Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Phytobiotics Source and Preparation
2.2. Halquinol and Tetracycline
2.3. Experimental Design and Supplemented Diets
2.4. Sample Collection
2.5. Nutrient Digestibility
2.6. Histomorphology of Intestine
2.7. Cecal Microbiota Composition and Cecal pH
2.8. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Histomorphology of Intestine
3.4. Cecal Microbiota
4. Discussion
4.1. Growth Performance
4.2. Nutrient Digestibility
4.3. Gut Morphology
4.4. Cecal Microbiota
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The Effect of Phytogenic Feed Additives to Substitute In-Feed Antibiotics on Growth Traits and Biochemical Blood Parameters in Broiler Chicks Challenged with Salmonella Typhimurium. Environ. Sci. Pollut. Res. 2016, 23, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Proctor, A.; Phillips, G.J. Differential Effects of Bacitracin Methylene Disalicylate (BMD) on the Distal Colon and Cecal Microbiota of Young Broiler Chickens. Front. Vet. Sci. 2019, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.L.; Zhao, L.H.; Sun, D.D.; Zhang, J.; Guo, Y.P.; Zhang, Z.Q.; Ma, Q.G.; Ji, C.; Zhao, L.H. Effects of Dietary Supplementation of Recombinant Plectasin on Growth Performance, Intestinal Health and Innate Immunity Response in Broilers. Probiotics Antimicrob. Proteins 2020, 12, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Boovaragamoorthy, G.M.; Anbazhagan, M.; Piruthiviraj, P.; Pugazhendhi, A.; Kumar, S.S.; Al-Dhabi, N.A.; Mohammed Ghilan, A.K.; Arasu, M.V.; Kaliannan, T. Clinically Important Microbial Diversity and Its Antibiotic Resistance Pattern towards Various Drugs. J. Infect. Public Health 2019, 12, 783–788. [Google Scholar] [CrossRef]
- The European Parliament; The Council of the European Union. Regulation (EC) NO 1831/2003 of the European Parliament and Council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Commun. 2003, 268, 29–43. [Google Scholar]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Examination of Unintended Consequences of Antibiotic Use Restrictions in Food-Producing Animals: Sub-Analysis of a Systematic Review. One Health 2019, 7, 100095. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, M.A.K.; Hou, Y.; Gong, J. Phytogenic Compounds as Alternatives to In-Feed Antibiotics: Potentials and Challenges in Application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Rashid, Z.; Mirani, Z.A.; Zehra, S.; Gilani, S.M.H.; Ashraf, A.; Azhar, A.; Al-Ghanim, K.A.; Al-Misned, F.; Al-Mulahim, N.; Mahboob, S.; et al. Enhanced Modulation of Gut Microbial Dynamics Affecting Body Weight in Birds Triggered by Natural Growth Promoters Administered in Conventional Feed. Saudi J. Biol. Sci. 2020, 27, 2747–2755. [Google Scholar] [CrossRef]
- Murugesan, G.R.; Syed, B.; Haldar, S.; Pender, C. Phytogenic Feed Additives as an Alternative to Antibiotic Growth Promoters in Broiler Chickens. Front. Vet. Sci. 2015, 2, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Mohammadi Gheisar, M.; Kim, I.H. Phytobiotics in Poultry and Swine Nutrition—A Review. Ital. J. Anim. Sci. 2018, 17, 92–99. [Google Scholar] [CrossRef]
- Stevanović, Z.D.; Bošnjak-Neumüller, J.; Pajić-Lijaković, I.; Raj, J.; Vasiljević, M. Essential Oils as Feed Additives—Future Perspectives. Molecules 2018, 23, 1717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wati, T.; Ghosh, T.K.; Syed, B.; Haldar, S. Comparative Efficacy of a Phytogenic Feed Additive and an Antibiotic Growth Promoter on Production Performance, Cecal Microbial Population and Humoral Immune Response of Broiler Chickens Inoculated with Enteric Pathogens. Anim. Nutr. 2015, 1, 213–219. [Google Scholar] [CrossRef]
- Díaz Carrasco, J.M.; Redondo, E.A.; Pin Viso, N.D.; Redondo, L.M.; Farber, M.D.; Fernandez Miyakawa, M.E. Tannins and Bacitracin Differentially Modulate Gut Microbiota of Broiler Chickens. BioMed Res. Int. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, U.; Kuter, E.; Raza, I.; Köksal, B.H.; Cengiz, O.; Yıldız, M.; Kızanlık, P.K.; Kaya, M.; Tatlı, O.; Sevim, O. Dietary Supplementation of Different Levels of Phytogenic Feed Additive in Broiler Diets: The Dynamics of Growth Performance, Cecal Microbiota, and Intestinal Morphometry. Rev. Bras. Cienc. Avic. 2018, 20, 737–746. [Google Scholar] [CrossRef]
- Hussein, E.O.S.; Ahmed, S.H.; Abudabos, A.M.; Aljumaah, M.R.; Alkhlulaifi, M.M.; Nassan, M.A.; Suliman, G.M.; Naiel, M.A.E.; Swelum, A.A. Effect of Antibiotic, Phytobiotic and Probiotic Supplementation on Growth, Blood Indices and Intestine Health in Broiler Chicks Challenged with Clostridium Perfringens. Animals 2020, 10, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basit, M.A.; Arifah, A.K.; Loh, T.C.; Saleha, A.A.; Salleh, A.; Kaka, U.; Idris, S.B. Effects of Graded Dose Dietary Supplementation of Piper betle Leaf Meal and Persicaria odorata Leaf Meal on Growth Performance, Apparent Ileal Digestibility, and Gut Morphology in Broilers. Saudi J. Biol. Sci. 2020, 27, 1503–1513. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Jha, R. Strategies to Modulate the Intestinal Microbiota and Their Effects on Nutrient Utilization, Performance, and Health of Poultry. J. Anim. Sci. Biotechnol. 2019, 10, 1–11. [Google Scholar] [CrossRef]
- Suresh, G.; Das, R.K.; Kaur Brar, S.; Rouissi, T.; Avalos Ramirez, A.; Chorfi, Y.; Godbout, S. Alternatives to Antibiotics in Poultry Feed: Molecular Perspectives. Crit. Rev. Microbiol. 2018, 44, 318–335. [Google Scholar] [CrossRef] [PubMed]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. Effect of Organic Acid Blend and Bacillus Subtilis Alone or in Combination on Growth Traits, Blood Biochemical and Antioxidant Status in Broilers Exposed to Salmonella Typhimurium Challenge during the Starter Phase. J. Appl. Anim. Res. 2017, 45, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Paraskeuas, V.; Fegeros, K.; Palamidi, I.; Hunger, C.; Mountzouris, K.C. Growth Performance, Nutrient Digestibility, Antioxidant Capacity, Blood Biochemical Biomarkers and Cytokines Expression in Broiler Chickens Fed Different Phytogenic Levels. Anim. Nutr. 2017, 3, 114–120. [Google Scholar] [CrossRef]
- Mashayekhi, H.; Mazhari, M.; Esmaeilipour, O. Eucalyptus Leaves Powder, Antibiotic and Probiotic Addition to Broiler Diets: Effect on Growth Performance, Immune Response, Blood Components and Carcass Traits. Animal 2018, 12, 2049–2055. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Yang, D.K. Effects of Ananas Comosus Leaf Powder on Broiler Performance, Haematology, Biochemistry, and Gut Microbial Population. Rev. Bras. Zootec. 2018, 47, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Saleh, A.A.; Ragab, M.M.; Ahmed, E.A.M.; Abudabos, A.M.; Ebeid, T.A. Effect of Dietary Zinc-Methionine Supplementation on Growth Performance, Nutrient Utilization, Antioxidative Properties and Immune Response in Broiler Chickens under High Ambient Temperature. J. Appl. Anim. Res. 2018, 46, 820–827. [Google Scholar] [CrossRef]
- Mohiti-Asli, M.; Ghanaatparast-Rashti, M. Comparing the Effects of a Combined Phytogenic Feed Additive with an Individual Essential Oil of Oregano on Intestinal Morphology and Microflora in Broilers. J. Appl. Anim. Res. 2017, 46, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Abudabos, A.M.; Alyemni, A.H.; Dafalla, Y.M.; Khan, R.U. The Effect of Phytogenics on Growth Traits, Blood Biochemical and Intestinal Histology in Broiler Chickens Exposed to Clostridium perfringens Challenge. J. Appl. Anim. Res. 2018, 46, 691–695. [Google Scholar] [CrossRef] [Green Version]
- Biswajit Patra, M.T.D.; Dey, S.K. A Review on Piper betle L. J. Med. Plants Stud. 2016, 4, 185–192. [Google Scholar]
- Sarma, C.; Rasane, P.; Kaur, S.; Singh, J.; Singh, J.; Gat, Y.; Garba, U.; Kaur, D.; Dhawan, K. Antioxidant and Antimicrobial Potential of Selected Varieties of Piper betle L. (Betel leaf). An. Acad. Bras. Cienc. 2018, 90, 3871–3878. [Google Scholar] [CrossRef]
- Syahidah, A.; Saad, C.R.; Hassan, M.D.; Rukayadi, Y.; Norazian, M.H.; Kamarudin, M.S. Phytochemical Analysis, Identification and Quantification of Antibacterial Active Compounds in Betel leaves, Piper betle Methanolic Extract. Pak. J. Biol. Sci. 2017, 20, 70–81. [Google Scholar] [CrossRef]
- Vijayanchali, S.S. Nutrient Composition, Phytonutrient Constituents and Antioxidant Activity of The Dried Betel leaves (Piper betle ). Int. J. Res. Dev. 2018, 5, 24–28. [Google Scholar]
- Attia, Y.A.; Bakhashwain, A.A.; Bertu, N.K. Utilisation of Thyme Powder (Thyme Vulgaris L.) as a Growth Promoter Alternative to Antibiotics for Broiler Chickens Raised in a Hot Climate. Eur. Poult. Sci. 2018, 82, 1–15. [Google Scholar] [CrossRef]
- Dash, G.K.; Zakaria, Z.B. Pharmacognostic Studies on Persicaria odorata (Lour.) Sojak. J. Pharm. Res. 2016, 10, 377–380. [Google Scholar]
- Abubakar, M.A.; Zulkifli, R.M.; Nur, W.; Wan, A.; Husni, A.; Shariff, M.; Ahmad, N.; Nik, N.; Zakaria, Z.; Ahmad, F. Antibacterial Properties of Persicaria minor (Huds.) Ethanolic and Aqueous-Ethanolic Leaf Extracts. J. Appl. Pharm. Sci. 2015, 5 (Suppl. 2), 50–56. [Google Scholar] [CrossRef]
- Abdullah, M.Z.; Mohd Ali, J.; Abolmaesoomi, M.; Abdul-Rahman, P.S.; Hashim, O.H. Anti-Proliferative, in Vitro Antioxidant, and Cellular Antioxidant Activities of the Leaf Extracts from Polygonum minus Huds: Effects of Solvent Polarity. Int. J. Food Prop. 2017, 20, S846–S862. [Google Scholar] [CrossRef] [Green Version]
- Basit, M.A.; Kadir, A.A.; Loh, T.C.; Aziz, S.A.; Salleh, A.; Kaka, U.; Idris, S.B. Effects of Inclusion of Different Doses of Persicaria odorata Leaf Meal (POLM) in Broiler Chicken Feed on Biochemical and Haematological Blood Indicators and Liver Histomorphological Changes. Animals 2020, 10, 1209. [Google Scholar] [CrossRef]
- Sim, O.P.; Rasid, R.A.; Hardy, N.; Daud, A.; David, D.; Haya, B.A.; Saibeh, K.; Silip, J.J.; Milan, A.R.; Alimon, A.R. Preliminary Investigation on the Chemical Composition of Local Medicinal Herbs (Curcuma Longa L., Persicaria Odorata L. and Eleutherine Palmifolia L.) as Potential Layer Feed Additives for the Production of Healthy Eggs. Trans. Sci. Technol. 2019, 6, 221–227. [Google Scholar]
- Christapher, P.V.; Parasuraman, S.; Asmawi, M.Z.; Murugaiyah, V. Acute and Subchronic Toxicity Studies of Methanol Extract of Polygonum minus Leaves in Sprague Dawley Rats. Regul. Toxicol. Pharmacol. 2017, 86, 33–41. [Google Scholar] [CrossRef]
- Pawłowska, K.A.; Strawa, J.; Tomczyk, M.; Granica, S. Changes in the Phenolic Contents and Composition of Persicaria odorata Fresh and Dried Leaves. J. Food Compos. Anal. 2020, 91, 103507. [Google Scholar] [CrossRef]
- Christapher, P.; Parasuraman, S.; Christina, J.A.; Vikneswaran, M.; Asmawi, M.Z. Review on Polygonum minus. Huds, a Commonly Used Food Additive in Southeast Asia. Pharmacogn. Res. 2015, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.M.; Khalaf, M.M.; Sadek, S.A.; Abo-Youssef, A.M. Protective Effects of Apigenin and Myricetin against Cisplatin-Induced Nephrotoxicity in Mice. Pharm. Biol. 2017, 55, 766–774. [Google Scholar] [CrossRef] [Green Version]
- FAO; WHO. Evaluation of Certain Veterinary Drug Residues in Food (Eighty-Fifth Report of the Joint FAO/WHO Expert Committee on Food Additives) WHO Technical Report Series, No 1008; WHO: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/259895/9789241210171-eng.pdf;jsessionid=E271946E46D0616CAC0C94420CA4E03B?sequence=1 (accessed on 16 August 2020).
- Maíra, F.; Haese, D.; Sobreiro, R.P.; Haddade, I.R.; Lima, A.L.; Saraiva, A. Prebiotic and Antimicrobials on Performance, Carcass Characteristics, and Antibody Production in Broilers. Cienc. Rural 2016, 46, 1070–1075. [Google Scholar]
- Habib, M.A.; Haque, M.A.; Islam, M.S.; Liton, M.R. Effect of Dietary Halquinol Supplementation on the Productive Performances, Carcass Traits and Blood Profile of Sonali Chicken. Asian J. Med. Biol. Res. 2020, 5, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Kandepu, N.; Kodaganur, S.C.; Mantri, A.P.; Saha, S. RP-HPLC Method for Quantitative Estimation of Halquinol in Pharmaceutical Dosage Forms. Eurasian J. Anal. Chem. 2012, 7, 7–12. [Google Scholar]
- Costa, M.C.; Bessegatto, J.A.; Alfieri, A.A.; Weese, J.S.; Filho, J.A.B.; Oba, A. Different Antibiotic Growth Promoters Induce Specific Changes in the Cecal Microbiota Membership of Broiler Chicken. PLoS ONE 2017, 12, e0171642. [Google Scholar] [CrossRef] [PubMed]
- Oso, A.O.; Suganthi, R.U.; Reddy, G.B.M.; Malik, P.K.; Thirumalaisamy, G.; Awachat, V.B.; Selvaraju, S.; Arangasamy, A.; Bhatta, R. Effect of Dietary Supplementation with Phytogenic Blend on Growth Performance, Apparent Ileal Digestibility of Nutrients, Intestinal Morphology, and Cecal Microflora of Broiler Chickens. Poult. Sci. 2019, 98, 4755–4766. [Google Scholar] [CrossRef] [PubMed]
- NRC. Nutrient Requirements of Poultry; National Academy Press: Washington, DC, USA, 1994. [Google Scholar]
- Humam, A.M.; Loh, T.C.; Foo, H.L.; Samsudin, A.A.; Mustapha, N.M.; Zulkifli, I.; Izuddin, W.I. Effects of Feeding Different Postbiotics Produced by Lactobacillus Plantarum on Growth Performance, Carcass Yield, Intestinal Morphology, Gut Microbiota Composition, Immune Status, and Growth Gene Expression in Broilers under Heat Stress. Animals 2019, 9, 644. [Google Scholar] [CrossRef] [Green Version]
- Department of Standards Malaysia. Halal Food—Production, Preparation, Handling and Storage—General Guideline; Department of Standards Malaysia: Cyberjaya, Malaysia, 2009; pp. 1–26. Available online: www.jsm.gov.my (accessed on 26 September 2020).
- Alshelmani, M.I.; Loh, T.C.; Foo, H.L.; Sazili, A.Q.; Lau, W.H. Effect of Feeding Different Levels of Palm Kernel Cake Fermented by Paenibacillus Polymyxa ATCC 842 on Nutrient Digestibility, Intestinal Morphology, and Gut Microflora in Broiler Chickens. Anim. Feed Sci. Technol. 2016, 216, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Short, F.J.; Gorton, P.; Wiseman, J.; Boorman, K.N. Determination of Titanium Dioxide Added as an Inert Marker in Chicken Digestibility Studies. Anim. Feed Sci. Technol. 1996, 59, 215–221. [Google Scholar] [CrossRef]
- Cunniff, P. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- Khatun, J.; Loh, T.C.; Akit, H.; Foo, H.L.; Mohamad, R. Influence of Different Sources of Oil on Performance, Meat Quality, Gut Morphology, Ileal Digestibility and Serum Lipid Profile in Broilers. J. Appl. Anim. Res. 2018, 46, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Carroll, J.; Touchette, K.J.; Matteri, R.L.; Dyer, C.J.; Allee, G.L. Effect of Spray-Dried Plasma and Lipopolysaccharide Exposure on Weaned Pigs: II. Effects on the Hypothalamic-Pituitary-Adrenal Axis of Weaned Pigs. J. Anim. Sci. 2002, 80, 502–509. [Google Scholar] [CrossRef] [Green Version]
- SAS. User’s Guide, 9th ed.; SAS Institute, Inc.: Cary, NC, USA, 2012. [Google Scholar]
- Movahhedkhah, S.; Rasouli, B.; Seidavi, A.; Mazzei, D.; Laudadio, V.; Tufarelli, V. Summer Savory (Satureja hortensis l.) Extract as Natural Feed Additive in Broilers: Effects on Growth, Plasma Constituents, Immune Response, and Ileal Microflora. Animals 2019, 9, 87. [Google Scholar] [CrossRef] [Green Version]
- Umatiya, R.V.; Srivastava, A.K.; Pawar, M.M.; Chauhan, H.D.; Jain, A.K. Efficacy of Garlic (Allium sativum) and Ginger (Zingiber officinale) Powder as Phytogenic Feed Additive in Diet of Broiler Chickens. J. Pharmacogn. Phytochem. 2018, 7, 1136–1140. [Google Scholar]
- Hassan, H.M.A.; Samy, A.; Youssef, A.W.; Mohamed, M.A. Using Different Feed Additives as Alternative to Antibiotic Growth Promoter to Improve Growth Performance and Carcass Traits of Broilers. Int. J. Poult. Sci. 2018, 17, 255–261. [Google Scholar] [CrossRef] [Green Version]
- Gole, M.; Manwar, S.J.; Chaudhary, S.P.; Kawitkar, S.V.; Khose, K.K. The Impact of Feeding Clove Essential Oils and Organic Acids on Immunity, Gut Health and Economics of Broiler Production. J. Pharmacogn. Phytochem. 2020, 9, 1417–1422. [Google Scholar]
- Kumar, M.; Kumar, V.; Roy, D.; Kushwaha, R.; Vaswani, S. Application of Herbal Feed Additives in Animal Nutrition—A Review. Int. J. Livest. Res. 2014, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, D.; Biswasroy, P.; Suri, K. Various Factors Influencing the Percentage Content of Hydroxychavicol in Different Extracts of Piper betle L. by Altering the Extraction Parameters. Int. J. Adv. Sci. Technol. Res. 2014, 2, 517–530. [Google Scholar]
- Huang, Q.; Liu, X.; Zhao, G.; Hu, T.; Wang, Y. Potential and Challenges of Tannins as an Alternative to In-Feed Antibiotics for Farm Animal Production. Anim. Nutr. 2018, 4, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Rogiewicz, A.; Slominski, B.A. The Effect of Canola Meal Tannins on the Intestinal Absorption Capacity of Broilers Using a D-Xylose Test. J. Anim. Physiol. Anim. Nutr. 2015, 99, 1084–1093. [Google Scholar] [CrossRef]
- Bee, G.; Silacci, P.; Ampuero-Kragten, S.; Čandek-Potokar, M.; Wealleans, A.L.; Litten-Brown, J.; Salminen, J.P.; Mueller-Harvey, I. Hydrolysable Tannin-Based Diet Rich in Gallotannins Has a Minimal Impact on Pig Performance but Significantly Reduces Salivary and Bulbourethral Gland Size. Animal 2017, 11, 1617–1625. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.L.; Hao, Y.Q.; Jin, L.; Xu, Z.J.; McAllister, T.A.; Wang, Y. Anti-Escherichia Coli O157: H7 Properties of Purple Prairie clover and Sainfoin Condensed Tannins. Molecules 2013, 18, 2183–2199. [Google Scholar] [CrossRef]
- Ouyang, K.; Xu, M.; Jiang, Y.; Wang, W. Effects of Alfalfa Flavonoids on Broiler Performance, Meat Quality, and Gene Expression. Can. J. Anim. Sci. 2016, 96, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Hong, E.; Kim, J.; Bang, H.; Choi, J.; Ji, S. Effects of Dietary Quercitin on Growth Performance, Blood Biochemical Parameter, Immunologlobulin and Blood Antioxidant Activity in Broiler Chickens. Korean J. Poult. Sci. 2015, 42, 33–40. [Google Scholar] [CrossRef] [Green Version]
- Aroche, R.; Martínez, Y.; Ruan, Z.; Guan, G.; Waititu, S.; Nyachoti, C.M.; Más, D.; Lan, S. Dietary Inclusion of a Mixed Powder of Medicinal Plant Leaves Enhances the Feed Efficiency and Immune Function in Broiler Chickens. J. Chem. 2018, 2018, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Mao, S.; Zhou, M. Effect of the Flavonoid Baicalein as a Feed Additive on the Growth Performance, Immunity, and Antioxidant Capacity of Broiler Chickens. Poult. Sci. 2019, 98, 2790–2799. [Google Scholar] [CrossRef] [PubMed]
- Vispute, M.M.; Sharma, D.; Mandal, A.B.; Rokade, J.J.; Tyagi, P.K.; Yadav, A.S. Effect of Dietary Supplementation of Hemp (Cannabis sativa) and Dill Seed (Anethum graveolens) on Performance, Serum Biochemicals and Gut Health of Broiler Chickens. J. Anim. Physiol. Anim. Nutr. 2019, 103, 525–533. [Google Scholar] [CrossRef]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential Oil and Aromatic Plants as Feed Additives in Non-Ruminant Nutrition: A Review. J. Anim. Sci. Biotechnol. 2015, 6, 40104. [Google Scholar] [CrossRef] [Green Version]
- Soliman, N. Efficiency of Phytogenic Feed Additives in Improving Broiler Performance, Intestinal Bacteria and Ileal Histomorphology. Egypt. J. Nutr. Feed. 2019, 22, 625–635. [Google Scholar] [CrossRef]
- Hassan, H.M.A.; Youssef, A.W.; Ali, H.M.; Mohamed, M.A. Adding Phytogenic Material and/or Organic Acids to Broiler Diets: Effect on Performance, Nutrient Digestibility and Net Profit. Asian J. Poult. Sci. 2015, 9, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Farahat, M.H.; Abdallah, F.M.; Ali, H.A.; Hernandez-Santana, A. Effect of Dietary Supplementation of Grape Seed Extract on the Growth Performance, Lipid Profile, Antioxidant Status & Immune Response of Broiler Chickens. Animal 2017, 11, 771–777. [Google Scholar] [CrossRef]
- Yitbarek, M.B. Phytogenics as Feed Additives in Poultry Production: A Review. Int. J. Extensive Res. 2015, 3, 49–60. [Google Scholar]
- Mishra, B.; Jha, R. Oxidative Stress in the Poultry Gut: Potential Challenges and Interventions. Front. Vet. Sci. 2019, 6, 1–5. [Google Scholar] [CrossRef]
- Marchini, C.F.P.; Silva, P.L.; Nascimento, M.R.B.M.; Beletti, M.E.; Silva, N.M.G.E. Body Weight, Intestinal Morphometry and Cell Proliferation of Broiler Chickens Submitted to Cyclic Heat Stress. Int. J. Poult. Sci. 2011, 10, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Kamboh, A.A.; Arain, M.A.; Mughal, M.J.; Zaman, A.; Arain, Z.M.; Soomro, A.H. Flavonoids: Health Promoting Phytochemicals for Animal Production—A Review. J. Anim. health Prod. 2015, 11, 369–373. [Google Scholar] [CrossRef] [Green Version]
- Parsaie, S.; Shariatmadari, F.; Zamiri, M.J.; Khajeh, K. Influence of Wheat-Based Diets Supplemented with Xylanase, Bile Acid and Antibiotics on Performance, Digestive Tract Measurements and Gut Morphology of Broilers Compared with a Maise-Based Diet. Br. Poult. Sci. 2007, 48, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Falcinelli, S.; Picchietti, S.; Rodiles, A.; Cossignani, L.; Merrifield, D.L.; Taddei, A.R.; Maradonna, F.; Olivotto, I.; Gioacchini, G.; Carnevali, O. Lactobacillus Rhamnosus Lowers Zebrafish Lipid Content by Changing Gut Microbiota and Host Transcription of Genes Involved in Lipid Metabolism. Sci. Rep. 2015, 5, 8–10. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, E. Weight Gain by Gut Microbiota Manipulation in Productive Animals. Microb. Pathog. 2017, 106, 162–170. [Google Scholar] [CrossRef]
- Panaite, T.D.; Saracila, M.; Papuc, C.P.; Predescu, C.N.; Soica, C. Influence of Dietary Supplementation of Salix alba Bark on Performance, Oxidative Stress Parameters in Liver and Gut Microflora of Broilers. Animals 2020, 10, 958. [Google Scholar] [CrossRef]
- Rinttilä, T.; Apajalahti, J. Intestinal Microbiota and Metabolites-Implications for Broiler Chicken Health and Performance. J. Appl. Poult. Res. 2013, 22, 647–658. [Google Scholar] [CrossRef]
- Oz, H.S. Nutrients, Infectious and Inflammatory Diseases. Nutrients 2017, 9, 1085. [Google Scholar] [CrossRef]
- Chang, C.L.T.; Chung, C.Y.; Kuo, C.H.; Kuo, T.F.; Yang, C.W.; Yang, W.C. Beneficial Effect of Bidens pilosa on Body Weight Gain, Food Conversion Ratio, Gut Bacteria and Coccidiosis in Chickens. PLoS ONE 2016, 11, e0146141. [Google Scholar] [CrossRef]
- Prabakar, G.; Gopi, M.; Karthik, K.; Shanmuganathan, S.; Kirubakaran, A.; Pavulraj, S. Review Article Phytobiotics: Could the Greens Inflate the Poultry Production. Asian J. Anim. Vet. Adv. 2016, 11, 383–392. [Google Scholar] [CrossRef]
- Laptev, G.Y.; Filippova, V.A.; Kochish, I.I.; Yildirim, E.A.; Ilina, L.A.; Dubrovin, A.V.; Brazhnik, E.A.; Novikova, N.I.; Novikova, O.B.; Dmitrieva, M.E.; et al. Examination of the Expression of Immunity Genes and Bacterial Profiles in the Caecum of Growing Chickens Infected with Salmonella enteritidis and Fed a Phytobiotic. Animals 2019, 9, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liaqat, S.; Mahmood, S.; Ahmad, S.; Kamran, Z.; Koutoulis, K.C. Replacement of Canola Meal with Moringa oleifera Leaf Powder Affects Performance and Immune Response in Broilers. J. Appl. Poult. Res. 2016, 25, 352–358. [Google Scholar] [CrossRef]
- Mustafa, M.A.G. Effect of Eucalyptus Leaves and Its Supplementation with Diet on Broiler Performance, Microbial and Physiological Statues to Alleviate Cold Stress. Iraqi J. Agric. Sci. 2019, 50, 359–368. [Google Scholar]
- Wang, L.; Lilburn, M.; Yu, Z. Intestinal Microbiota of Broiler Chickens as Affected by Litter Management Regimens. Front. Microbiol. 2016, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chamorro, S.; Romero, C.; Brenes, A.; Sánchez-Patán, F.; Bartolomé, B.; Viveros, A.; Arija, I. Impact of a Sustained Consumption of Grape Extract on Digestion, Gut Microbial Metabolism and Intestinal Barrier in Broiler Chickens. Food Funct. 2019, 10, 1444–1454. [Google Scholar] [CrossRef] [Green Version]
- Mcallister, T.A.; Martinez, T.; Hee, D.B.; Muir, A.D.; Yanke, L.J.; Jones, G.A. Characterization of Condensed Tannins Purified from Legume Forages: Chromophore Production, Protein Precipitation, and Inhibitory Effects on Cellulose Digestion. J. Chem. Ecol. 2005, 31, 2049–2068. [Google Scholar] [CrossRef]
- Banso, A.; Adeyemo, S.O. Evaluation of Antibacterial Properties of Tannins Isolated from Dichrostachys cinerea. Afr. J. Biotechnol. 2007, 6, 1785–1787. [Google Scholar] [CrossRef]
- Ahameethunisa, A.R.; Hopper, W. Antibacterial Activity of Artemisia nilagirica Leaf Extracts against Clinical and Phytopathogenic Bacteria. BMC Complement. Altern. Med. 2010, 10, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Yilmaz, B.; Li, H. Gut Microbiota and Iron: The Crucial Actors in Health and Disease. Pharmaceuticals 2018, 11, 98. [Google Scholar] [CrossRef] [Green Version]
- Jaisinghani, R.N. Antibacterial Properties of Quercetin. Microbiol. Res. 2017, 8, 13–14. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Yao, J.; Zhou, B.; Yang, J.; Chaudry, M.T.; Wang, M.; Xiao, F.; Li, Y.; Yin, W. Bacteriostatic Effect of Quercetin as an Antibiotic Alternative in Vivo and Its Antibacterial Mechanism in Vitro. J. Food Prot. 2018, 81, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Requena, R.; Vargas, M.; Chiralt, A. Eugenol and Carvacrol Migration from PHBV Films and Antibacterial Action in Different Food Matrices. Food Chem. 2019, 277, 38–45. [Google Scholar] [CrossRef] [PubMed]
- El-Saber Batiha, G.; Beshbishy, A.M.; Ikram, M.; Mulla, Z.S.; Abd El-Hack, M.E.; Taha, A.E.; Algammal, A.M.; Ali Elewa, Y.H. The Pharmacological Activity, Biochemical Properties, and Pharmacokinetics of the Major Natural Polyphenolic Flavonoid: Quercetin. Foods 2020, 9, 374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baskaran, S.A.; Kollanoor-Johny, A.; Nair, M.S.; Venkitanarayanan, K. Efficacy of Plant-Derived Antimicrobials in Controlling Enterohemorrhagic Escherichia Coli Virulence in Vitro. J. Food Prot. 2016, 79, 1965–1970. [Google Scholar] [CrossRef] [PubMed]
- Sharma, G.; Raturi, K.; Dang, S.; Gupta, S.; Gabrani, R. Combinatorial Antimicrobial Effect of Curcumin with Selected Phytochemicals on Staphylococcus Epidermidis. J. Asian Nat. Prod. Res. 2014, 16, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.K.; Sharma, A.K.; Pandey, A.K. Medicinal Attributes of Major Phenylpropanoids Present in Cinnamon. BMC Complement. Altern. Med. 2016, 16, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the Antimicrobial Activity Research of Clove Oil and Eugenol in the Food Antisepsis Field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef] [Green Version]
- Galvao, S.S.A.S.; Monteiro, E.P.; Siqueira, M.R.; Bomfim, M.V.; Dias-Souza, G.F.; Ferreira, A.M.; Denadai, A.R.; Santos, V.; Lucia Dos Santos, E.M.; de Souza-Fagundes, E.S.; et al. Annona glabra Flavonoids Act as Antimicrobials by Binding to Pseudomonas Aeruginosa Cell Walls. Front. Microbiol. 2016, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Hayashi, K.; Fukushima, A.; Hayashi-Nishino, M.; Nishino, K. Effect of Methylglyoxal on Multidrug-Resistant Pseudomonas Aeruginosa. Front. Microbiol. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.E.; Rahmat, A.; Ashkani, S. Secondary Metabolites Constituents and Antioxidant, Anticancer and Antibacterial Activities of Etlingera elatior (Jack) R.M.Sm Grown in Different Locations of Malaysia. BMC Complement. Altern. Med. 2015, 15, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Chen, L.; Xue, B.; Liu, Q.; Ou, S.; Wang, Y.; Peng, X. Different Flavonoids Can Shape Unique Gut Microbiota Profile In Vitro. J. Food Sci. 2016, 81, H2273–H2279. [Google Scholar] [CrossRef] [PubMed]
- Sanver, D.; Murray, B.S.; Sadeghpour, A.; Rappolt, M.; Nelson, A.L. Experimental Modeling of Flavonoid-Biomembrane Interactions. Langmuir 2016, 32, 13234–13243. [Google Scholar] [CrossRef] [PubMed]
- Ripon, M.M.R.; Rashid, M.H.; Rahman, M.M.; Ferdous, M.F.; Arefin, M.S.; Sani, A.A.; Hossain, M.T.; Ahammad, M.U.; Rafiq, K. Dose-Dependent Response to Phytobiotic Supplementation in Feed on Growth, Hematology, Intestinal PH, and Gut Bacterial Load in Broiler Chicken. J. Adv. Vet. Anim. Res. 2019, 6, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Saki, A.A. Herbal Additives and Organic Acids as Antibiotic Alternatives in Broiler Chickens Diet for Organic Production. Afr. J. Biotechnol. 2012, 11, 2139–2145. [Google Scholar] [CrossRef]
Ingredients % | Starter | Finisher | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
NC | PC | HAL | Po8 | Pb4 | NC | PC | HAL | Po8 | Pb4 | |
Corn | 54.40 | 54.40 | 54.40 | 54.40 | 54.40 | 58.95 | 58.95 | 58.95 | 58.95 | 58.95 |
Soybean Meal (SBM) (44%) | 33.90 | 33.90 | 33.90 | 33.90 | 33.90 | 28.00 | 28.00 | 28.00 | 28.00 | 28.00 |
Palm Oil | 2.64 | 2.64 | 2.64 | 2.64 | 2.64 | 4.14 | 4.14 | 4.14 | 4.14 | 4.14 |
Dicalcium Phosphate | 1.09 | 1.09 | 1.09 | 1.09 | 1.09 | 0.84 | 0.84 | 0.84 | 0.84 | 0.84 |
Choline Chloride | 0.11 | 0.11 | 0.11 | 0.11 | 0.11 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 |
Salt | 0.38 | 0.38 | 0.38 | 0.38 | 0.38 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
DL-Methionine | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 | 0.18 |
L-Lysine | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 | 0.34 |
Fish Meal | 5.33 | 5.33 | 5.33 | 5.33 | 5.33 | 5.74 | 5.74 | 5.74 | 5.74 | 5.74 |
Limestone | 1.06 | 1.06 | 1.06 | 1.06 | 1.06 | 0.86 | 0.86 | 0.86 | 0.86 | 0.86 |
Mineral Mix 1 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 |
Vitamin Mix 2 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 | 0.29 |
Treatments g/kg of Feed 3 | ||||||||||
Tetracycline (PC) | 0 | 0.2 | 0 | 0 | 0 | 0 | 0.2 | 0 | 0 | 0 |
Halquinol (HAL) | 0 | 0 | 0.03 | 0 | 0 | 0 | 0 | 0.03 | 0 | 0 |
POLM (Po8) | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 8 | 0 |
PBLM (Pb4) | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 4 |
Calculated Analysis (%) 4 | ||||||||||
Metabolisable Energy (ME) MJ/kg | 13.10 | 13.10 | 13.10 | 13.10 | 13.10 | 13.40 | 13.40 | 13.40 | 13.40 | 13.40 |
Crude Protein, % | 22.01 | 22.20 | 22.09 | 22.4 | 21.981 | 20.10 | 20.09 | 19.93 | 19.95 | 20.05 |
Ether Extract, % | 5.27 | 5.22 | 5.29 | 5.22 | 5.18 | 7.01 | 7.10 | 7.21 | 7.09 | 7.12 |
Calcium, % | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
Available P, % | 0.42 | 0.42 | 0.42 | 0.42 | 0.42 | 0.36 | 0.36 | 0.36 | 0.36 | 0.36 |
Parameters | Treatments | ||||||
---|---|---|---|---|---|---|---|
NC | PC | HAL | Po8 | Pb4 | SEM | p-Value | |
1–21 days | |||||||
Body weight gain (g) | 631.2 b | 667.3 ab | 666.8 ab | 675.3 a | 688.7 a | 6.41 | 0.04 |
Feed Intake (g/bird) | 1030.60 | 1023.7 | 1021.6 | 1029.0 | 1028.5 | 6.19 | 0.98 |
FCR | 1.63 a | 1.53 b | 1.53 b | 1.52 b | 1.50 b | 0.02 | 0.03 |
21–42 days | |||||||
Body weight gain (g) | 1658.5 b | 1716.3 a | 1714.6 a | 1722.1 a | 1748.4 a | 9.47 | 0.03 |
Feed Intake (g/bird) | 3010.0 | 3011.2 | 3013.0 | 3014.0 | 3016.0 | 8.36 | 0.99 |
FCR | 1.82 a | 1.75 b | 1.76 b | 1.75 b | 1.73 b | 0.01 | 0.02 |
1–42 days | |||||||
Body weight gain (g) | 2291.7 c | 2383.6 b | 2381.4 b | 2397.4 b | 2437.5 a | 11.09 | <0.0001 |
Feed Intake (g/bird) | 4043.0 | 4035.0 | 4036.2 | 4043.0 | 4045.0 | 11.01 | 0.99 |
FCR | 1.76 a | 1.69 b | 1.69 b | 1.69 b | 1.66 b | 0.01 | <0.0001 |
Mortality rate (%) day 1–42 | |||||||
10 | 3.66 | 6.66 | 3.66 | 0.00 | - | - |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Parameter | NC | PC | HAL | Po8 | Pb4 | SEM | p-Value |
Dry matter (DM) | 70.00 b | 76.92 a | 75.63 ab | 77.31 a | 78.68 a | 0.96 | 0.03 |
Organic matter (OM) | 71.50 b | 78.20 a | 77.05 a | 78.34 a | 79.10 a | 0.93 | 0.01 |
Ether extract (EE) | 67.76 b | 74.94 a | 74.25 a | 75.17 a | 75.3 a | 0.93 | 0.04 |
Crude protein (CP) | 69.87 b | 76.26 a | 76.05 a | 77.72 a | 77.19 a | 0.92 | 0.04 |
Ash | 32.20 b | 35.32 a | 35.03 a | 35.08 a | 35.47 a | 0.39 | 0.03 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Parameter | NC | PC | HAL | Po8 | Pb4 | SEM | p-Value |
Villus height | |||||||
Duodenum | 1383.8 c | 1460.1 b | 1451.7 b | 1476.4 ab | 1489.0 a | 6.30 | <0.0001 |
Jejunum | 970.8 c | 1040.2 b | 1030.1 b | 1043.6 ab | 1063.0 a | 5.43 | <0.0001 |
Ileum | 642.8 b | 663.8 a | 655.8 ab | 664.7 a | 667.4 a | 2.85 | 0.04 |
Crypt depth | |||||||
Duodenum | 185.5 a | 168.5 b | 167.6 b | 171.5 b | 169.9 b | 2.01 | 0.02 |
Jejunum | 143.6 | 138.9 | 138.7 | 138.3 | 137.8 | 1.52 | 0.76 |
Ileum | 135.0 a | 124.2 b | 123.1 b | 123.9 b | 123.2 b | 1.47 | 0.03 |
VH: CD | |||||||
Duodenum | 7.5 b | 8.7 a | 8.7 a | 8.7 a | 8.8 a | 0.13 | 0.002 |
Jejunum | 6.8 b | 7.5 a | 7.5 ab | 7.6 a | 7.8 a | 0.12 | 0.04 |
Ileum | 4.80 b | 5.4 a | 5.4 a | 5.4 a | 5.5 a | 0.07 | 0.04 |
Treatment | |||||||
---|---|---|---|---|---|---|---|
Microorganism | NC | PC | HAL | Po8 | Pb4 | SEM | p-Value |
E. coli | 6.32 a | 5.82 b | 5.87 b | 5.86 b | 5.71 b | 0.04 | <0.0001 |
Total anaerobic bacteria | 5.92 a | 5.70 ab | 5.90 a | 5.84 ab | 5.60 b | 0.04 | 0.032 |
Staphylococcus aureus | 2.60 a | 1.21 c | 2.56 a | 1.80 b | 1.27 c | 0.09 | <0.0001 |
Pseudomonas aeruginosa | 4.80 | 4.70 | 4.78 | 4.75 | 4.65 | 0.04 | 0.75 |
Lactobacillus spp. | 6.23 b | 6.40 b | 6.41 b | 6.89 a | 6.98 a | 0.05 | <0.0001 |
Clostridium spp. | 5.20 a | 4.88 b | 5.18 a | 5.12 a | 4.90 b | 0.04 | 0.003 |
Salmonella | 3.01 a | 2.27 c | 2.65 b | 2.70 b | 2.23 c | 0.05 | <0.0001 |
Cecum pH | 6.68 | 5.99 | 6.23 | 6.07 | 5.87 | 0.07 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basit, M.A.; Kadir, A.A.; Loh, T.C.; Abdul Aziz, S.; Salleh, A.; Zakaria, Z.A.; Banke Idris, S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals 2020, 10, 2150. https://doi.org/10.3390/ani10112150
Basit MA, Kadir AA, Loh TC, Abdul Aziz S, Salleh A, Zakaria ZA, Banke Idris S. Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals. 2020; 10(11):2150. https://doi.org/10.3390/ani10112150
Chicago/Turabian StyleBasit, Muhammad Abdul, Arifah Abdul Kadir, Teck Chwen Loh, Saleha Abdul Aziz, Annas Salleh, Zainul Amiruddin Zakaria, and Sherifat Banke Idris. 2020. "Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens" Animals 10, no. 11: 2150. https://doi.org/10.3390/ani10112150
APA StyleBasit, M. A., Kadir, A. A., Loh, T. C., Abdul Aziz, S., Salleh, A., Zakaria, Z. A., & Banke Idris, S. (2020). Comparative Efficacy of Selected Phytobiotics with Halquinol and Tetracycline on Gut Morphology, Ileal Digestibility, Cecal Microbiota Composition and Growth Performance in Broiler Chickens. Animals, 10(11), 2150. https://doi.org/10.3390/ani10112150