Effect of Dietary Flaxseed Oil Supplementation on the Redox Status, Haematological and Biochemical Parameters of Horses’ Blood
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Animals and Experimental Design
2.2. Chemical Analyses of Oils
2.3. Blood Analysis
2.4. Statistical Analysis
3. Results
3.1. Chemical Composition of Oils
3.2. The Blood Metabolites
3.3. Redox Status Parameters
3.4. Haematological Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
%HDL-TC | percent of high-density lipoprotein cholesterol in total cholesterol |
ALA | alpha-linolenic acid |
ALP | alkaline phosphatase |
ALT | alanine aminotransferase |
AST | aspartate aminotransferase |
BW | body weight |
CAT | catalase |
CREAT | creatinine |
DHA | docosahexaenoic acid |
DPPH• | means stable free radical 2,2-diphenyl-1-picrylhydrazyl |
EPA | eicosapentaenoic acid |
FID | flame ionization detector |
FRAP | total antioxidant potential |
GLU | glucose |
GPx | glutathione peroxidase |
Hb | haemoglobin content |
HCT | haematocrit |
HDL cholesterol | high-density lipoprotein cholesterol |
HPLC | high-performance liquid chromatography |
LDH | lactate dehydrogenase |
LDL cholesterol | low-density lipoprotein cholesterol |
LYM | lymphocytes |
MCH | mean corpuscular haemoglobin |
MCHC | mean corpuscular haemoglobin concentration |
MCV | mean corpuscular volume |
MDA | malondialdehyde |
MID | the sum of monocytes, eosinophils, and basophils |
MUFA | monounsaturated fatty acids |
NEU | neutrophils |
PN-EN ISO | Polish standard-European Standards International Organization for Standardization |
PUFA | polyunsaturated fatty acids |
RBC | red blood cell count |
SDG | secoisolariciresinol diglucoside |
SFA | saturated fatty acids |
SOD | superoxide dismutase |
TC | total cholesterol |
TG | triacylglycerols |
TP | total protein |
UA | uric acid |
WBC | white blood cell count |
References
- Pilar, B.; Güllich, A.; Oliveira, P.; Ströher, D.; Piccoli, J.; Manfredini, V. Protective role of flaxseed oil and flaxseed lignan secoisolariciresinol diglucoside against oxidative stress in rats with metabolic syndrome. J. Food Sci. 2017, 82, 3029–3036. [Google Scholar] [CrossRef]
- Wang, Y.W.; Sunwoo, H.; Cherian, G.; Sim, S.J. Maternal dietary ratio of linoleic acid to α-linolenic acid affects the passive immunity of hatching chicks. Poult. Sci. 2004, 83, 2039–2043. [Google Scholar] [CrossRef] [PubMed]
- Hansen, R.A.; Savage, C.J.; Reidlinger, K.; Traub-Dargatz, J.L.; Ogilvie, G.K.; Mitchell, D.; Fettman, M.J. Effects of dietary flaxseed oil supplementation on equine plasma fatty acid concentrations and whole blood platelet aggregation. J. Vet. Int. Med. 2002, 16, 457–463. [Google Scholar] [CrossRef]
- Pike, I.H.; Barlow, S.M. The fats of life—The role of fish. Lipid Technol. 2000, 12, 58. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 polyunsaturated fatty acids and their health benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- Schumacher, J.; DeGraves, F.J.; Spano, J.S. Clinical and clinicopathologic effects of large doses of raw linseed oil as compared to mineral oil in healthy horses. J. Vet. Intern. Med. 1998, 11, 296–299. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, W.; McKee, S.; Clarke, A.F. Flaxseed (Linum usitatissimum) supplementation associated with reduced skin test lesional area in horses with Culicoides hypersensitivity. Can. J. Vet. Res. Rev. Can. de Rech. Vet. 2002, 66, 272–277. [Google Scholar]
- Tavarini, S.; Castagna, A.; Conte, G.; Foschi, L.; Sanmartin, C.; Incrocci, L.; Ranieri, A.; Serra, A.; Angelini, L.G. Evaluation of chemical composition of two linseed varieties as sources of health-beneficial substances. Molecules 2019, 24, 3729. [Google Scholar] [CrossRef] [Green Version]
- Di Nunzio, M.; Valli, V.; Bordoni, A. PUFA and oxidative stress. Differential modulation of the cell response by DHA. Int. J. Food Sci. Nutr. 2016, 67, 834–843. [Google Scholar] [CrossRef]
- Czech, A.; Ognik, K.; Sembratowicz, I.; Chałabis-Mazurek, A. Concentration of trace elements vs. redox status in blood, liver, and muscles of turkey hens fed diets with the addition of soybean or linseed oil. Bull. Vet. Inst. Pulawy 2014, 58, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.Y.; El-Yamany, M.; Tawfeeq, M.; Elhariry, M.; Ahmad, H.H. Flaxseed oil effectively reduces the risk of development of atherosclerosis in rats fed on high cholesterol diet. Annu. Res. Rev. Biol. 2017, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Mélo, S.K.M.; Diniz, A.I.A.; Lira, V.L.; Muniz, S.K.O.; da Silva, G.R.; Manso, H.D.C.; Filho, H.C.M. Antioxidant and haematological biomarkers in different groups of horses supplemented with polyunsaturated oil and vitamin E. J. Anim. Physiol. Anim. Nutr. 2016, 100, 852–859. [Google Scholar] [CrossRef] [PubMed]
- NRC. The Nutrient Requirements of Horses, 6th ed.; National Academy Press: Washington DC, USA, 2007.
- Bocco, A.; Cuvelier, M.-E.; Richard, H.; Berset, C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agric. Food Chem. 1998, 46, 2123–2129. [Google Scholar] [CrossRef]
- Siwicki, A.K.; Anderson, D.P. Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs, and total immunoglobulin (Ig) level in serum. In Fish Disease Diagnosis and Preventions Methods; Wydawnictwo Instytutu Rybactwa Srodladowego: Olsztyn, Poland, 1993. [Google Scholar]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified extraction 2-thiobarbituric acid method for measuring lipid oxidation in poultry. Poult. Sci. 1987, 66, 1483–1488. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, R.E. Inactivation of superoxide dismutase by diethyldithio-carbamate. In Handbook of Methods for Oxygen Radical Research; Greenwald, R.A., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1985; pp. 387–390. [Google Scholar]
- Clairborne, A. Catalase Activity. In Handbook of Methods for Oxygen Radical Research; Greenwald, R.A., Ed.; CRC Press Inc.: Boca Raton, FL, USA, 1985; pp. 283–284. [Google Scholar]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krumrych, W. Horse Blood Laboratory Indices—Reference Values and Interpretation; National Veterinary Research Institute: Pulawy, Poland, 2003. (In Polish)
- Winnicka, A. Reference Values in Basic Laboratory Analyses in Veterinary Medicine; Warsaw Agricultural University Publishing: Warsaw, Poland, 2015; pp. 97, 108. (In Polish) [Google Scholar]
- Czech, A.; Kiesz, M.; Kiesz, A.; Próchniak, T.; Różański, P.; Klimiuk, K. Influence of type of use, age and gender on haematological and biochemical blood parameters of małopolski horses. Ann. Anim. Sci. 2019, 19, 85–96. [Google Scholar] [CrossRef] [Green Version]
- Gehlen, H. Kardiologische diagnostik beim pferd in der praxis. Prakt. Tierarzt. 2010, 91, 668–675. [Google Scholar]
- El-Waseif, M.; El-Dayem, H.A.; Hashem, H.; El-Behairy, S. Hypolipidemic effect of fat spreads containing flaxseed oil. Ann. Agric. Sci. 2014, 59, 17–24. [Google Scholar] [CrossRef] [Green Version]
- Lemieux, I.; Lamarche, B.; Couillard, C.; Pascot, A.; Cantin, B.; Bergeron, J.; Dagenais, G.R.; Després, J.-P. Total Cholesterol/HDL Cholesterol Ratio vs. LDL Cholesterol/HDL Cholesterol Ratio as Indices of Ischemic Heart Disease Risk in Men. Arch. Intern. Med. 2001, 161, 2685–2692. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Vineyard, K.R.; Warren, L.K.; Kivipelto, J. Effect of dietary omega-3 fatty acid source on plasma and red blood cell membrane composition and immune function in yearling horses. J. Anim. Sci. 2010, 88, 248–257. [Google Scholar] [CrossRef]
- Xu, J.; Rong, S.; Gao, H.; Chen, C.; Yang, W.; Deng, Q.; Huang, Q.; Xiao, L.; Huang, F. A Combination of flaxseed oil and astaxanthin improves hepatic lipid accumulation and reduces oxidative stress in high fat-diet fed rats. Nutrients 2017, 9, 271. [Google Scholar] [CrossRef] [PubMed]
- Westphal, S.; Orth, M.; Ambrosch, A.; Osmundsen, K.; Luley, C. Postprandial chylomikrons and VLDLs in severe hypertiacyglycerolemia are lowered more effectively than are chylomicron remnants after treatment with n-3 fatty acids. Am. J. Clin. Nutr. 2000, 71, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Chung, S.H. Anti-inflammatory effect of alpha-linolenic acid and its mode of action through the inhibition of nitric oxide production and inducible nitric oxide synthase gene expression via NF-kappaB and mitogen-activated protein kinase pathways. J. Agric. Food Chem. 2007, 55, 5073–5080. [Google Scholar] [CrossRef] [PubMed]
- Lamblin, F.; Hano, C.; Fliniaux, O.; Mesnard, F.; Fliniaux, M.A.; Lainé, E. Interest of lignans in prevention and treatment of cancers. Med. Sci. 2008, 24, 511–520. [Google Scholar]
- Ramadan, M.F.; Moersel, J.-T.; Ramadan, M.F. Screening of the antiradical action of vegetable oils. J. Food Compos. Anal. 2006, 19, 838–842. [Google Scholar] [CrossRef]
- Yousif, A.N. Effect of Flaxseed on some hormonal profile and genomic DNA concentration in Karadi lambs. IOP Conf. Ser. Earth Environ. Sci. 2019, 388. [Google Scholar] [CrossRef]
- Tou, J.C.L.; Chen, J.; Thompson, L.U. Dose, timing and duration of flaxseed exposure alter reproductive indices and sex hormones in rats. J. Toxicol. Environ. Health Part A 1999, 56, 555–570. [Google Scholar] [CrossRef]
- Poluzzi, E.; Piccinni, C.; Raschi, E.; Rampa, A.; Recanatini, M.; De Ponti, F. Phytoestrogens in Postmenopause: The State of the Art from a Chemical, Pharmacological and Regulatory Perspective. Curr. Med. Chem. 2014, 21, 417–436. [Google Scholar] [CrossRef] [Green Version]
- Lichtenstein, A.H.; Schwab, U.S. Relationship of dietary fat to glucose metabolism. Atherosclerosis 2000, 150, 227–243. [Google Scholar] [CrossRef]
- Hess, T.M.; Rexford, J.; Hansen, D.K.; Ahrens, N.S.; Harris, M.; Engle, T.; Ross, T.; Allen, K.G. Effects of omega-3 (n-3) fatty acid supplementation on insulin sensitivity in horses. J. Equine Vet. Sci. 2013, 33, 446–453. [Google Scholar] [CrossRef]
- Frank, N.; Geor, R.J.; Bailey, S.R.; Durham, A.E.; Johnson, P.J. Equine metabolic syndrome. J. Vet. Intern. Med. 2010, 24, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K. Secoisolariciresinol diglucoside from flaxseed delays the development of type 2 diabetes in Zucker rat. J. Lab. Clin. Med. 2001, 138, 32–39. [Google Scholar] [CrossRef] [PubMed]
- Kulak, E.; Ognik, K.; Stępniowska, A.; Sembratowicz, I. The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. J. Anim. Feed. Sci. 2018, 27, 44–54. [Google Scholar] [CrossRef]
- Tokarz, P.; Kaarniranta, K.; Blasiak, J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology 2013, 14, 461–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tuberoso, C.I.; Kowalczyk, A.; Sarritzu, E.; Cabras, P. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 2007, 103, 1494–1501. [Google Scholar] [CrossRef]
- Olejnik, D.; Gogolewski, M.; Nogala-Kałucka, M. Isolation and some properties of plastochromanol-8. Food/Nahrung 1997, 41, 101–104. [Google Scholar] [CrossRef]
- Barthet, V.J.; Klensporf-Pawlik, D.; Przybylski, R. Antioxidant activity of flaxseed meal components. Can. J. Plant Sci. 2014, 94, 593–602. [Google Scholar] [CrossRef]
- Naqshbandi, A.; Rizwan, S.; Khan, F. Dietary supplementation of flaxseed oil ameliorates the effect of cisplatin on rat kidney. J. Funct. Foods 2013, 5, 316–326. [Google Scholar] [CrossRef]
- Buzadzic, B.; Korać, B.; Lazic, T.; Obradović, D. Effect of supplementation with Cu and Zn on antioxidant enzyme activity in the rat tissues. Food Res. Int. 2002, 35, 217–220. [Google Scholar] [CrossRef]
- Barceló-Coblijn, G.; Murphy, E.J.; Othman, R.; Moghadasian, M.H.; Kashour, T.; Friel, J.K. Flaxseed oil and fish-oil capsule consumption alters human red blood cell n–3 fatty acid composition: A multiple-dosing trial comparing 2 sources of n-3 fatty acid. Am. J. Clin. Nutr. 2008, 88, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Fu, J.; Yu, M.; Huang, Q.; Wang, D.; Xu, J.; Deng, Q.; Yao, P.; Huang, F.-H.; Liu, L. Effects of flaxseed oil on anti-oxidative system and membrane deformation of human peripheral blood erythrocytes in high glucose level. Lipids Health Dis. 2012, 11, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-zuhairy, M.A.; Taher, M.G. Effects of feeding different levels of flaxseed on performance traits and blood parameters in broiler. Diyala Agric. Sci. J. 2014, 6, 1–10. [Google Scholar]
- Gutiérrez, S.; Svahn, S.L.; Johansson, M.E. Effects of Omega-3 fatty acids on immune cells. Int. J. Mol. Sci. 2019, 20, 5028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lone, A.M.; Taskén, K. Proinflammatory and immunoregulatory roles of eicosanoids in T Cells. Front. Immunol. 2013, 4, 130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Item | Oil | |
---|---|---|
Soybean | Flaxseed | |
Fatty Acids, % | ||
C14:0 | 0.11 | 0 |
C16:0 | 10.6 | 5.01 |
C16:1 | 0.09 | 0 |
C17:0 | 0.21 | 0.06 |
C18:0 | 3.76 | 3.73 |
C18:1 ω-9 | 23.7 | 21.51 |
C18:1 ω-7 | 1.61 | 0.68 |
C18:2 ω-6 | 51.54 | 16.2 |
C18:3 ω-3 | 6.89 | 52.2 |
C22:0 | 0.55 | 0.23 |
C20:1 | 0.28 | 0.12 |
C20:0 | 0.34 | 0.17 |
C20:2 | 0.03 | 0.00 |
C20:3 | 0.06 | 0.00 |
C24:0 | 0.23 | 0.09 |
ω-6/ω-3 | 7.48 | 0.31 |
SFA | 15.8 | 9.29 |
MUFA | 25.68 | 22.31 |
PUFA | 58.52 | 68.4 |
Total tocopherol, mg 100 g−1 | 118.9 | 74.08 |
α-tocopherol | 9.57 | 12 |
γ-tocopherol | 78.42 | 47.98 |
δ-tocopherol | 30.9 | 14.1 |
DPPH•, scavenging % | 44.67 | 51.43 |
Item | Unit | SO | SE | FO | SE | p-Value | Reference Values [20,21] |
---|---|---|---|---|---|---|---|
GLU | mmol L−1 | 5.97 | 0.128 | 4.79 | 0.163 | >0.001 | 3.5–6.0 |
TP | g L−1 | 66.36 | 2.61 | 61.73 | 4.54 | 0.370 | 55–75 |
AST | U L−1 | 351.0 | 10.08 | 341.0 | 10.01 | 0.116 | 138–409 |
ALT | U L−1 | 9.04 | 0.247 | 5.76 | 0.386 | >0.001 | 3–25 |
ALP | U L−1 | 221.8 | 6.17 | 182.9 | 6.17 | >0.001 | 109–315 |
LDH | U L−1 | 917.7 | 19.61 | 1322.1 | 19.61 | >0.001 | 520–1480 |
Lipid Parameters | |||||||
TC | mmol L−1 | 2.62 | 0.093 | 2.37 | 0.180 | 0.882 | 1.3–2.8 |
HDL | mmol L−1 | 1.16 | 0.049 | 1.28 | 0.075 | 0.276 | |
LDL | mmol L−1 | 0.932 | 0.087 | 0.450 | 0.130 | 0.044 | |
%HDL-TC | 45.43 | 1.85 | 58.32 | 1.85 | 0.003 | ||
TC/HDL | 2.24 | 0.089 | 1.73 | 0.089 | 0.010 | ||
TG | mmol L−1 | 0.652 | 0.029 | 0.369 | 0.029 | >0.001 | 0.1–0.7 |
Mineral Elements | |||||||
Phosphorus | mmol L−1 | 1.52 | 0.048 | 1.48 | 0.048 | 0.611 | 1.0–1.8 |
Manganese | mmol L−1 | 0.749 | 0.017 | 0.785 | 0.017 | 0.551 | 0.7–1.1 |
Calcium | mmol L−1 | 2.90 | 0.087 | 3.04 | 0.146 | 0.618 | 2.68–3.35 |
Item | Unit | SO | SE | FO | SE | p-Value | Reference Values [20,21] |
---|---|---|---|---|---|---|---|
UA | µmol L−1 | 39.37 | 1.55 | 42.68 | 2.76 | 0.440 | 29.7–42.6 |
CREAT | µmol L−1 | 119.0 | 3.74 | 136.1 | 3.74 | 0.012 | 106.1–167.9 |
FRAP | mmol L−1 | 0.341 | 0.027 | 0.408 | 0.027 | 0.079 | |
Vitamin C | µmol L−1 | 0.210 | 0.006 | 0.268 | 0.006 | >0.001 | |
MDA | µmol L−1 | 0.768 | 0.058 | 0.472 | 0.058 | 0.004 | |
SOD | U mL−1 | 1.89 | 0.100 | 2.98 | 0.103 | >0.001 | |
CAT | U mL−1 | 2.51 | 0.105 | 3.49 | 0.111 | >0.001 | |
Copper | µmol L−1 | 10.92 | 0.183 | 13.18 | 0.180 | >0.001 | |
Zinc | µmol L−1 | 20.89 | 0.642 | 24.62 | 0.641 | 0.003 | 14.9–29.2 |
Iron | µmol L−1 | 15.29 | 0.428 | 15.53 | 0.400 | 0.731 | 13.1–25.1 |
Item | Unit | SO | SE | FO | SE | p-Value | Reference Values [20,21] |
---|---|---|---|---|---|---|---|
Red blood cell parameters | |||||||
RBC | 1012 L−1 | 7.88 | 0.271 | 8.36 | 0.267 | 0.250 | 6–10 |
Hb | mmol L−1 | 8.20 | 0.330 | 8.59 | 0.300 | 0.043 | 6.8–11.8 |
HCT | L L−1 | 0.342 | 0.094 | 0.399 | 0.089 | 0.011 | 0.32–0.53 |
MCV | fL | 41.14 | 1.21 | 46.80 | 1.19 | 0.003 | 34–58 |
MCH | fmol | 0.971 | 0.615 | 1.16 | 0.555 | >0.001 | 8.1–11.8 |
MCHC | mmol L−1 | 20.76 | 0.407 | 20.50 | 0.400 | 0.177 | 19.2–23.0 |
White blood cell parameters | |||||||
WBC | 109 L−1 | 8.21 | 0.288 | 7.23 | 0.426 | 0.249 | 5.4–14.3 |
NEU | 109 L−1 | 5.09 | 0.276 | 3.23 | 0.406 | 0.006 | 4.0–7.8 |
LYM | 109 L−1 | 3.08 | 0.149 | 3.97 | 0.146 | >0.001 | 1.5–5.0 |
MID | 109 L−1 | 0.036 | 0.005 | 0.051 | 0.003 | 0.081 | |
Lysozyme | mg L−1 | 0.574 | 0.040 | 0.726 | 0.053 | 0.006 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sembratowicz, I.; Zięba, G.; Cholewinska, E.; Czech, A. Effect of Dietary Flaxseed Oil Supplementation on the Redox Status, Haematological and Biochemical Parameters of Horses’ Blood. Animals 2020, 10, 2244. https://doi.org/10.3390/ani10122244
Sembratowicz I, Zięba G, Cholewinska E, Czech A. Effect of Dietary Flaxseed Oil Supplementation on the Redox Status, Haematological and Biochemical Parameters of Horses’ Blood. Animals. 2020; 10(12):2244. https://doi.org/10.3390/ani10122244
Chicago/Turabian StyleSembratowicz, Iwona, Grzegorz Zięba, Ewelina Cholewinska, and Anna Czech. 2020. "Effect of Dietary Flaxseed Oil Supplementation on the Redox Status, Haematological and Biochemical Parameters of Horses’ Blood" Animals 10, no. 12: 2244. https://doi.org/10.3390/ani10122244
APA StyleSembratowicz, I., Zięba, G., Cholewinska, E., & Czech, A. (2020). Effect of Dietary Flaxseed Oil Supplementation on the Redox Status, Haematological and Biochemical Parameters of Horses’ Blood. Animals, 10(12), 2244. https://doi.org/10.3390/ani10122244