Extension and Advisory Organizations on the Road to the Digitalization of Animal Farming: An Organizational Learning Perspective
Abstract
:Simple Summary
Abstract
1. Introduction
2. Digitalization and Organizational Change in Extension and Advisory Organizations
2.1. Agricultural Digitalization as a Punctuational Change
2.2. How do Extension and Advisory Organizations React to Punctuational Changes?
3. Extension and Advisory Organizations in the Time of Digitalization: Change and Learning Pathways
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dumitrache, I.; Caramihai, S.I.; Sacala, I.S.; Moisescu, M.A. A cyber physical systems approach for agricultural enterprise and sustainable agriculture. In Proceedings of the 21st International Conference on Control Systems and Computer Science (CSCS), Bucharest, Romania, 29–31 May 2017; pp. 477–484. [Google Scholar]
- Tripicchio, P.; Satler, M.; Dabisias, G.; Ruffaldi, E.; Avizzano, C.A. Towards smart farming and sustainable agriculture with drones. In Proceedings of the IEEE International Conference on Intelligent Environments, Prague, Czech Republic, 15–17 July 2015; pp. 140–143. [Google Scholar]
- European Commission. The Future of Food and Farming—For a Flexible, Fair and Sustainable Common Agricultural Policy; European Union: Brussels, Belgium, 2017. [Google Scholar]
- European Union. Declaration of Cooperation on a Smart and Sustainable Digital Future for European Agriculture and Rural Areas; European Union: Brussels, Belgium, 2019. [Google Scholar]
- McLellan, C. Smart Farming: How IoT, Robotics, and AI are Tackling One of the Biggest Problems of the Century. Available online: https://www.techrepublic.com/article/smart-farming-how-iot-robotics-and-ai-are-tackling-one-of-the-biggest-problems-of-the-century/ (accessed on 12 December 2018).
- McFarland, M. Farmers Turn to Artificial Intelligence to Grow Better Crops. Available online: https://money.cnn.com/2017/07/26/technology/future/farming-ai-tomatoes/index.html (accessed on 26 July 2017).
- Wolfert, S.; Goense, D.; Sørensen, C.A.G. A future internet collaboration platform for safe and healthy food from farm to fork. In Proceedings of the Annual SRII Global Conference, San Jose, CA, USA, 23–25 April 2014; pp. 266–273. [Google Scholar]
- Fielke, S.; Taylor, B.; Jakku, E. Digitalisation of agricultural knowledge and advice networks: A state-of-the-art review. Agric. Syst. 2020, 180, 102763. [Google Scholar] [CrossRef]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.-J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; La Rocca, G.; De Rosa, M. Key questions on the use of big data in farming: An activity theory approach. NJAS Wagening. J. Life Sci. 2019, 90, 100297. [Google Scholar] [CrossRef]
- Klerkx, L.; Jakku, E.; Labarthe, P. A review of social science on digital agriculture, smart farming and agriculture 4.0: New contributions and a future research agenda. NJAS Wagening. J. Life Sci. 2019, 90, 100315. [Google Scholar] [CrossRef]
- Green, S.G.; Gavin, M.B.; Aiman-Smith, L. Assessing a multidimensional measure of radical technological innovation. IEEE Trans. Eng. Manag. 1995, 42, 203–214. [Google Scholar] [CrossRef]
- Neethirajan, S. The role of sensors, big data and machine learning in modern animal farming. Sens. Bio-Sens. Res. 2020, 29, 100367. [Google Scholar] [CrossRef]
- John, A.J.; Clark, C.E.F.; Freeman, M.J.; Kerrisk, K.L.; Garcia, S.C.; Halachmi, I. Milking robot utilization, a successful precision livestock farming evolution. Animal 2016, 10, 1484–1492. [Google Scholar] [CrossRef] [PubMed]
- McSweeney, D.; O’Brien, B.; Coughlan, N.E.; Férard, A.; Ivanov, S.; Halton, P.; Umstatter, C. Virtual fencing without visual cues: Design, difficulties of implementation, and associated dairy cow behaviour. Comput. Electron. Agric. 2020, 176, 105613. [Google Scholar] [CrossRef]
- Hansen, M.F.; Smith, M.L.; Smith, L.N.; Salter, M.G.; Baxter, E.M.; Farish, M.; Grieve, B. Towards on-farm pig face recognition using convolutional neural networks. Comput. Ind. 2018, 98, 145–152. [Google Scholar] [CrossRef]
- Neethirajan, S. Recent advances in wearable sensors for animal health management. Sens. Bio-Sens. Res. 2017, 12, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Reigones, R.; Gaspar, P.D.; Garcia, N. Livestock real-time vital signs monitoring system. In Proceedings of the International Congress on Engineering: Engineering for Evolution (ICEUBI2019), Cavilha, Portugal, 27–29 November 2019. [Google Scholar]
- Jo, S.K.; Park, D.H.; Park, H.; Kim, S.H. Smart livestock farms using digital twin: Feasibility study. In Proceedings of the 9th International Conference on Information and Communication Technology Convergence (ICTC), Jeju Island, Korea, 17–19 October 2018; pp. 1461–1463. [Google Scholar]
- Keshavarzi, H.; Sadeghi-Sefidmazgi, A.; Mirzaei, A.; Ravanifard, R. Machine learning algorithms, bull genetic information, and imbalanced datasets used in abortion incidence prediction models for Iranian Holstein dairy cattle. Prev. Vet. Med. 2020, 175, 104869. [Google Scholar] [CrossRef] [PubMed]
- Lee, I. Big data: Dimensions, evolution, impacts, and challenges. Bus. Horiz. 2017, 60, 293–303. [Google Scholar] [CrossRef]
- Kambatla, K.; Kollias, G.; Kumar, V.; Grama, A. Trends in big data analytics. J. Parallel Distrib. Comput. 2014, 74, 2561–2573. [Google Scholar] [CrossRef]
- Motti, V.G. Wearable Interaction; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Ruan, J.; Xu, J.; Chen-Tsai, R.Y.; Li, K. Genome editing in livestock: Are we ready for a revolution in animal breeding industry? Transgenic Res. 2017, 26, 715–726. [Google Scholar] [CrossRef]
- Ettlie, J.E.; Bridges, W.P.; O’Keefe, R.D. Organization Strategy and Structural Differences for Radical versus Incremental Innovation. Manag. Sci. 1984, 30, 682–695. [Google Scholar] [CrossRef]
- Regan, Á. ‘Smart farming’ in Ireland: A risk perception study with key governance actors. NJAS Wagening. J. Life Sci. 2019, 90–91, 100292. [Google Scholar] [CrossRef]
- Bronson, K. Smart Farming: Including Rights Holders for Responsible Agricultural Innovation. Technol. Innov. Manag. Rev. 2018, 8, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Eastwood, C.; Klerkx, L.; Ayre, M.; Rue, B.D. Managing Socio-Ethical Challenges in the Development of Smart Farming: From a Fragmented to a Comprehensive Approach for Responsible Research and Innovation. J. Agric. Environ. Ethics 2019, 32, 741–768. [Google Scholar] [CrossRef] [Green Version]
- Bers, J.A.; Dismukes, J.P.; Mehserle, D.; Rowe, C. Extending the Stage-Gate Model to Radical Innovation—The Accelerated Radical Innovation Model. J. Knowl. Econ. 2014, 5, 706–734. [Google Scholar] [CrossRef]
- Finister Ventures, LLC. 2018 Agtech Investment Review. Available online: https://files.pitchbook.com/website/files/pdf/Finistere_Ventures_2018_Agtech_Investment_Review_PJZ.pdf (accessed on 25 March 2019).
- Pham, X.; Stack, M. How data analytics is transforming agriculture. Bus. Horiz. 2018, 61, 125–133. [Google Scholar] [CrossRef]
- Dewar, R.D.; Dutton, J.E. The Adoption of Radical and Incremental Innovations: An Empirical Analysis. Manag. Sci. 1986, 32, 1422–1433. [Google Scholar] [CrossRef]
- Vasconez, J.P.; Kantor, G.A.; Cheein, F.A.A. Human–robot interaction in agriculture: A survey and current challenges. Biosyst. Eng. 2019, 179, 35–48. [Google Scholar] [CrossRef]
- Pivoto, D.; Waquil, P.D.; Talamini, E.; Finocchio, C.P.S.; Dalla Corte, V.F.; de Vargas Mores, G. Scientific development of smart farming technologies and their application in Brazil. Inf. Process. Agric. 2018, 5, 21–32. [Google Scholar] [CrossRef]
- Van de Ven, A.H.; Polley, D.E.; Garud, R.; Venkataraman, S. The Innovation Journey; Oxford University Press: New York, NY, USA, 1999. [Google Scholar]
- Guttentag, D. Airbnb: Disruptive innovation and the rise of an informal tourism accommodation sector. Curr. Issues Tour. 2015, 18, 1192–1217. [Google Scholar] [CrossRef]
- Rotz, S.; Gravely, E.; Mosby, I.; Duncan, E.; Finnis, E.; Horgan, M.; Leblanc, J.; Martin, R.; Neufeld, H.T.; Nixon, A.; et al. Automated pastures and the digital divide: How agricultural technologies are shaping labour and rural communities. J. Rural Stud. 2019, 68, 112–122. [Google Scholar] [CrossRef]
- Carolan, M. Publicising Food: Big Data, Precision Agriculture, and Co-Experimental Techniques of Addition. Sociol. Rural 2017, 57, 135–154. [Google Scholar] [CrossRef]
- Higgins, V.; Bryant, M. Framing Agri-Digital Governance: Industry Stakeholders, Technological Frames and Smart Farming Implementation. Sociol. Rural 2020, 60, 438–457. [Google Scholar] [CrossRef]
- Ayre, M.; Mc Collum, V.; Waters, W.; Samson, P.; Curro, A.; Nettle, R.; Paschen, J.-A.; King, B.; Reichelt, N. Supporting and practising digital innovation with advisers in smart farming. NJAS Wagening. J. Life Sci. 2019, 90–91, 100302. [Google Scholar] [CrossRef]
- Jayashankar, P.; Johnston, W.J.; Nilakanta, S.; Burres, R. Co-creation of value-in-use through big data technology- a B2B agricultural perspective. J. Bus. Ind. Mark. 2019, 35, 508–523. [Google Scholar] [CrossRef]
- Eastwood, C.; Ayre, M.; Nettle, R.; Rue, B.D. Making sense in the cloud: Farm advisory services in a smart farming future. NJAS Wagening. J. Life Sci. 2019, 90–91, 100298. [Google Scholar] [CrossRef]
- Lajoie-O’Malley, A.; Bronson, K.; Van Der Burg, S.; Klerkx, L. The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents. Ecosyst. Serv. 2020, 45, 101183. [Google Scholar] [CrossRef]
- Klerkx, L. Advisory services and transformation, plurality and disruption of agriculture and food systems: Towards a new research agenda for agricultural education and extension studies. J. Agric. Educ. Ext. 2020, 26, 131–140. [Google Scholar] [CrossRef] [Green Version]
- Newton, J.E.; Nettle, R.; Pryce, J.E. Farming smarter with big data: Insights from the case of Australia’s national dairy herd milk recording scheme. Agric. Syst. 2020, 181, 102811. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Turner, J.A. Digitalisation in the New Zealand Agricultural Knowledge and Innovation System: Initial understandings and emerging organisational responses to digital agriculture. NJAS Wagening. J. Life Sci. 2019, 90, 100313. [Google Scholar] [CrossRef]
- Erakovic, L.; Powell, M. Pathways of Change: Organizations in Transition. Public Adm. 2006, 84, 31–58. [Google Scholar] [CrossRef]
- Mohrman, S.A.; Tenkasi, R.V.; Mohrman, A.M., Jr. The Role of Networks in Fundamental Organizational Change: A grounded analysis. J. Appl. Behav. Sci. 2003, 39, 301–323. [Google Scholar] [CrossRef]
- Harris, A.; Leithwood, K.; Day, C.; Sammons, P.; Hopkins, D. Distributed leadership and organizational change: Reviewing the evidence. J. Educ. Chang. 2007, 8, 337–347. [Google Scholar] [CrossRef]
- Larrinaga-González, C.; Carrasco-Fenech, F.; Caro-González, F.J.; Correa-Ruíz, C.; Páez-Sandubete, J.M. The role of environmental accounting in organizational change—An exploration of Spanish companies. Account. Audit. Account. J. 2001, 14, 213–239. [Google Scholar] [CrossRef]
- Fox-Wolfgramm, S.J.; Boal, K.B.; Hunt, J.G. Organizational Adaptation to Institutional Change: A Comparative Study of First-Order Change in Prospector and Defender Banks. Adm. Sci. Q. 1998, 43, 87. [Google Scholar] [CrossRef] [Green Version]
- Kabanoff, B.; Waldersee, R.; Cohen, M. Espoused values and organizational change themes. Acad. Manag. J. 1995, 38, 1075–1104. [Google Scholar]
- Crossan, M.M.; Lane, H.W.; White, R.E. An organizational learning framework: From intuition to institution. Acad. Manag. Rev. 1999, 24, 522–537. [Google Scholar] [CrossRef] [Green Version]
- Senge, P. The Fifth Discipline; Doubleday: New York, NY, USA, 1990. [Google Scholar]
- Fiol, C.M.; Lyles, M.A. Organizational learning. Acad. Manag. Rev. 1985, 10, 803–813. [Google Scholar] [CrossRef] [Green Version]
- Kloot, L. Organizational learning and management control systems: Responding to environmental change. Manag. Account. Res. 1997, 8, 47–73. [Google Scholar] [CrossRef]
- Argyris, C.; Schön, D.A. Organizational learning: A theory of action perspective. Reis 1997, 77–78, 345–348. [Google Scholar] [CrossRef]
- Lant, T.K.; Mezias, S.J. An Organizational Learning Model of Convergence and Reorientation. Organ. Sci. 1992, 3, 47–71. [Google Scholar] [CrossRef]
- March, J.G. Exploration and Exploitation in Organizational Learning. Organ. Sci. 1991, 2, 71–87. [Google Scholar] [CrossRef]
- Newman, K.L. Organizational transformation during institutional upheaval. Acad. Manag. Rev. 2000, 25, 602–619. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Secur. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Responsible Innovation in an Era of Smart Farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef] [Green Version]
- Harper, C. Open-source agriculture initiative-food for the future? In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer: Singapore, 2016; pp. 37–46. [Google Scholar]
- Ingram, J.; Maye, D. What are the implications of digitalisation for agricultural knowledge? Front. Sustain. Food Syst. 2020, 4, 66. [Google Scholar] [CrossRef]
- Lemeilleur, S.; Maître-d’Hôtel, É.; Lepiller, O.; Hobeika, A. Uncertain impacts of new technologies: The case of digital agriculture and blockchains. In Food Systems at Risk. New Trends and Challenges; Dury, S., Bendjebbar, P., Hainzelin, E., Giordano, T., Bricas, N., Eds.; FAO; CIRD; European Commission: Rome, Italy, 2019; pp. 91–94. [Google Scholar]
- Phillips, P.W.; Relf-Eckstein, J.-A.; Jobe, G.; Wixted, B. Configuring the new digital landscape in western Canadian agriculture. NJAS Wagening. J. Life Sci. 2019, 90, 100295. [Google Scholar] [CrossRef]
- Darwin, C. The Origin of Species, 6th ed.; John Murray: London, UK, 1859. [Google Scholar]
- Eldredge, N.; Gould, S.J. Punctuated equilibria: An alternative to phyletic gradualism. In Essential Readings in Evolutionary Biology; Ayala, F.J., Avise, J.C., Eds.; John Hopkins University Press: Baltimore, MD, USA, 1972; pp. 82–115. [Google Scholar]
- Ricklefs, R.E. Cladogenesis and morphological diversification in passerine birds. Nature 2004, 430, 338–341. [Google Scholar] [CrossRef]
- Gould, S.J.; Eldredge, N. Punctuated equilibria: The tempo and mode of evolution reconsidered. Paleobiology 1977, 3, 115–151. [Google Scholar] [CrossRef] [Green Version]
- Gersick, C.J. Revolutionary change theories: A multilevel exploration of the punctuated equilibrium paradigm. Acad. Manag. Rev. 1991, 16, 10–36. [Google Scholar] [CrossRef] [Green Version]
- Lioutas, E.D.; Charatsari, C. Big data in agriculture: Does the new oil lead to sustainability? Geoforum 2020, 109, 1–3. [Google Scholar] [CrossRef]
- Birner, R.; Davis, K.; Pender, J.; Nkonya, E.; Anandajayasekeram, P.; Ekboir, J.; Mbabu, A.; Spielman, D.J.; Horna, D.; Benin, S.; et al. From Best Practice to Best Fit: A Framework for Designing and Analyzing Pluralistic Agricultural Advisory Services Worldwide. J. Agric. Educ. Ext. 2009, 15, 341–355. [Google Scholar] [CrossRef] [Green Version]
- Lioutas, E.D.; Charatsari, C.; Černič Istenič, M.; La Rocca, G.; De Rosa, M. The challenges of setting up the evaluation of extension systems by using a systems approach: The case of Greece, Italy and Slovenia. J. Agric. Educ. Ext. 2019, 25, 139–160. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C.; De Rosa, M.; La Rocca, G.; Černič Istenič, M. Redefining the value of agricultural innovation: Between value propositions and value co-creation. In Proceedings of the 24th European Seminar on Extension and Education: Agricultural Education and Extension Tuned on Innovation for Sustainability. Experiences and Perspectives, Acireale, Italy, 18–21 June 2019. [Google Scholar]
- Jaakkola, E.; Hakanen, T. Value co-creation in solution networks. Ind. Mark. Manag. 2013, 42, 47–58. [Google Scholar] [CrossRef]
- Hansen, M.T.; Birkinshaw, J. The innovation value chain. Harv. Bus. Rev. 2007, 85, 121–130. [Google Scholar]
- Robbins, S.P.; Judge, T.A. Organizational Behavior; Prentice Hall: Upper Saddle River, NJ, USA, 2001. [Google Scholar]
- Labarthe, P.; Laurent, C. Privatization of agricultural extension services in the EU: Towards a lack of adequate knowledge for small-scale farms? Food Policy 2013, 38, 240–252. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Who is the Customer of Public Agricultural Extension/Education Services? Int. J. Rural Manag. 2011, 7, 83–102. [Google Scholar] [CrossRef]
- Laughlin, R.C. Environmental Disturbances and Organizational Transitions and Transformations: Some Alternative Models. Organ. Stud. 1991, 12, 209–232. [Google Scholar] [CrossRef]
- Bartunek, J.M. Changing Interpretive Schemes and Organizational Restructuring: The Example of a Religious Order. Adm. Sci. Q. 1984, 29, 355. [Google Scholar] [CrossRef]
- Isaac, M.E. Agricultural information exchange and organizational ties: The effect of network topology on managing agrodiversity. Agric. Syst. 2012, 109, 9–15. [Google Scholar] [CrossRef]
- Lafta, A.H.; Man, N.; Salih, J.; Samah, B.; Nawi, N.; Yusof, R. A need for investigating organizational climate and its impact on the performance. Eur. J. Bus. Manag. 2016, 8, 136–142. [Google Scholar]
- Yaghoubi-Farani, A.; Mohammadi, I.M.; Movahedi, R. The role of organizational culture and management behavior in organizational innovation: A case study of the agricultural extension organization (AEO) in Iran. In Public Administration and Policy in the Middle East; Dawoody, A., Ed.; Springer: New York, NY, USA, 2015; Volume 9, pp. 163–171. [Google Scholar]
- Greenwood, R.; Hinings, C.R. Understanding radical organizational change: Bringing together the old and the new institutionalism. Acad. Manag. Rev. 1996, 21, 1022–1054. [Google Scholar] [CrossRef]
- Street, C.T.; Gallupe, R.B. A Proposal for Operationalizing the Pace and Scope of Organizational Change in Management Studies. Organ. Res. Methods 2009, 12, 720–737. [Google Scholar] [CrossRef]
- Kim, D.H. The link between individual and organizational learning. In The Strategic Management of Intellectual Capital; Klein, D.A., Ed.; Butterworth-Heinemann: Oxford, UK, 1998; pp. 41–62. [Google Scholar]
- Levitt, B.; March, J.G. Organizational Learning. Annu. Rev. Sociol. 1988, 14, 319–338. [Google Scholar] [CrossRef]
- Luthans, F. Organizational Behavior: An Evidence–Based Approach, 12nd ed.; The McGrow-Hill: New York, NY, USA, 2011. [Google Scholar]
- Miller, D.; Friesen, P.H. Momentum and revolution in organizational adaptation. Acad. Manag. J. 1980, 23, 591–614. [Google Scholar]
- Hannan, M.T.; Freeman, J. Structural Inertia and Organizational Change. Am. Sociol. Rev. 1984, 49, 149–164. [Google Scholar] [CrossRef]
- Hedberg, B.; Wolff, R. Organizing, learning, and strategizing: From construction to discovery. In Handbook of Organizational Learning and Knowledge; Dierkes, M., Berthoin, A.A., Child, J., Nonaka, I., Eds.; Oxford University Press: Oxford, UK, 2001; pp. 535–556. [Google Scholar]
- Godkin, L. The zone of inertia: Absorptive capacity and organizational change. Learn. Organ. 2010, 17, 196–207. [Google Scholar] [CrossRef]
- Godkin, L.; Allcorn, S. Overcoming organizational inertia: A tripartite model for achieving strategic organizational change. J. Appl. Bus. Econ. 2008, 8, 82–94. [Google Scholar]
- Kelly, D.; Amburgey, T.L. Organizational inertia and momentum: A dynamic model of strategic change. Acad. Manag. J. 1991, 34, 591–612. [Google Scholar]
- McNulty, T.; Ferlie, E. Process Transformation: Limitations to Radical Organizational Change within Public Service Organizations. Organ. Stud. 2004, 25, 1389–1412. [Google Scholar] [CrossRef]
- Liao, S.-H.; Fei, W.-C.; Liu, C.-T. Relationships between knowledge inertia, organizational learning and organization innovation. Technovation 2008, 28, 183–195. [Google Scholar] [CrossRef]
- Adams, M.E.; Day, G.S.; Dougherty, D. Enhancing new product development performance: An organizational learning perspective. J. Prod. Innov. Manag. 1998, 15, 403–422. [Google Scholar] [CrossRef]
- Tushman, M.L.; O’Reilly, C.A., III. Ambidextrous Organizations: Managing Evolutionary and Revolutionary Change. Calif. Manag. Rev. 1996, 38, 8–29. [Google Scholar] [CrossRef] [Green Version]
- Ortiz-Crespo, B.; Steinke, J.; Quirós, C.F.; van de Gevel, J.; Daudi, H.; Gaspar Mgimiloko, M.; van Etten, J. User-centred design of a digital advisory service: Enhancing public agricultural extension for sustainable intensification in Tanzania. Int. J. Agric. Sustain. 2020, in press. [Google Scholar] [CrossRef] [Green Version]
- Ravis, T.; Notkin, B. Urban Bites and Agrarian Bytes: Digital Agriculture and Extended Urbanization. Berkeley Plan. J. 2020, 31, 100–122. [Google Scholar] [CrossRef]
- Barrett, H.; Rose, D.C. Perceptions of the fourth agricultural revolution: What’s in, what’s out, and what consequences are anticipated? Sociol. Rural. 2020, in press. [Google Scholar] [CrossRef]
- Haveman, H.A. Between a Rock and a Hard Place: Organizational Change and Performance Under Conditions of Fundamental Environmental Transformation. Adm. Sci. Q. 1992, 37, 48–75. [Google Scholar] [CrossRef]
- Meyer, A.D.; Goes, J.B.; Brooks, G.R. Organizations reacting to hyperturbulence. In Organizational Change and Redesign; Huber, G.P., Glick, W.H., Eds.; Oxford University Press: New York, NY, USA, 1995; pp. 66–111. [Google Scholar]
- Argyris, C. Double loop learning in organizations. Harv. Bus. Rev. 1977, 55, 115–125. [Google Scholar]
- Jensen, P.E. A contextual theory of learning and the learning organization. Knowl. Process. Manag. 2005, 12, 53–64. [Google Scholar] [CrossRef]
- Korth, S.J. Single and double-loop learning: Exploring potential influence of cognitive style. Organ. Dev. J. 2000, 18, 87–98. [Google Scholar]
- Romme, G.; Dillen, R. Mapping the landscape of organizational learning. Eur. Manag. J. 1997, 15, 68–78. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Y.; Wang, X. Organizational unlearning and organizational relearning: A dynamic process of knowledge management. J. Knowl. Manag. 2013, 17, 902–912. [Google Scholar] [CrossRef]
- Bratianu, C. Organizational Knowledge Dynamics: Managing Knowledge Creation, Acquisition, Sharing, and Transformation; IGI Global: Hershey, PA, USA, 2015; pp. 286–312. [Google Scholar]
- Hannan, M.T.; Laszlo, P.; Carroll, G.R. Structural inertia and organizational change revisited III: The evolution of organizational inertia. Res. Pap. Ser. 2002, 1734, 1–33. [Google Scholar]
- Groher, T.; Heitkämper, K.; Umstätter, C. Digital technology adoption in livestock production with a special focus on ruminant farming. Animal 2020, 14, 2404–2413. [Google Scholar] [CrossRef]
- Lioutas, E.D.; Charatsari, C. Smart farming and short food supply chains: Are they compatible? Land Use Policy 2020, 94, 104541. [Google Scholar] [CrossRef]
- Broadbent, J. Change in organisations: A case study of the use of accounting information in the NHS. Br. Account. Rev. 1992, 24, 343–367. [Google Scholar] [CrossRef]
- Baker, W.E.; Sinkula, J.M. Does market orientation facilitate balanced innovation programs? An organizational learning perspective. J. Prod. Innov. Manag. 2007, 24, 316–334. [Google Scholar] [CrossRef]
Dimension | Elements |
---|---|
Tangible elements (sub-systems) | Infrastructures, technologies, artifacts, people, finance, services, behaviors |
Design archetypes | Structure of the organization, decision processes, management systems, communication processes |
Interpretive schemes | Norms, belief and value systems, shared assumptions, organizational missions, purposes, paradigms |
Dimension | Morphostasis | Morphogenesis |
---|---|---|
Tangible elements (sub-systems) | Change in infrastructures, new technologies, new services, and/or new employees | New services, changes in infrastructures and technologies used, formation of inter-organizational collaborations |
Design archetypes | Minor changes in organizational structures and communication processes | Major changes in organizational structures, management systems, and decision and communication processes |
Interpretive schemes | No change | Deep change in belief and value systems, reconsideration of assumptions, major changes in operating paradigms and missions |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charatsari, C.; D. Lioutas, E.; De Rosa, M.; Papadaki-Klavdianou, A. Extension and Advisory Organizations on the Road to the Digitalization of Animal Farming: An Organizational Learning Perspective. Animals 2020, 10, 2056. https://doi.org/10.3390/ani10112056
Charatsari C, D. Lioutas E, De Rosa M, Papadaki-Klavdianou A. Extension and Advisory Organizations on the Road to the Digitalization of Animal Farming: An Organizational Learning Perspective. Animals. 2020; 10(11):2056. https://doi.org/10.3390/ani10112056
Chicago/Turabian StyleCharatsari, Chrysanthi, Evagelos D. Lioutas, Marcello De Rosa, and Afroditi Papadaki-Klavdianou. 2020. "Extension and Advisory Organizations on the Road to the Digitalization of Animal Farming: An Organizational Learning Perspective" Animals 10, no. 11: 2056. https://doi.org/10.3390/ani10112056
APA StyleCharatsari, C., D. Lioutas, E., De Rosa, M., & Papadaki-Klavdianou, A. (2020). Extension and Advisory Organizations on the Road to the Digitalization of Animal Farming: An Organizational Learning Perspective. Animals, 10(11), 2056. https://doi.org/10.3390/ani10112056