256. [Google Scholar] [CrossRef]
- Cavani, L.; Silva, R.M.O.; Carreño, L.O.D.; Ono, R.K.; Bertipaglia, T.S.; Farah, M.M.; Millen, D.D.; Fonseca, R. Genetic diversity of Brazilian Brahman cattle by pedigree analysis. Pesq. Agropec. Bras. 2018, 53, 74–79. [Google Scholar] [CrossRef]
- Gallego, R.O.; Toro, J.R.; Peña, J.L.; Castañeda, G.R.; Gil, J.G. Genetic diversity assessed by pedigree analysis in the Blanco Orejinegro (BON) cattle breed population from the Colombian germplasm bank. Chilean J. Agric. Anim. Sci. 2020, 36, 69–77. [Google Scholar] [CrossRef]
- McParland, S.; Kearney, J.F.; Rath, M.; Berry, D.P. Inbreeding trends and pedigree analysis of Irish dairy and beef cattle populations. J. Anim. Sci. 2007, 85, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.C.; Gonçalves de Rezende, M.P.; Dadousis, C.; Biffani, S.; Negrini, R.; Souza Carneiro, P.L.; Bozzi, R. Population Structure and Genetic Diversity of Italian Beef Breeds as a Tool for Planning Conservation and Selection Strategies. Animals 2019, 9, 880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez Torrecillas, C.; Bozzi, R.; Negrini, R.; Filippini, F.; Georgetti, A. Genetic variability of three Italian cattle breeds determined by parameters based on probabilities of gene origin. J. Anim. Breed. Genet. 2002, 119, 274–279. [Google Scholar] [CrossRef]
- Nomura, T.; Honda, T.; Mukai, F. Inbreeding and effective population size of Japanese Black cattle. J. Anim. Sci. 2001, 79, 366–370. [Google Scholar] [CrossRef] [PubMed]
- Kadlecik, O.; Pavlik, I. Genealogical analysis in small populations: The case of four Slovak beef cattle breeds. Slovak J. Anim. Sci. 2012, 45, 111–117. [Google Scholar]
- Pienaar, L.; Neser, F.W.C.; Grobler, J.P.; Scholtz, M.M.; MacNeil, M.D. Pedigree analysis of the Afrikaner cattle breed. Anim. Genet. Res. 2015, 57, 51–56. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, M.A.; Blackburn, H.D.; Enns, R.M.; Garrick, D.J. Changes in inbreeding of U.S. Herefords during the twentieth century. J. Anim. Sci. 2005, 83, 992–1001. [Google Scholar] [CrossRef] [PubMed]
- FAO. Secondary Guidelines for Development of National Farm Animal Genetic Resources Management Plans: Management of Small Populations at Risk; FAO: Rome, Italy, 1998. [Google Scholar]
- Goddard, M.G.; Smith, C. Optimum number of bull sires in dairy cattle breeding. J. Dairy Sci. 1990, 73, 1113–1122. [Google Scholar] [CrossRef]
- Biscarini, F.; Nicolazzi, E.L.; Stella, A.; Boettcher, P.J.; Gandini, G. Challenges and opportunities in genetic improvement of local livestock breeds. Front. Genet. 2015, 6, 33. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, A.C.; Sorensen, M.K.; Berg, P. Inbreeding in Danish dairy cattle breeds. J. Dairy Sci. 2005, 88, 1865–1872. [Google Scholar] [CrossRef] [Green Version]
- Alderson, G.H.L. A system to maximize the maintenance of genetic variability in small populations. In Conservation of Domestic Livestock; Alderson, L., Ed.; CAB International: Wallingford, UK, 1991; pp. 18–29. [Google Scholar]
- Sonesson, A.K.; Meuwissen, T.H. Minimization of rate of inbreeding for small populations with overlapping generations. Genetics 2001, 77, 285–292. [Google Scholar]
- Sánchez, L.; Bijma, P.; Woolliams, J.A. Minimizing inbreeding by managing genetic contributions across generations. Genetics 2003, 164, 1589–1595. [Google Scholar]
- Fernández, J.; Villanueva, B.; Pong–Wong, R.; Toro, M.A. Efficiency of the use of molecular markers in conservation programmes. Genetics 2005, 170, 1313–1321. [Google Scholar]
- Meuwissen, T.H.E. Operation of conservation schemes. In Utilisation and Conservation of Farm Animal Genetic Resources; Oldenbroek, J.K., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 167–193. [Google Scholar]
- Woolliams, J. Genetic contributions and inbreeding. In Utilisation and Conservation of Farm Animal Genetic Resources; Oldenbroek, J.K., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007; pp. 147–166. [Google Scholar]
- Toro, M.; Pérez-Enciso, M. Optimization of selection response under restricted inbreeding. Genet. Sel. Evol. 1990, 22, 93–107. [Google Scholar]
- Quinton, M.; Smith, C.; Goddard, M.E. Comparison of selection methods at the same level of inbreeding. J. Anim. Sci. 1992, 70, 1060–1067. [Google Scholar]
- Grundy, B.; Caballero, A.; Santiago, E.; Hill, W.G. A note on using biased parameter values and non-random mating to reduce rates of inbreeding in selection programmes. Anim. Prod. 1994, 59, 465–468. [Google Scholar]
- Villanueva, B.; Woolliams, J.A.; Simm, G. Strategies for controlling rates of inbreeding in adult MOET nucleus schemes for beef cattle. Genet. Sel. Evol. 1994, 26, 517–535. [Google Scholar]
- Luo, Z.W.; Woolliams, J.A.; Thompson, R. Controlling inbreeding in dairy MOET nucleus schemes. Anim. Sci. 1995, 60, 379–387. [Google Scholar]
- Brisbane, J.R.; Gibson, J.P. Balancing selection response and rate of inbreeding by including genetic relationships in selection decisions. Theor. Appl. Genet. 1995, 91, 421–431. [Google Scholar]
- Sonesson, A.K.; Grundy, B.; Woolliams, J.A.; Meuwissen, T.H.E. Selection with control of inbreeding in populations with overlapping generations: A comparison of methods. J. Anim. Sci. 2000, 70, 1–8. [Google Scholar]
- Sonesson, A.K.; Meuwissen, T.H. Non-random mating for selection with restricted rates of inbreeding and overlapping generations. Genet. Sel. Evol. 2002, 34, 23–39. [Google Scholar] [PubMed] [Green Version]
Item | Generation Interval, Years | ||
---|---|---|---|
Sires of calves | 6.40 ± 2.61 | ||
Dams of calves | 7.09 ± 3.70 | ||
Sires of sires | 6.05 ± 2.51 | L = 7.05 years | |
Sires of dams | 6.07 ± 2.47 | ||
Dams of sires | 7.25 ± 3.70 | ||
Dams of dams | 8.82 ± 3.63 |
Item | |
---|---|
All animals (n = 209,503) | |
Number of generations known | 3.98 ± 1.62 |
Average inbreeding coefficient (%) | 7.04 ± 9.46 |
Animals with inbreeding coefficient ≠ 0 (%) | 63.82 |
Average relatedness (%) | 1.76 ± 1.55 |
Reference population (n = 35,017) | |
Number of generations known | 5.62 ± 1.11 |
Average inbreeding coefficient (%) | 8.82 ± 10.37 |
Animals with inbreeding coefficient ≠ 0 (%) | 86.00 |
Average relatedness (%) | 2.05 ± 1.26 |
Mean relationship in the reference population (%) | 2.23 ± 2.46 |
Animals from the same herd | 29.25 ± 9.36 |
Animals in different herds | 1.87 ± 1.53 |
ΔF 1/year (%) | 0.183 ± 0.020 |
ΔF/generation (%) | 1.29 |
Effective population size 2 | 38.83 |
Effective population size 3 | 41.69 |
Item | |
---|---|
Number of founders | 11,471 |
Founder genome equivalents (ƒg) | 48.7 |
Effective number | |
Founders (fe) | 87.9 |
Ancestors (fa) | 59.4 |
Founding herds (fh) | 21.4 |
Herds supplying sires | 73.5 |
Herds supplying grandsires | 33.5 |
Herds supplying great-grandsires | 17.8 |
Ratio fe/fa | 1.48 |
Contribution to 50% of the genetic pool | |
Founders | 56 |
Ancestors | 41 |
Founding herds | 9 |
Contribution of 5 most influential founders (%) | 19.2 |
Contribution of 5 most influential ancestors (%) | 22.6 |
Contribution of 5 most influential founding herds (%) | 39.6 |
Breed | Country | L | ni | AR | Fx, % | Fx ≠ 0, % | ΔF/year, % | Ne | fe | fa | fe/fa | Source |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Braunvieh | Austria | 109 | 97 | 52 | 1.87 | [53] | ||||||
Grauvieh | Austria | 72 | 113 | 39 | 2.90 | [53] | ||||||
Pinzgauer | Austria | 232 | 66 | 47 | 1.40 | [53] | ||||||
Simmental | Austria | 258 | 221 | 114 | 1.94 | [53] | ||||||
Simmental | Brazil | 8.0 | 14.0 | 0.99 | 1.49 | 30.00 | 48 | 163 | 132 | 1.23 | [31,32,33,34,35,36,37,38,39,40,41,42,43,44,45] | |
Brahman | Brazil | 4.4 | 3.2 | 11.97 | 92.00 | 5 | 5 | 1.00 | [54] | |||
Bonsmara | Brazil | 3.2 | 2.2 | 0.81 | 0.26 | 8.97 | 325 | 220 | 85 | 2.59 | [45] | |
Marchigiana | Brazil | 7.0 | 4.5 | 4.04 | 1.33 | 60.43 | 140 | 120 | 32 | 3.75 | [45] | |
Blanco Orejinegro | Colombia | 4.6 | 6.0 | 4.60 | 3.10 | 100.00 | 55 | 38 | 1.45 | [55] | ||
Charolais | Denmark | 5.5 | 8.5 | 1.04 | 0.02 | 558 | 512 | 107 | 4.79 | [51] | ||
Limousine | Denmark | 5.4 | 7.3 | 1.02 | 0.01 | 1667 | 310 | 92 | 3.37 | [51] | ||
Charolais | France | 5.7 | 9.3 | 0.67 | 0.02 | 493 | 547 | 212 | 2.58 | [51] | ||
Limousine | France | 6.1 | 6.9 | 0.71 | 0.00 | 2459 | 468 | 156 | 3.00 | [51] | ||
Charolais | Ireland | 6.4 | 9.1 | 0.99 | 0.03 | 244 | 475 | 75 | 6.33 | [51] | ||
Limousine | Ireland | 6.3 | 6.5 | 0.79 | 0.02 | 345 | 395 | 110 | 3.59 | [51] | ||
Angus | Ireland | 0.02 | 160 | 40 | 4.00 | [56] | ||||||
Charolais | Ireland | 357 | 58 | 6.16 | [56] | |||||||
Hereford | Ireland | 0.13 | 64 | 150 | 35 | 4.29 | [56] | |||||
Limousin | Ireland | 316 | 82 | 3.85 | [56] | |||||||
Simmental | Ireland | 0.06 | 127 | 55 | 35 | 1.57 | [56] | |||||
Calvana | Italy | 10.3 | 10.0 | 6.39 | 2.54 | 0.25 | 20 | [57] | ||||
Charolais | Italy | 6.7 | 18.0 | 0.20 | 0.55 | 0.08 | 90 | [57] | ||||
Limousine | Italy | 7.1 | 15.0 | 0.20 | 0.37 | 0.05 | 133 | [57] | ||||
Mucca Pisana | Italy | 8.9 | 14.0 | 10.54 | 2.70 | 0.30 | 19 | [57] | ||||
Pontremolese | Italy | 12.5 | 13.0 | 7.15 | 3.42 | 0.27 | 15 | [57] | ||||
Sarda | Italy | 10.6 | 11.0 | 0.04 | 3.00 | 0.28 | 17 | [57] | ||||
Sardo Bruna | Italy | 13.3 | 10.0 | 0.05 | 2.64 | 0.20 | 19 | [57] | ||||
Sardo Modicana | Italy | 7.8 | 12.0 | 0.37 | 1.26 | 0.16 | 40 | [57] | ||||
Chianina | Italy | 256 | 221 | 96 | 2.30 | [58] | ||||||
Maremmana | Italy | 111 | 143 | 120 | 1.19 | [58] | ||||||
Mucca Pisana | Italy | 20 | 12 | 12 | 1.00 | [58] | ||||||
Japanese Brown-Kouchi | Japan | 10.4 | 8.9 | 8.80 | 6 | 79 | [52] | |||||
Japanese Brown-Kuma. | Japan | 9.4 | 10.2 | 7.10 | 0.74 | 26 | 74 | [52] | ||||
Japanese Black | Japan | 0.091 | 17 | [59] | ||||||||
Alentejana | Portugal | 6.5 | 3.0 | 5.74 | 54 | 0.33 | 23 | 122 | 55 | 2.21 | [5] | |
Alentejana | Portugal | 6.5 | 7.5 | 3.80 | 9.60 | 98 | 0.23 | 35 | 84 | 39 | 2.17 | [38] |
Barrosã | Portugal | 6.9 | 4.0 | 32.90 | 5.22 | 53 | 0.28 | 26 | 471 | 261 | 1.81 | [39] |
Preta | Portugal | 6.9 | 3.4 | 0.90 | 6.00 | 59 | 0.14 | 53 | 82 | 64 | 1.28 | [40] |
Jarmelista | Portugal | 6.1 | 2.8 | 19.00 | 14.00 | 90 | 1.02 | 9 | 11 | 6 | 1.89 | [41] |
Marinhoa | Portugal | 6.5 | 4.9 | 2.34 | 5.58 | 90 | 0.27 | 29 | 53 | 28 | 1.90 | [42] |
Arouquesa | Portugal | 6.5 | 4.1 | 0.44 | 1.11 | 38 | 0.17 | 45 | 232 | 115 | 2.02 | [43] |
Cachena | Portugal | 6.8 | 3.0 | 0.80 | 6.00 | 45 | 0.28 | 26 | 208 | 159 | 1.31 | [44] |
Blonde d’Aquitaine | Slovakia | 8.0 | 1.25 | 0.14 | 468 | 136 | 68 | 2.00 | [60] | |||
Charolais | Slovakia | 9.0 | 0.55 | 0.47 | 153 | 381 | 139 | 2.74 | [60] | |||
Limousine | Slovakia | 8.0 | 0.62 | 0.14 | 429 | 324 | 123 | 2.63 | [60] | |||
Simmental | Slovakia | 10.0 | 3.53 | 1.90 | 48 | 58 | 28 | 2.07 | [60] | |||
Afrikaner | S. Africa | 6.6 | 1.9 | 0.44 | 1.83 | 168 | 288 | 226 | 1.27 | [61] | ||
Asturiana de los Valles | Spain | 5.4 | 2.2 | 1.42 | 38 | [49] | ||||||
Avilenã Negra Iberica | Spain | 5.9 | 4.0 | 6.11 | 81 | [49] | ||||||
Bruna dels Pirineus | Spain | 6.6 | 1.0 | 1.00 | 4 | [49] | ||||||
Morucha | Spain | 6.4 | 2.2 | 5.93 | 56 | [49] | ||||||
Pirenaica | Spain | 6.6 | 4.6 | 3.45 | 95 | [49] | ||||||
Retinta | Spain | 6.2 | 3.8 | 7.22 | 73 | [49] | ||||||
Rubia Gallega | Spain | 7.1 | 3.1 | 2.69 | 59 | [49] | ||||||
Lidia | Spain | 7.5 | 4.5 | 7.80 | 36 | 28 | 16 | 1.75 | [50] | |||
Alistana | Spain | 4.1 | 1.5 | 0.73 | 1.09 | 11 | 0.33 | 36 | 265 | 56 | 4.73 | [48] |
Asturiana de la Montaña | Spain | 4.6 | 1.6 | 0.68 | 1.55 | 16 | 0.31 | 35 | 119 | 83 | 1.43 | [48] |
Asturiana de los Valles | Spain | 4.3 | 1.1 | 0.26 | 0.48 | 4 | 0.13 | 89 | 846 | 163 | 5.19 | [48] |
Avilenã Negra Iberica | Spain | 3.7 | 2.2 | 0.10 | 2.50 | 32 | 0.22 | 40 | 68 | 59 | 1.15 | [48] |
Bruna dels Pirineus | Spain | 5.5 | 0.8 | 0.35 | 0.25 | 2 | 0.09 | 95 | 48 | 40 | 1.20 | [48] |
Morucha | Spain | 4.8 | 1.2 | 0.30 | 2.20 | 17 | 0.36 | 27 | 130 | 105 | 1.24 | [48] |
Pirenaica | Spain | 6.1 | 3.0 | 1.58 | 1.60 | 48 | 0.07 | 123 | 153 | 58 | 2.64 | [48] |
Sayaguesa | Spain | 3.8 | 1.7 | 1.70 | 3.13 | 25 | 0.59 | 21 | 116 | 25 | 4.64 | [48] |
Charolais | Sweden | 4.6 | 8.3 | 0.92 | 0.00 | 371 | 99 | 3.75 | [51] | |||
Limousine | Sweden | 5.1 | 7.5 | 1.08 | –0.02 | 274 | 77 | 3.56 | [51] | |||
Limousine | UK | 5.9 | 7.5 | 1.13 | –0.01 | 232 | 86 | 2.70 | [51] | |||
Hereford | USA | 0.12 | 85 | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carolino, N.; Vitorino, A.; Carolino, I.; Pais, J.; Henriques, N.; Silveira, M.; Vicente, A. Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis. Animals 2020, 10, 1990. https://doi.org/10.3390/ani10111990
Carolino N, Vitorino A, Carolino I, Pais J, Henriques N, Silveira M, Vicente A. Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis. Animals. 2020; 10(11):1990. https://doi.org/10.3390/ani10111990
Chicago/Turabian StyleCarolino, Nuno, Andreia Vitorino, Inês Carolino, José Pais, Nuno Henriques, Manuel Silveira, and António Vicente. 2020. "Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis" Animals 10, no. 11: 1990. https://doi.org/10.3390/ani10111990
APA StyleCarolino, N., Vitorino, A., Carolino, I., Pais, J., Henriques, N., Silveira, M., & Vicente, A. (2020). Genetic Diversity in the Portuguese Mertolenga Cattle Breed Assessed by Pedigree Analysis. Animals, 10(11), 1990. https://doi.org/10.3390/ani10111990