Thicker Shell Eggs with Enriched N-3 Polyunsaturated Fatty Acids and Lower Yolk Cholesterol Contents, as Affected by Dietary Nettle (Urtica cannabina) Supplementation in Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Forage Preparation
2.2. Experimental Design, Dietary Treatment, and Management
2.3. Hen Performance and Egg Quality
2.4. Egg Chemical Composition Analysis
2.5. Blood Biochemical Measurements
2.6. Statistical Analysis
3. Results
3.1. Laying Production Performance
3.2. Egg Quality Traits
3.3. Egg Chemical Composition
3.4. Egg Yolk Lipid Profile and Fatty Acids Composition
3.5. Blood Biochemical Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tufarelli, V.; Ragni, M.; Laudadio, V. Feeding forage in poultry: A promising alternative for the future of production systems. Agriculture 2018, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Q.; Jin, Y.M.; Zhang, Y.J.; Yu, Z.; Yan, W.H. Silage quality and preservation of Urtica cannabina ensiled alone and with additive treatment. Grass Forage Sci. 2012, 69, 405–414. [Google Scholar] [CrossRef]
- Kregiel, D.; Pawlikowska, E.; Antolak, H. Urtica Spp.: Ordinary plants with extraordinary properties. Molecules 2018, 23, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bağci, E. Fatty acid composition of the aerial parts of Urtica dioica (stinging nettle) L. (Urticaceae). In Biodiversity; Şener, B., Ed.; Springer: Boston, MA, USA, 2002; pp. 323–327. ISBN 978-146-134-855-9. [Google Scholar]
- Guil-Guerrero, J.L.; Rebolloso-Fuentes, M.M.; Isasa, M.T. Fatty acids and carotenoids from stinging nettle (Urtica dioica L.). J. Food Compos. Anal. 2003, 16, 111–119. [Google Scholar] [CrossRef]
- Feng, X.; Wang, M.; Cheng, J.; Li, X. Two new secolignans with in vitro anti-inflammatory activities from Urtica Fissa rhizomes. J. Nat. Med. 2017, 71, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Rajput, P.; Chaudhary, M.; Sharma, R.A. Phytochemical and pharmacological importance of genus Urtica-a review. Int. J. Pharm. Res. Sci. 2018, 9, 1387–1396. [Google Scholar] [CrossRef]
- Avci, G.; Kupeli, E.; Eryavuz, A.; Yesilada, E.; Kucukkurt, I. Antihypercholesterolaemic and antioxidant activity assessment of some plants used as remedy in Turkish folk medicine. J. Ethnopharmacol. 2006, 107, 418–423. [Google Scholar] [CrossRef]
- Kouba, M.; Mourot, J. A review of nutritional effects on fat composition of animal products with special emphasis on n-3 polyunsaturated fatty acids. Biochimie 2011, 93, 13–17. [Google Scholar] [CrossRef]
- Selim, S.; Hussein, E. Production performance, egg quality, blood biochemical constituents, egg yolk lipid profile and lipid peroxidation of laying hens fed sugar beet pulp. Food Chem. 2020, 310, 125864. [Google Scholar] [CrossRef]
- Wen, Z.; Wu, Y.; Qi, Z.; Li, X.; Li, F.; Wu, X.; Yang, P. Rubber seed oil supplementation enriches n-3 polyunsaturated fatty acids and reduces cholesterol contents of egg yolks in laying hens. Food Chem. 2019, 301, 125198. [Google Scholar] [CrossRef]
- Zheng, M.; Mao, P.; Tian, X.; Guo, Q.; Meng, L. Effects of dietary supplementation of alfalfa meal on growth performance, carcass characteristics, meat and egg quality, and intestinal microbiota in Beijing-you chicken. Poult. Sci. 2019, 98, 2250–2259. [Google Scholar] [CrossRef]
- Hammershøj, M.; Johansen, N.F. Review: The effect of grass and herbs in organic egg production on egg fatty acid composition, egg yolk colour and sensory properties. Livest. Sci. 2016, 194, 37–43. [Google Scholar] [CrossRef]
- Stojčić, M.D.; Perić, L.; Levart, A.; Salobir, J. Influence of rearing system and nettle supplementation (Urtica dioica) on the carcass traits and fatty acid composition of Redbro broilers. Europ. Poult. Sci. 2016, 80, 1–10. [Google Scholar] [CrossRef]
- Loetscher, L.; Kreuzer, M.; Messikommer, R.E. Oxidative stability of the meat of broilers supplemented with rosemary leaves, rosehip fruits, chokeberry pomace, and entire nettle, and effects on performance and meat quality. Poult. Sci. 2013, 92, 2938–2948. [Google Scholar] [CrossRef] [PubMed]
- Bwana, M.O.; Njagi, L.W.; Nyaga, P.N.; Mbuthia, P.G.; Bebora, L.C.; Wahome, M.W.; Mutinda, W.U.; Kitala, P.M. Stinging nettle and neem enhance antibody response to local killed and imported live infectious bursal disease vaccines in indigenous chicken in Kenya. Poult. Sci. 2018, 97, 447–454. [Google Scholar] [CrossRef]
- Wang, F.R.; Dong, X.F.; Zhang, X.M.; Tong, J.M.; Xie, Z.G.; Zhang, Q. Effects of dietary taurine on egg production, egg quality and cholesterol levels in Japanese quail. J. Sci. Food Agr. 2009, 90, 2660–2663. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; pp. 29–90. ISBN 978-093-558-478-3. [Google Scholar]
- Mori, A.V.; Mendonça, C.X.; Almeid, C.M.; Pita, M.G. Supplementing hen diets with vitamins A and E affects egg yolk retinol and α-tocopherol levels. J. Appl. Poult. Res. 2003, 12, 106–114. [Google Scholar] [CrossRef]
- Hashemi, P.; Bedia, E.F. Analysis of vitamin B2 in saffron stigmas (Crocus sativus L) by capillary electrophoresis coupled with laser-induced fluorescence detector. Food Anal. Method 2016, 9, 2395–2399. [Google Scholar] [CrossRef]
- Attia, Y.A.; Al-Harthi, M.A.; Shiboob, M.M. Evaluation of quality and nutrient contents of table eggs from different sources in the retail market. Ital. J. Anim. Sci. 2014, 13, 3294. [Google Scholar] [CrossRef]
- Marchetti, N.; Bonetti, G.; Brandolini, V.; Cavazzini, L.; Maietti, A.; Meca, G.; Mañes, J. Stinging nettle (Urtica dioica L.) as a functional food additive in egg pasta: Enrichment and bioaccessibility of lutein and β-carotene. J. Funct. Foods 2018, 47, 547–553. [Google Scholar] [CrossRef]
- Moula, N.; Sadoudi, A.; Touazi, L.; Leroy, P.; Geda, F. Effects of stinging nettle (Urtica dioica) powder on laying performance, egg quality, and serum biochemical parameters of Japanese quails. Anim. Nutr. 2019, 5, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, S.; Nobakht, A.; Safamehr, A. The effects of different levels of nettle Urtica dioica L. (Urticaceae) medicinal plant in starter and grower feeds on performance, carcass traits, blood biochemical and immunity parameters of broilers. Iran. J. Appl. Anim. Sci 2011, 1, 177–181. [Google Scholar]
- Hashemi, S.M.; Soleimanifar, A.; Sharifi, S.D.; Vakili, N. Growth promoting effects of dried nettle extracts and its impact on hematology and antibody titter in broiler chickens. Int. J. Anim. Sci. 2018, 2, 1016. [Google Scholar]
- Mansoub, N.H. Effect of nettle (Urtica Dioica) on performance, quality of eggs and blood parameters of laying hens. Adv. Environ. Biol. 2011, 5, 2718–2721. [Google Scholar]
- Tabari, M.A.; Ghazvinian, K.; Irani, M.; Molaei, R. Effects of dietary supplementation of nettle root extract and pumpkin seed oil on production traits and intestinal microflora in broiler chickens. Bulg. J. Vet. Med. 2016, 2, 108–116. [Google Scholar] [CrossRef]
- Ahmadipour, B.; Khajali, F. Expression of antioxidant genes in broiler chickens fed nettle (Urtica dioica) and its link with pulmonary hypertension. Anim. Nutr. 2019, 5, 264–269. [Google Scholar] [CrossRef]
- Esmaeili, H.; Karami, A.; Maggi, F. Essential oil composition, total phenolic and flavonoids contents, and antioxidant activity of Oliveria decumbens Vent. (Apiaceae) at different phenological stages. J. Clean. Prod 2018, 198, 91–95. [Google Scholar] [CrossRef]
- Loetscher, L.; Kreuzer, M.; Messikommer, E.E. Utility of nettle (Urtica dioica) in layer diets as a natural yellow colorant for egg yolk. Anim. Feed Sci. Tech. 2013, 186, 158–168. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, M.; Kumar, M.; Kumar, S.; Singh, S.P. Anti-osteoporotic effect of Urtica dioica on ovariectomised rat. Indian J. Res. Pharm. Biotechnol. 2014, 2, 1015–1019. [Google Scholar]
- Irgin, C.; Çörekçi, B.; Ozan, F.; Halicioğlu, K.; Toptaş, O.; Yildirim, A.B.; Türker, A.; Yilmazd, F. Does stinging nettle (Urtica dioica) have an effect on bone formation in the expanded inter-premaxillary suture? Arch. Oral Biol. 2016, 69, 13–18. [Google Scholar] [CrossRef]
- Ebeid, T.A.; Suzuki, T.; Sugiyama, T. High ambient temperature influences eggshell quality and calbindin-Ca BP-d28k localization of eggshell gland and all intestinal segments of laying hens. Poult. Sci. 2012, 91, 2282–2287. [Google Scholar] [CrossRef]
- Nii, T.; Isobe, N.; Yoshimura, Y. Effects of avian infectious bronchitis virus antigen on eggshell formation and immunoreaction in hen oviduct. Theriogenology 2014, 81, 1129–1138. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Tan, D.; Wu, C.; Tang, C.; Li, T.; Han, X.; Wang, J.; Liu, C.; Li, R.; Wang, J. Deterioration of eggshell quality in laying hens experimentally infected with H9N2 avian influenza virus. Vet. Res. 2016, 47, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hencken, H. Chemical and physiological behavior of feed carotenoids and their effects on pigmentation. Poult. Sci. 1992, 71, 711–717. [Google Scholar] [CrossRef]
- Kouassi, G.F.; Koné, G.A.; Good, M.; Assidjo, N.E.; Kouba, M. Effect of Hevea brasiliensis seed meal or Euphorbia heterophylla seed supplemented diets on performance, physicochemical and sensory properties of eggs, and egg yolk fatty acid profile in guinea fowl (Numida meleagris). Poult. Sci. 2020, 99, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Grčević, M.; Kralik, Z.; Kralik, G.; Galović, O. Effects of dietary marigold extract on lutein content, yolk color and fatty acid profile of omega-3 eggs. J. Sci. Food Agr. 2018, 99, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.M.; Lee, H.; Kang, S.; Park, W.J. Fatty acid desaturases, polyunsaturated fatty acid regulation, and biotechnological advances. Nutrients 2006, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Fraeye, I.; Bruneel, C.; Lemahieu, C.; Buyse, J.; Muylaert, K.; Foubert, I. Dietary enrichment of eggs with omega-3 fatty acids: A review. Food Res. Int. 2012, 48, 961–969. [Google Scholar] [CrossRef]
- European Food Safety Authority. Scientific opinion on dietary reference values for fats, including saturated fatty acids, polyunsaturated fatty acids, monounsaturated fatty acids, trans fatty acids, and cholesterol. Efsa J. 2010, 8, 1461. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, D.D.; Baião, N.C.; Cançado, S.V.; Grimaldi, R.; Souza, M.R.; Lara, L.J.C.; Lana, A.M.Q. Effects of lipid sources in the diet of laying hens on the fatty acid profiles of egg yolks. Poult. Sci. 2010, 89, 2484–2490. [Google Scholar] [CrossRef]
- Trautwein, E. N-3 Fatty acids physiological and technical aspects for their use in food. Eur. J. Lipid Sci. Tech. 2015, 103, 45–55. [Google Scholar] [CrossRef]
- Kamoshita, M.; Toda, E.; Osada, H.; Narimatsu, T.; Kobayashi, S.; Tsubota, K.; Ozawa, Y. Lutein acts via multiple antioxidant pathways in the photo-stressed retina. Sci. Rep. 2016, 6, 30226. [Google Scholar] [CrossRef] [PubMed]
Items | Control | TRTA | TRTU | Alfalfa | U. cannabina |
---|---|---|---|---|---|
Ingredients (%) | |||||
Yellow corn | 61.0 | 58.6 | 60.0 | - | - |
Soybean meal | 19.7 | 16.3 | 13.8 | - | - |
Canola oil | 1.40 | 1.40 | 1.40 | - | - |
Alfalfa meal | 0 | 15.0 | 0 | - | - |
U. cannabina meal | 0 | 0 | 15.0 | - | - |
Corn gluten | 7.90 | - | 2.50 | - | - |
Limestone | 8.00 | 6.90 | 5.70 | - | - |
Dicalcium phosphate | 1.20 | 1.00 | 0.800 | - | - |
Premix 1 | 0.600 | 0.600 | 0.600 | - | - |
Lysine | 0.100 | 0.100 | 0.100 | - | - |
DL-Methionine | 0.100 | 0.100 | 0.100 | - | - |
Total | 100 | 100 | 100 | - | - |
Calculated values | |||||
ME (MJ/kg) | 11.5 | 11.3 | 11.5 | 6.55 | 6.82 |
Crude protein (%) | 16.0 | 16.0 | 16.0 | 20.5 | 25.6 |
Calcium (%) | 3.54 | 3.41 | 3.42 | 2.56 | 6.04 |
Total phosphorus (%) | 0.620 | 0.530 | 0.550 | 0.210 | 0.670 |
Methionine (%) | 0.410 | 0.400 | 0.400 | 0.200 | 0.240 |
Lysine (%) | 0.890 | 0.860 | 0.900 | 0.780 | 1.40 |
NDF (%) | 11.3 | 11.8 | 11.8 | 33.1 | 25.0 |
Items | Treatments | Time on Feed | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control | TRTA | TRTU | 32 Weeks | 36 Weeks | TRT | T | TRT × T | ||
Daily feed intake (g) | 109 b | 114 a | 115 a | 111 b | 115 a | 0.345 | <0.001 | <0.001 | 0.943 |
Egg production (%) | 93.4 b | 95.5 ab | 95.6 a | 95.8 a | 90.9 b | 0.598 | 0.049 | <0.001 | 0.058 |
Egg weight (g) | 57.4 | 57.6 | 58.2 | 57.7 | 58.1 | 0.143 | 0.060 | 0.362 | 0.717 |
Egg mass per day (g) | 53.6 | 55.0 | 55.7 | 54.3 | 55.4 | 0.409 | 0.058 | 0.204 | 0.924 |
Feed conversion ratio (g feed/g egg) | 2.03 | 2.08 | 2.06 | 2.06 | 2.09 | 0.017 | 0.226 | 0.413 | 0.906 |
Items | Treatments | Time on Feed | SEM | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Control | TRTA | TRTU | 32 Weeks | 36 Weeks | TRT | T | TRT × T | ||
Egg shape index | 1.30 | 1.29 | 1.27 | 1.29 | 1.29 | 0.060 | 0.276 | 0.897 | 0.764 |
Yolk (%) | 26.8 | 25.6 | 26.3 | 25.8 | 26.6 | 0.003 | 0.152 | 0.126 | 0.622 |
Shell (%) | 14.1 c | 14.6 b | 15.4 a | 14.2 b | 15.1 a | 0.095 | 0.023 | 0.016 | 0.035 |
Albumen (%) | 59.0 | 59.8 | 58.3 | 59.1 | 59.2 | 0.569 | 0.262 | 0.379 | 0.661 |
Eggshell thickness (mm) | 0.340 c | 0.361 b | 0.381 a | 0.347 b | 0.374 a | 0.005 | 0.001 | 0.001 | 0.018 |
Haugh unit | 80.1 | 80.5 | 81.1 | 80.8 | 80.6 | 1.52 | 0.135 | 0.438 | 0.927 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Control | TRTA | TRTU | |||
CP (%) | 11.7 | 12.4 | 13.8 | 0.409 | 0.084 |
EE (%) | 8.10 | 8.41 | 6.59 | 0.500 | 0.321 |
Ash (%) | 0.726 b | 0.856 b | 1.44 a | 0.117 | 0.002 |
Vit A (µg/100 g) | 190 b | 192 b | 223 a | 5.55 | 0.012 |
Vit B2 (mg/100 g) | 0.322 b | 0.353 b | 0.484 a | 0.020 | 0.003 |
P (mg/kg) | 1541 b | 2207 a | 2445 a | 163 | 0.029 |
Ca (mg/kg) | 321 c | 542 b | 651 a | 50.3 | 0.004 |
Fe (mg/kg) | 20.4 b | 25.9 b | 34.9 a | 2.44 | 0.015 |
Zn (mg/kg) | 14.1 b | 14.3 b | 18.8 a | 0.929 | 0.036 |
Mn (mg/kg) | 1.76 b | 1.89 b | 2.39 a | 0.106 | 0.007 |
Se (µg/100 g) | 2.83 | 2.92 | 4.83 | 0.451 | 0.108 |
Item | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Control | TRTA | TRTU | |||
Total cholesterol (mg/100 g) (egg yolk) | 15.4 a | 15.2 ab | 13.5 b | 0.370 | 0.013 |
C14:0 | 0.503 | 0.662 | 0.671 | 0.043 | 0.204 |
C16:0 | 26.7 | 27.5 | 26.8 | 0.611 | 0.874 |
C17:0 | 0.133 | 0.145 | 0.136 | 0.012 | 0.935 |
C18:0 | 8.45 | 8.40 | 7.44 | 0.367 | 0.514 |
SFA | 35.8 | 36.7 | 35.0 | 0.541 | 0.502 |
C14:1n9c | 0.092 | 0.109 | 0.118 | 0.011 | 0.637 |
C16:1n9c | 4.60 | 4.41 | 4.13 | 0.300 | 0.851 |
C18:1n9t | 2.57 | 2.48 | 2.35 | 0.253 | 0.955 |
C18:1n9c (oleinic acid) | 37.7 a | 35.7 ab | 33.1 b | 0.760 | 0.013 |
C20:1 | 0.240 | 0.239 | 0.267 | 0.019 | 0.798 |
MUFA | 45.2 a | 42.9 ab | 40.0 b | 0.840 | 0.007 |
C18:2 (trans-9, trans-12) | 2.38 | 2.31 | 2.77 | 0.407 | 0.910 |
C18:2n-6 (LA) | 11.1 | 10.9 | 12.7 | 0.412 | 0.122 |
C20:2n-6 | 0.097 | 0.116 | 0.120 | 0.014 | 0.828 |
C20:4n-6 (AA) | 2.51 | 2.34 | 2.89 | 0.213 | 0.624 |
n-6 PUFA | 16.1 | 15.6 | 18.5 | 0.679 | 0.181 |
C18:3n-3 (ALA) | 0.522 b | 0.675 a | 0.746 a | 0.040 | 0.029 |
C20:5 n-3 (EPA) | 0.265 b | 0.354 b | 0.622 a | 0.062 | 0.018 |
C22:6n-3 (DHA) | 0.502 b | 1.60 ab | 2.43 a | 0.324 | 0.018 |
n-3 PUFA | 1.29 b | 2.63 a | 3.80 a | 0.407 | 0.009 |
n-6/n-3 PUFA | 12.7 a | 6.25 b | 4.92 b | 1.26 | 0.001 |
Items | Treatment | SEM | p-Value | ||
---|---|---|---|---|---|
Control | TRTA | TRTU | |||
Total protein (g/dL) | 4.23 b | 4.96 ab | 5.55 a | 0.163 | 0.015 |
Albumin (g/dL) | 1.90 | 1.80 | 2.05 | 0.056 | 0.409 |
Globulin (g/dL) | 2.32 b | 3.16 a | 3.50 a | 0.151 | 0.005 |
A/G | 0.846 a | 0.586 b | 0.592 b | 0.042 | 0.004 |
ALT (U/L) | 14.9 | 10.5 | 13.5 | 1.04 | 0.504 |
AST (U/L) | 164 | 129 | 157 | 10.2 | 0.644 |
Total cholesterol (mmol/L) | 4.02 a | 2.52 b | 2.79 b | 0.170 | 0.034 |
Triglycerides (mmol/L) | 11.6 a | 9.84 ab | 8.50 b | 0.355 | 0.010 |
HDL-cholesterol (mmol/L) | 0.617 b | 1.47 a | 1.26 a | 0.104 | 0.001 |
LDL-cholesterol (mmol/L) | 1.16 | 1.35 | 1.17 | 0.095 | 0.860 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Na, T.; Jin, Y.; Zhang, X.; Qu, H.; Zhang, Q. Thicker Shell Eggs with Enriched N-3 Polyunsaturated Fatty Acids and Lower Yolk Cholesterol Contents, as Affected by Dietary Nettle (Urtica cannabina) Supplementation in Laying Hens. Animals 2020, 10, 1994. https://doi.org/10.3390/ani10111994
Zhang J, Na T, Jin Y, Zhang X, Qu H, Zhang Q. Thicker Shell Eggs with Enriched N-3 Polyunsaturated Fatty Acids and Lower Yolk Cholesterol Contents, as Affected by Dietary Nettle (Urtica cannabina) Supplementation in Laying Hens. Animals. 2020; 10(11):1994. https://doi.org/10.3390/ani10111994
Chicago/Turabian StyleZhang, Jize, Ta Na, Yanmei Jin, Xiaoqing Zhang, Hui Qu, and Qian Zhang. 2020. "Thicker Shell Eggs with Enriched N-3 Polyunsaturated Fatty Acids and Lower Yolk Cholesterol Contents, as Affected by Dietary Nettle (Urtica cannabina) Supplementation in Laying Hens" Animals 10, no. 11: 1994. https://doi.org/10.3390/ani10111994
APA StyleZhang, J., Na, T., Jin, Y., Zhang, X., Qu, H., & Zhang, Q. (2020). Thicker Shell Eggs with Enriched N-3 Polyunsaturated Fatty Acids and Lower Yolk Cholesterol Contents, as Affected by Dietary Nettle (Urtica cannabina) Supplementation in Laying Hens. Animals, 10(11), 1994. https://doi.org/10.3390/ani10111994