Association Analysis of Polymorphisms in the 5′ Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals’ Selection and Sampling
2.2. THI Calculation
2.3. Detection of Blood Biochemical Parameters
2.4. PCR Amplification and Sequencing
2.5. Detection of SNPs in the 5′ Flanking Region of the HSP70 Gene
2.6. Association Analyses
3. Results
3.1. Air Temperature, THI, and Rectal Temperature during Thermal Stress and TNZ Period
3.2. Heat or Cold Stress Effect on Blood Biochemical Parameters of Holstein Cows
3.3. SNPs in the 5′ Flanking Region of the HSP70 Gene
3.4. Association Analyses of SNPs and Blood Biochemical Parameters Related to Thermal Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jyotiranjan, T.; Mohapatra, S.; Mishra, C.; Dalai, N.; Kundu, A.K. Heat tolerance in goat-A genetic update. Pharma Innov. J. 2017, 6, 237–245. [Google Scholar]
- Brito, L.F.; Oliveira, H.R.; McConn, B.R.; Schinckel, A.P.; Arrazola, A.; Marchant-Forde, J.N.; Johnson, J.S. Large-Scale Phenotyping of Livestock Welfare in Commercial Production Systems: A New Frontier in Animal Breeding. Front. Genet. 2020, 11, 793. [Google Scholar] [CrossRef] [PubMed]
- Chaidanya, K.; Niyas, P.A.A.; Sejian, V.; Shaji, S. Adaptation of Livestock to Environmental Challenges. J. Vet. Sci. Med. Diagn. 2015, 4. [Google Scholar] [CrossRef]
- Sammad, A.; Umer, S.; Shi, R.; Zhu, H.; Zhao, X.; Wang, Y. Dairy cow reproduction under the influence of heat stress. J. Anim. Physiol. Anim. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Sailo, L.; Verma, N.; Bharti, P.; Saikia, J.; Imtiwati; Kumar, R. Impact of heat stress on health and performance of dairy animals: A review. Vet. World 2016, 9, 260–268. [Google Scholar] [CrossRef] [Green Version]
- Hahn, G.L. Housing and management to reduce climatic impacts on livestock. J. Anim. Sci. 1981, 52, 175–186. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I.; Hoogenboom, G. Genetic component of heat stress in dairy cattle, development of heat index function. J. Dairy Sci. 2000, 83, 2120–2125. [Google Scholar] [CrossRef]
- Habeeb, A.A.; Gad, A.E.; Atta, M.A. Temperature-Humidity Indices as Indicators to Heat Stress of Climatic Conditions with Relation to Production and Reproduction of Farm Animals. Int. J. Adv. Biotechnol. Res. 2018, 1, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Heinicke, J.; Hoffmann, G.; Ammon, C.; Amon, B.; Amon, T. Effects of the daily heat load duration exceeding determined heat load thresholds on activity traits of lactating dairy cows. J. Therm. Biol. 2018, 77, 67–74. [Google Scholar] [CrossRef]
- Bhat, S.; Kumar, P.; Kashyap, N.; Deshmukh, B.; Dige, M.S.; Bhushan, B.; Chauhan, A.; Kumar, A.; Singh, G. Effect of heat shock protein 70 polymorphism on thermotolerance in Tharparkar cattle. Vet. World 2016, 9, 113–117. [Google Scholar] [CrossRef]
- Xu, Q.; Wang, Y.C.; Hu, L.R.; Kang, L. The effect of temperature stress on milk production traits and blood biochemical parameters of Chinese Holstein cows. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 16 January 2018; Volume 11, p. 95. [Google Scholar]
- Nabenishi, H.; Yamazaki, A. Effects of temperature–humidity index on health and growth performance in Japanese black calves. Trop. Anim. Health Prod. 2017, 49, 397–402. [Google Scholar] [CrossRef]
- Dash, S.; Chakravarty, A.K.; Singh, A.; Upadhyay, A.; Singh, M.; Yousuf, S. Effect of heat stress on reproductive performances of dairy cattle and buffaloes: A review. Vet. World 2016, 9, 235–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yano, M.; Shimadzu, H.; Endo, T. Modelling temperature effects on milk production: A study on Holstein cows at a Japanese farm. SpringerPlus 2014, 3, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sammad, A.; Wang, Y.J.; Umer, S.; Lirong, H.; Khan, I.; Khan, A.; Ahmad, B.; Wang, Y. Nutritional physiology and biochemistry of dairy cattle under the influence of heat stress: Consequences and opportunities. Animals 2020, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Kumar, S.; Dangi, S.; Jangir, B. Physiological, Biochemical and Molecular Responses to Thermal Stress in Goats. Int. J. Livest. Res. 2015, 3, 27. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.Q.; Zhang, Z.W.; Qu, J.P.; Yao, H.D.; Li, M.; Li, S.; Xu, S.W. Cold stress induces antioxidants and Hsps in chicken immune organs. Cell Stress Chaperones 2014, 19, 635–648. [Google Scholar] [CrossRef] [Green Version]
- Şahin, E.; Gümüşlü, S. Cold-stress-induced modulation of antioxidant defence: Role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int. J. Biometeorol. 2004, 48, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Frank, J.W.; Carroll, J.A.; Allee, G.L.; Zannelli, M.E. The effects of thermal environment and spray-dried plasma on the acute-phase response of pigs challenged with lipopolysaccharide. J. Anim. Sci. 2003, 81, 1166–1176. [Google Scholar] [CrossRef]
- Dahl, G.E.; Do Amaral, B.C.; Levin, Y.; Zachut, M.; Skibiel, A.L. Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. J. Dairy Sci. 2017, 101, 705–716. [Google Scholar] [CrossRef]
- Abbas, Z.; Sammad, A.; Hu, L.; Fang, H.; Xu, Q.; Wang, Y. Glucose Metabolism and Dynamics of Facilitative Glucose Transporters (GLUTs) under the Influence of Heat Stress in Dairy Cattle. Metabolites 2020, 10, 312. [Google Scholar] [CrossRef]
- Johnson, H.D.; Vanjonack, W.J. Effects of Environmental and Other Stressors on Blood Hormone Patterns in Lactating Animals. J. Dairy Sci. 2010, 59, 1603–1617. [Google Scholar] [CrossRef]
- Bova, T.L.; Chiavaccini, L.; Cline, G.F.; Hart, C.G.; Matheny, K.; Muth, A.M.; Voelz, B.E.; Kesler, D.; Memili, E. Environmental stressors influencing hormones and systems physiology in cattle. Reprod. Biol. Endocrinol. 2014, 12, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koubková, M.; Knížková, I.; Kunc, P.; Härtlová, H.; Flusser, J.; Doležal, O. Influence of high environmental temperatures and evaporative cooling on some physiological, hematological and biochemical parameters in high-yielding dairy cows. Czech. J. Anim. Sci. 2002, 47, 309–318. [Google Scholar]
- Guo, J.; Gao, S.; Quan, S.; Zhang, Y.; Bu, D.; Wang, J. Blood amino acids profile responding to heat stress in dairy cows. Asian-Australas. J. Anim. Sci. 2018, 31, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Ansari-Mahyari, S.; Ojali, M.R.; Forutan, M.; Riasi, A.; Brito, L.F. Investigating the genetic architecture of conception and non-return rates in Holstein cattle under heat stress conditions. Trop. Anim. Health Prod. 2019, 51, 1847–1853. [Google Scholar] [CrossRef]
- Hu, L.; Ma, Y.; Liu, L.; Kang, L.; Brito, L.F.; Wang, D.; Wu, H.; Liu, A.; Wang, Y.; Xu, Q. Detection of functional polymorphisms in the hsp70 gene and association with cold stress response in Inner-Mongolia Sanhe cattle. Cell Stress Chaperones 2019, 409–418. [Google Scholar] [CrossRef]
- Garner, J.B.; Douglas, M.L.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; Nguyen, T.T.T.; Reich, C.M.; Hayes, B.J. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 2016, 6, 34114. [Google Scholar] [CrossRef]
- Ravagnolo, O.; Misztal, I. Genetic Component of Heat Stress in Dairy Cattle, Parameter Estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Kiang, J.G.; Tsokos, G.C. Heat shock protein 70 kDa: Molecular biology, biochemistry, and physiology. Pharmacol. Ther. 1998, 80, 183–201. [Google Scholar] [CrossRef]
- Liu, Y.; Li, D.; Li, H.; Zhou, X.; Wang, G. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol. Biol. Rep. 2011, 38, 83–88. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Hassan, F.; Nawaz, A.; Rehman, M.S.; Ali, M.A.; Dilshad, S.M.R.; Yang, C. Prospects of HSP70 as a genetic marker for thermo-tolerance and immuno-modulation in animals under climate change scenario. Anim. Nutr. 2019, 5, 340–350. [Google Scholar] [CrossRef]
- Lindquist, P.J.G.; Svensson, L.T.; Alexson, S.E.H. Molecular cloning of the peroxisome proliferator-induced 46-kDA cytosolic acyl-CoA thioesterase from mouse and rat liver—Recombinant expression in Escherichia coli, tissue expression, and nutritional regulation. Eur. J. Biochem. 1998, 251, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Palai, T. Importance of HSP70 in Livestock—At cellular level. J. Mol. Pathophysiol. 2014, 3, 30. [Google Scholar] [CrossRef]
- Simcox, A.A.; Cheney, C.M.; Hoffman, E.P.; Shearn, A. A deletion of the 3′ end of the Drosophila melanogaster hsp70 gene increases stability of mutant mRNA during recovery from heat shock. Mol. Cell. Biol. 2015, 5, 3397–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theodorakis, N.G.; Morimoto, R.I. Posttranscriptional regulation of hsp70 expression in human cells: Effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol. Cell. Biol. 2015, 7, 4357–4368. [Google Scholar] [CrossRef] [Green Version]
- Schwerin, M.; Maak, S.; Kalbe, C.; Fuerbass, R. Functional promoter variants of highly conserved inducible hsp70 genes significantly affect stress response. Biochim. Et Biophys. Acta—Gene Struct. Expr. 2001, 1522, 108–111. [Google Scholar] [CrossRef]
- Basiricò, L.; Morera, P.; Primi, V.; Lacetera, N.; Nardone, A.; Bernabucci, U. Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress Chaperones 2011, 16, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.M.; Singh, S.; Ganguly, I.; Nachiappan, R.K.; Ganguly, A.; Venkataramanan, R.; Chopra, A.; Narula, H.K. Association of heat stress protein 90 and 70 gene polymorphism with adaptability traits in Indian sheep (Ovis aries). Cell Stress Chaperones 2017, 22, 675–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mader, T.L.; Davis, M.S.; Brown-Brandl, T. Environmental factors influencing heat stress in feedlot cattle. J. Anim. Sci. 2006, 84, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Maurer, H.H.; Fritz, C.F. Toxicological detection of pholcodine and its metabolites in urine and hair using radio immunoassay, fluorescence polarisation immunoassay, enzyme immunoassay and gas chromatography-mass spectrometry. Int. J. Leg. Med. 1990, 104, 43–46. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. 2010, 21, 167–193. [Google Scholar] [PubMed]
- Wang, X.; Gao, H.; Gebremedhin, K.G.; Bjerg, B.S.; Van Os, J.; Tucker, C.B.; Zhang, G. A predictive model of equivalent temperature index for dairy cattle (ETIC). J. Therm. Biol. 2018, 76, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Collier, R.J.; Hall, L.W.; Rungruang, S.; Zimbleman, R.B. Quantifying heat stress and its impact on metabolism and performance. In Proceedings of the MidSouth Ruminant Nutrition Conference, Florida, FL, USA, 1 February 2012; pp. 74–84. [Google Scholar]
- Arieli, A.; Adin, G.; Bruckental, I. The effect of protein intake on performance of cows in hot environmental temperatures. J. Dairy Sci. 2004, 87, 620–629. [Google Scholar] [CrossRef] [Green Version]
- Abeni, F.; Calamari, L.; Stefanini, L. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. Int. J. Biometeorol. 2007, 52, 87–96. [Google Scholar] [CrossRef]
- Smith, D.L.; Smith, T.; Rude, B.J.; Ward, S.H. Short communication: Comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J. Dairy Sci. 2013, 96, 3028–3033. [Google Scholar] [CrossRef]
- Alamer, M. The role of prolactin in thermoregulation and water balance during heat stress in domestic ruminants. Asian J. Anim. Vet. Adv. 2011, 6, 1153–1169. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.T.; Guo, J.; Quan, S.Y.; Nan, X.M.; Fernandez, M.V.S.; Baumgard, L.H.; Bu, D.P. The effects of heat stress on protein metabolism in lactating Holstein cows. J. Dairy Sci. 2017, 100, 5040–5049. [Google Scholar] [CrossRef] [Green Version]
- Collier, R.J.; Doelger, S.G.; Head, H.H.; Thatcher, W.W.; Wilcox, C.J. Effects of Heat Stress during Pregnancy on Maternal Hormone Concentrations, Calf Birth Weight and Postpartum Milk Yield of Holstein Cows. J. Anim. Sci. 1982, 54, 309–319. [Google Scholar] [CrossRef]
- Bauman, D.E.; Bruce Currie, W. Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeostasis and Homeorhesis. J. Dairy Sci. 1980, 63, 1514–1529. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Jia, G.Q.; Zuo, J.J.; Zhang, Y.; Lei, J.; Ren, L.; Feng, D.Y. Effects of constant and cyclic heat stress on muscle metabolism and meat quality of broiler breast fillet and thigh meat. Poult. Sci. 2012, 91, 2931–2937. [Google Scholar] [CrossRef]
- Koch, F.; Lamp, O.; Eslamizad, M.; Weitzel, J.; Kuhla, B. Metabolic Response to heat stress in late-pregnant and early lactation dairy cows: Implications to liver-muscle crosstalk. PLoS ONE 2016, 11, e0160912. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, K.; Akbar, H.; Vailati-Riboni, M.; Basiricò, L.; Morera, P.; Rodriguez-Zas, S.L.; Nardone, A.; Bernabucci, U.; Loor, J.J. The effect of calving in the summer on the hepatic transcriptome of Holstein cows during the peripartal period. J. Dairy Sci. 2015, 98, 5401–5413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhoads, R.P.; La Noce, A.J.; Wheelock, J.B.; Baumgard, L.H. Short communication: Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration. J. Dairy Sci. 2011, 94, 1917–1921. [Google Scholar] [CrossRef]
- Gu, Z.; Li, L.; Tang, S.; Liu, C.; Fu, X.; Shi, Z.; Mao, H. Metabolomics Reveals that Crossbred Dairy Buffaloes Are More Thermotolerant than Holstein Cows under Chronic Heat Stress. J. Agric. Food Chem. 2018, 66, 12889–12897. [Google Scholar] [CrossRef] [PubMed]
- Bergh, U.; Danielsson, U.; Wennberg, L.; Sjodin, B. Blood lactate and perceived exertion during heat stress. Acta Physiol. Scand. 1986, 126, 617–618. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M. Heat stress on reproductive function and fertility in mammals. Reprod. Med. Biol. 2012, 11, 37–47. [Google Scholar] [CrossRef]
- Bernabucci, U.; Ronchi, B.; Lacetera, N.; Nardone, A. Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. J. Dairy Sci. 2002, 85, 2173–2179. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Xue, B.; Wang, K.; Li, S.; Li, Z. Effect of heat stress on endotoxin flux across mesenteric-drained and portal-drained viscera of dairy goat. J. Anim. Physiol. Anim. Nutr. 2011, 95, 468–477. [Google Scholar] [CrossRef]
- Matsuzuka, T.; Ozawa, M.; Nakamura, A.; Ushitani, A.; Hirabayashi, M.; Kanai, Y. Effects of heat stress on the redox status in the oviduct and early embryonic development in mice. J. Reprod. Dev. 2005, 51, 281–287. [Google Scholar] [CrossRef] [Green Version]
- Rhoads, R.P.; Nardone, A.; Ronchi, B.; Bernabucci, U.; Lacetera, N.; Baumgard, L.H. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Srikandakumar, A.; Johnson, E.H. Effect of heat stress on milk production, rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian milking Zebu cows. Trop. Anim. Health Prod. 2004, 36, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Srikandakumar, A.; Johnson, E.H.; Mahgoub, O. Effect of heat stress on respiratory rate, rectal temperature and blood chemistry in Omani and Australian Merino sheep. Small Rumin. Res. 2003, 49, 193–198. [Google Scholar] [CrossRef]
- Lee, W.C.; Hsiao, H.C.; Wu, Y.L.; Lin, J.H.; Lee, Y.P.; Fung, H.P.; Chen, H.H.; Chen, Y.H.; Chu, R.M. Serum C-reactive protein in dairy herds. Can. J. Vet. Res. 2003, 67, 102–107. [Google Scholar]
- Dieterich, A.; Troschinski, S.; Schwarz, S.; Di Lellis, M.A.; Henneberg, A.; Fischbach, U.; Ludwig, M.; Gärtner, U.; Triebskorn, R.; Köhler, H.R. Hsp70 and lipid peroxide levels following heat stress in Xeropicta derbentina (Krynicki 1836) (Gastropoda, Pulmonata) with regard to different colour morphs. Cell Stress Chaperones 2015, 20, 159–168. [Google Scholar] [CrossRef] [Green Version]
- Aebi, H. Catalase in Vitro. In Methods in Enzymology; Academic Press: New York, NY, USA, 1984; Volume 105, pp. 121–126. [Google Scholar] [CrossRef]
- Gutteridge, J.M.C. Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef]
- Halliwell, B.; Gutteridge, J.M.C. Understanding Insulin Action: Principles and Molecular Mechanisms Free Radicals. In Biology and Medicine, 2nd ed.; J. Espinal Ellis Horwood: London, UK, 1990; p. 7458. [Google Scholar]
- Goddard, P.J.; Keay, G.; Grigor, P.N. Lactate dehydrogenase quantification and isoenzyme distribution in physiological response to stress in red deer (Cervus elaphus). Res. Vet. Sci. 1997, 63, 119–122. [Google Scholar] [CrossRef]
- Helal, A.; Youssef, K.M.; El-Shaer, H.M.; Gipson, T.A.; Goetsch, A.L.; Askar, A.R. Effects of acclimatization on energy expenditure by different goat genotypes. Livest. Sci. 2010, 127, 67–75. [Google Scholar] [CrossRef]
- Aarif, O.; Mahapatra, P.S.; Yatoo, M.A.; Dar, S.A.; Aarif, O.; Mahapatra, P.S.; Yatoo, M.A.; Dar, S.A. Impact of Cold Stress on Physiological, Hormonal and Immune Status in Male and Female Broad Breasted White Turkeys. J. Stress Physiol. Biochem. 2013, 9, 54–60. [Google Scholar]
- Moore, H.; Rose, H.J.; Grace, A.A. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 2001, 24, 410–419. [Google Scholar] [CrossRef]
- Kang, H.J.; Piao, M.Y.; Lee, I.K.; Kim, H.J.; Gu, M.J.; Yun, C.H.; Seo, J.; Baik, M. Effects of ambient temperature and dietary glycerol addition on growth performance, blood parameters and immune cell populations of Korean cattle steers. Asian-Australas. J. Anim. Sci. 2017, 30, 505–513. [Google Scholar] [CrossRef] [Green Version]
- Christison GI, J.H. Cortisol turnover in heat-stressed cow. J. Anim. Sci. 1972, 35, 1005–1010. [Google Scholar] [CrossRef]
- Brouček, J.; Letkovičová, M.; Kovalčuj, K. Estimation of cold stress effect on dairy cows. Int. J. Biometeorol. 1991, 35, 29–32. [Google Scholar] [CrossRef]
- Šíma, P.; Červinková, M.; Funda, D.P.; Holub, M. Enhancement by Mild Cold Stress of the Antibody Forming Capacity in Euthymic and Athymic Hairless Mice. Folia Microbiol. 1998, 43, 521–523. [Google Scholar] [CrossRef]
- Moseley, P. Stress proteins and the immune response. Immunopharmacology 2000, 48, 299–302. [Google Scholar] [CrossRef]
- Isilk, R.; Bilgen, G. Associations between genetic variants of the POU1F1 gene and production traits in Saanen goats. Arch. Anim. Breed. 2019, 62, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Chen, M.Y.; Lin, E.C.; Tsou, H.L.; Kuo, Y.H.; Ju, C.C.; Lee, W.C. Effects of single nucleotide polymorphisms in the 5′-flanking region of heat shock protein 70.2 gene on semen quality in boars. Anim. Reprod. Sci. 2002, 70, 99–109. [Google Scholar] [CrossRef]
- Deb, R.; Sajjanar, B.; Singh, U.; Kumar, S.; Brahmane, M.P.; Singh, R.; Sengar, G.; Sharma, A. Promoter variants at AP2 box region of Hsp70.1 affect thermal stress response and milk production traits in Frieswal cross bred cattle. Gene 2013, 532, 230–235. [Google Scholar] [CrossRef] [PubMed]
Parameter | August/2014 | November/2014 | January/2015 |
---|---|---|---|
Temperature (°C) | 31.80 ± 2.80 | 12.76 ± 3.92 | −6.70 ± 2.35 |
Min~Max Temperature (°C) | 22.87–36.35 | 4.86–19.91 | −9.89–−1.90 |
THI | 81.57 ± 3.20 | 55.43 ± 5.43 | 25.63 ± 4.67 |
Min~Max THI | 72.40–89.68 | 40.84–63.92 | 18.10–36.69 |
Rectal temperature | 38.68 ± 0.03 a | 38.53 ± 0.03 b | 38.51 ± 0.03 b |
Blood Parameters | Heat Stress (LSM ± SE) 1 | TNZ (LSM ± SE) 1 | Cold Stress (LSM ± SE) 1 | p-Value 2 |
---|---|---|---|---|
ACTH (pg/mL) | 23.26 ± 0.51 ab | 24.08 ± 0.62 a | 21.43 ± 0.63 b | 0.008 |
BUN (mmol/L) | 5.00 ± 0.07 b | 5.59 ± 0.09 a | 5.39 ± 0.09 a | <0.0001 |
COR (ng/mL) | 95.66 ± 1.38 b | 95.07 ± 1.67 b | 104.20 ± 1.69 a | <0.0001 |
CORT (ng/mL) | 286.64 ± 0.92 b | 286.17 ± 1.12 b | 292.90 ± 1.13 a | <0.0001 |
CRP (mg/L) | 2.99 ± 0.08 b | 4.40 ± 0.09 a | 4.18 ± 0.09 a | <0.0001 |
DA (ng/mL) | 73.28 ± 1.89 ab | 78.12 ± 2.28 a | 67.22 ± 2.32 b | 0.0027 |
GH (ng/mL) | 5.26 ± 0.05 a | 3.95 ± 0.07 b | 3.41 ± 0.07 c | <0.0001 |
K+ (mmol/L) | 14.49 ± 0.13 c | 16.44 ± 0.16 b | 17.43 ± 0.16 a | <0.0001 |
LA (mmol/L) | 2.22 ± 0.02 b | 2.05 ± 0.03 a | 2.06 ± 0.03 a | <0.0001 |
LDH (U/L) | 901.82 ± 17.47 b | 1008.61 ± 21.03 a | 951.36 ± 21.40 b | <0.0004 |
LPO (nmol/L) | 5.49 ± 0.04 b | 5.80 ± 0.05 a | 5.74 ± 0.05 a | <0.0001 |
NE (pg/mL) | 355.34 ± 5.53 b | 425.06 ± 6.72 a | 408.18 ± 6.78 b | <0.0001 |
PRL (uIU/L) | 292.64 ± 2.69 a | 221.04 ± 3.27 b | 209.26 ± 3.30 c | <0.0001 |
SOD (U/mL) | 120.28 ± 0.92 a | 111.64 ± 1.12 b | 93.54 ± 1.13 c | <0.0001 |
SNP | Gene Position 1 | Chromosome Position | Accession Number | Allele Frequency 2 | |
---|---|---|---|---|---|
1 | −261 | NA | NA | A:0.8053 | T:0.1947 |
2 | −221 | NA | NA | A:0.0053 | G:0.9947 |
3 | −135 | 23:27,334,006 | NA | C:0.7193 | −:0.2807 |
4 | −12 | 23:27,333,887 | rs445536803 | A:0.1754 | G:0.8246 |
5 | +22 | 23:27,333,854 | NA | A:0.9474 | T:0.0526 |
6 | +45 | 23:27,333,831 | rs211506802 | A:0.7965 | T:0.2035 |
7 | +72 | 23:27,333,804 | rs471604061 | A:0.9263 | G:0.0737 |
8 | +94 | 23:27,333,782 | rs438646103 | A:0.1860 | G:0.8140 |
9 | +102 | 23:27,333,774 | rs478612967 | A:0.4158 | C:0.5842 |
10 | +105 | 23:27,333,771 | NA | G:0.6456 | T:0.3544 |
11 | +131 | NA | NA | C:0.9421 | G:0.0579 |
12 | +181 | 23:27,333,726 | rs473916108 | C:0.5895 | T:0.4105 |
SNPs | Stress | Blood Biochemical Parameters | p-Value 1 | Genotype | Number of Animals | Least Squares Mean + Standard Error 2 |
---|---|---|---|---|---|---|
4 (A-12G) | Heat stress | LA (mmol/L) | 0.03 | AA | 13 | 2.16 ± 0.12 ab |
AG | 33 | 2.06 ± 0.08 b | ||||
GG | 124 | 2.27 ± 0.05 a | ||||
Cold stress | DA (ng/mL) | 0.03 | AA | 9 | 84.66 ± 7.44 a | |
AG | 26 | 62.08 ± 4.68 b | ||||
GG | 86 | 65.74 ± 3.02 b | ||||
7 (A72G) | Heat stress | LPO (nmol/mL) | 0.02 | AA | 152 | 5.51 ± 0.06 a |
AG | 14 | 5.80 ± 0.15 a | ||||
GG | 4 | 4.72 ± 0.36 b | ||||
11 (C131G) | Cold stress | SOD (U/mL) | 0.04 | CC | 110 | 96.47 ± 1.21 b |
CG | 10 | 94.60 ± 3.11 ab | ||||
GG | 1 | 113.12 ± 6.42 a | ||||
12 (C181T) | Heat stress | LA (mmol/L) | 0.05 | CC | 81 | 2.16 ± 0.15 b |
CT | 28 | 2.19 ± 0.08 ab | ||||
TT | 61 | 2.34 ± 0.06 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, Z.; Hu, L.; Fang, H.; Sammad, A.; Kang, L.; Brito, L.F.; Xu, Q.; Wang, Y. Association Analysis of Polymorphisms in the 5′ Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress. Animals 2020, 10, 2016. https://doi.org/10.3390/ani10112016
Abbas Z, Hu L, Fang H, Sammad A, Kang L, Brito LF, Xu Q, Wang Y. Association Analysis of Polymorphisms in the 5′ Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress. Animals. 2020; 10(11):2016. https://doi.org/10.3390/ani10112016
Chicago/Turabian StyleAbbas, Zaheer, Lirong Hu, Hao Fang, Abdul Sammad, Ling Kang, Luiz F. Brito, Qing Xu, and Yachun Wang. 2020. "Association Analysis of Polymorphisms in the 5′ Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress" Animals 10, no. 11: 2016. https://doi.org/10.3390/ani10112016
APA StyleAbbas, Z., Hu, L., Fang, H., Sammad, A., Kang, L., Brito, L. F., Xu, Q., & Wang, Y. (2020). Association Analysis of Polymorphisms in the 5′ Flanking Region of the HSP70 Gene with Blood Biochemical Parameters of Lactating Holstein Cows under Heat and Cold Stress. Animals, 10(11), 2016. https://doi.org/10.3390/ani10112016