The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Experimental and Analytical Procedures
2.3. Statistical Analysis
3. Results
3.1. Microbial Community on the Surface of the Feed Tables
3.2. Body Weight Gain and Mortality of Snails
3.3. Carcass Weight and Evaluation of Shells
3.4. Ag Content and Oxidation State of Snail
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sowiński, G.; Wąsowski, R. Chów Ślimaków. Pielęgnacja, Żywienie, Zarys Chorób z Profilaktyką Oraz Kulinaria; Wydawnictwo Uniwersytetu Warmińsko-Mazurskiego: Olsztyn, Poland, 2000; ISBN 83-88343-40-8. [Google Scholar]
- Okonkwo, T.; Anyaene, L. Meat Yield and the Effects of Curing on the Characteristics of Snail Meat. Agro-Science 2009, 8, 66–73. [Google Scholar] [CrossRef] [Green Version]
- Engmann, F.; Afoakwah, N.A.; Darko, P.O.; Sefah, W. Proximate and Mineral Composition of Snail (Achatina achatina) Meat; Any Nutritional Justification for Acclaimed Health Benefits? J. Basic Appl. Sci. Res. 2013, 3, 8–15. [Google Scholar]
- Malik, A.A.; Aremu, A.; Bayode, G.B.; Ibrahim, B.A. A nutritional and organoleptic assessment of the meat of the giant African land snail (Archachatina maginata swaison) compared to the meat of other livestock. Livest. Res. Rural. Dev. 2011, 23, 60–66. [Google Scholar]
- Sando, D.; Grujić, R.; Meho, B.; Lisickov, K.; Vujadinović, D. Quality Indicators of Snail Meat Grown in Different Conditions. Qual. Life 2012, 6, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Toader-Williams, A.; Golubkina, N. Investigation upon the Edible Snail’s Potential as Source of Selenium for Human Health and Nutrition Observing its Food Chemical Contaminant Risk Factor with Heavy Metals. Bull. UASVM Agric. 2009, 66, 495–499. [Google Scholar]
- Bilal, M.; Rasheed, T.; Iqbal, H.M.N.; Hu, H.; Zhang, X. Silver nanoparticles: Biosynthesis and antimicrobial potentialities. Int. J. Pharmacol. 2017, 13, 832–845. [Google Scholar] [CrossRef] [Green Version]
- Jo, Y.; Garcia, C.V.; Ko, S.; Lee, W.; Shin, G.H.; Choi, J.C.; Park, S.J.; Kim, J.T. Characterization and antibacterial properties of nanosilver-applied polyethylene and polypropylene composite films for food packaging applications. Food Biosci. 2018, 23, 83–90. [Google Scholar] [CrossRef]
- Kim, J.S.; Kuk, E.; Yu, K.N.; Kim, J.H.; Park, S.J.; Lee, H.J.; Kim, S.H.; Park, Y.K.; Park, Y.H.; Hwang, C.Y.; et al. Antimicrobial effects of silver nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2007, 3, 95–101. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Busolo, M.A.; Fernandez, P.; Ocio, M.J.; Lagaron, J.M. Novel silver-based nanoclay as an antimicrobial in polylactic acid food packaging coatings. Food Addit. Contam. 2010, 27, 1617–1626. [Google Scholar] [CrossRef]
- Morsy, M.K.; Khalaf, H.H.; Sharoba, A.M.; El-Tanahi, H.H.; Cutter, C.N. Incorporation of Essential Oils and Nanoparticles in Pullulan Films to Control Foodborne Pathogens on Meat and Poultry Products. J. Food Sci. 2014, 79, M675–M684. [Google Scholar] [CrossRef] [PubMed]
- Gallocchio, F.; Cibin, V.; Biancotto, G.; Roccato, A.; Muzzolon, O.; Losasso, C.; Simone, B.; Manodori, L.; Fabrizi, A.; Patuzzi, I.; et al. Testing nano-silver food packaging to evaluate silver migration and food spoilage bacteria on chicken meat. Food Addit. Contam. Part A 2016, 33, 1063–1071. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Scotter, M.; Blackburn, J.; Ross, B.; Boxall, A.; Castle, L.; Aitken, R.; Watkins, R. Applications and implications of nanotechnologies for the food sector. Food Addit. Contam. 2008, 25, 241–258. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, Y.; Ye, Z.F.; Ni, J.R. Kinetics in the Process of Oil Field Wastewater Treatment by Effective Microbe B350. China Water Wastewater 2006, 11, 350–357. [Google Scholar]
- Konoplya, E.F.; Higa, T. EM application in animal husbandry–Poultry farming and its action mechanisms. In Proceedings of the International Conference on EM Technology and Nature Farming, Pyongyang, Korea, 20–22 September 2000. [Google Scholar]
- Safalaoh, A. Body weight gain, dressing percentage, abdominal fat and serum cholesterol of broilers supplemented with a microbial preparation. Afr. J. Food Agric. Nutr. Dev. 2006, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sitarek, M.; Napiórkowska-Krzebietke, A.; Mazur, R.; Czarnecki, B.; Pyka, J.P.; Stawecki, K.; Olech, M.; Sołtysiak, S.; Kapusta, A. Application of effective microorganisms technology as a lake restoration tool a case study of muchawka reservoir. J. Elem. 2017, 22, 529–543. [Google Scholar] [CrossRef]
- Laskowska, E.; Jarosz, Ł.S.; Grądzki, Z. Effect of the EM Bokashi® Multimicrobial Probiotic Preparation on the Non-specific Immune Response in Pigs. Probiotics Antimicrob. Proteins 2019, 11, 1264–1277. [Google Scholar] [CrossRef] [Green Version]
- Laskowska, E.; Jarosz, Ł.; Grądzki, Z. Effect of Multi-Microbial Probiotic Formulation Bokashi on Pro- and Anti-Inflammatory Cytokines Profile in the Serum, Colostrum and Milk of Sows, and in a Culture of Polymorphonuclear Cells Isolated from Colostrum. Probiotics Antimicrob. Proteins 2018, 11, 220–232. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists; AOAC Intl: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Uchiyama, M.; Mihara, M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal. Biochem. 1978, 86, 271–278. [Google Scholar] [CrossRef]
- Li, W.R.; Xie, X.B.; Shi, Q.S.; Zeng, H.Y.; Ou-Yang, Y.S.; Chen, Y. ben Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli. Appl. Microbiol. Biotechnol. 2010, 85, 1115–1122. [Google Scholar] [CrossRef] [PubMed]
- Sharma, N.; Kumar, J.; Thakur, S.; Sharma, S.; Shrivastava, V. Antibacterial study of silver doped zinc oxide nanoparticles against Staphylococcus aureus and Bacillus subtilis. Drug Invent. Today 2013, 5, 50–54. [Google Scholar] [CrossRef]
- McShan, D.; Ray, P.C.; Yu, H. Molecular toxicity mechanism of nanosilver. J. Food Drug Anal. 2014, 22, 116–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrier, M.; Combet-Blanc, Y.; Ollivier, B. Bacterial flora in the gut of Helix aspersa (Gastropoda Pulmonata): Evidence for a permanent population with a dominant homolactic intestinal bacterium, Enterococcus casseliflavus. Can. J. Microbiol. 1998, 44, 20–27. [Google Scholar] [CrossRef]
- Ligaszewski, M.; Pol, P. Praktyczne aspekty zastosowania preparatu czosnkowego, probiotyku i antybiotyku w produkcji jadalnego ślimaka dużego szarego (Helix aspersa maxima). Wiad. Zoot. 2016, 2, 140–149. [Google Scholar]
- Kalavathy, R.; Abdullah, N.; Jalaludin, S.; Ho, Y.W. Effects of Lactobacillus cultures on growth performance, abdominal fat deposition, serum lipids and weight of organs of broiler chickens. Br. Poult. Sci. 2003, 44, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, M.; Arslan, M.; Matur, E.; Cotelioglu, U.; Akyazi, İ.; Erarslan, E. The effects of Enterococcus faecium Cernelle 68 (SF 68) on output properties and some haematological parameters in broilers. Med. Weter. 2003, 59, 496–500. [Google Scholar]
- Hinkle, M.J. Effects of Microbial Litter Amendments on Broiler Performace, Litter Quality, and Ammonia Production. Master’s Thesis, Texas A&M University Poultry Research Center, College Station, TX, USA, 2010. [Google Scholar]
- Bitterncourt, L.C.; da Silva, C.C.; Garcia, P.D.S.R.; Donato, D.C.Z.; de Albuquerque, R.; Araújo, L.F. Influence of a probiotic on broiler performance. Rev. Bras. Zootec. 2011, 40, 2739–2743. [Google Scholar] [CrossRef] [Green Version]
- Da Cruz, D.P.; Otutumi, L.K.; Piau Júnior, R.; Cervantes, R.P.; Mezalira, T.S.; Gerônimo, E. Performance, carcass yield and litter quality of broilers raised on litters treated with micro-organisms. Ciência Anim. Bras. 2013, 14, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Esatu, W.; Melesse, A.; Dessie, T. Effect of effective microorganisms on growth parameters and serum cholesterol levels in broilers. Afr. J. Agric. Res. 2011, 6, 3841–3846. [Google Scholar] [CrossRef]
- Aly, M.; Zaki, M.; Mansour, A.; Srour, T.; Omar, E. Effect of Effective Microorganisms (Em) and Molasses, Wheat Bran, and their Mixture in a Biofloc System on Microbial Protein Production, Water Quality, Growth Performance and Feed Utilization of Nile Tilapia (Oreochromis niloticus) Fingerlings. J. Anim. Poult. Prod. 2017, 8, 443–449. [Google Scholar] [CrossRef]
- Lazaridou-Dimitriadou, M.; Alpoyanni, E.; Baka, M.; Brouziotis, T.; Kifonidis, N.; Mihaloudi, E.; Sioula, D.; Vellis, G. Growth, mortality and fecundity in successive generations of Helix aspersa muller cultured indoors and crowding effects on fast-, medium- and slow-growing snails of the same clutch. J. Molluscan Stud. 1998, 64, 67–74. [Google Scholar] [CrossRef]
- EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources Added to Food). Scientific opinion on the re-evaluation of silver (E 174) as food additive. EFSA J. 2016, 14. [Google Scholar] [CrossRef]
- Docea, A.O.; Calina, D.; Buga, A.M.; Zlatian, O.; Paoliello, M.M.B.; Mogosanu, G.D.; Streba, C.T.; Popescu, E.L.; Stoica, A.E.; Bîrcă, A.C.; et al. The Effect of Silver Nanoparticles on Antioxidant/Pro-Oxidant Balance in a Murine Model. Int. J. Mol. Sci. 2020, 21, 1233. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Dar, M.Y.; Joshi, B.; Sharma, B.; Shrivastava, S.; Shukla, S. Phytofabrication of Silver nanoparticles: Novel Drug to overcome hepatocellular ailments. Toxicol. Rep. 2018, 5, 333–342. [Google Scholar] [CrossRef]
- Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.-S. Investigation of antioxidant, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS ONE 2019, 14, e0220950. [Google Scholar] [CrossRef] [Green Version]
- Chaloupka, K.; Malam, Y.; Seifalian, A.M. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010, 28, 580–588. [Google Scholar] [CrossRef]
- Patlolla, A.K.; Hackett, D.; Tchounwou, P.B. Silver nanoparticle-induced oxidative stress-dependent toxicity in Sprague-Dawley rats. Mol. Cell. Biochem. 2015, 399, 257–268. [Google Scholar] [CrossRef] [Green Version]
- Foldbjerg, R.; Olesen, P.; Hougaard, M.; Dang, D.A.; Hoffmann, H.J.; Autrup, H. PVP-coated silver nanoparticles and silver ions induce reactive oxygen species, apoptosis and necrosis in THP-1 monocytes. Toxicol. Lett. 2009, 190, 156–162. [Google Scholar] [CrossRef]
- Carlson, C.; Hussein, S.M.; Schrand, A.M.; Braydich-Stolle, L.K.; Hess, K.L.; Jones, R.L.; Schlager, J.J. Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. J. Phys. Chem. B 2008, 112, 13608–13619. [Google Scholar] [CrossRef]
- Kim, S.; Choi, J.E.; Choi, J.; Chung, K.H.; Park, K.; Yi, J.; Ryu, D.Y. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. Vitr. 2009, 23, 1076–1084. [Google Scholar] [CrossRef]
Specification | Experimental Groups | |||
---|---|---|---|---|
K | N-Ag | N-Ag + EM | EM (Effective Microorganisms) | |
Variants of experiment | Paint-coated feed tables without the addition of nano-Ag | Feed tables covered with paint with the addition of nano-Ag | Paint-coated feed tables with nano-Ag + EM 10% | Paint-coated feed tables without the addition of nano-Ag + EM 10% |
The number of plots in individual variants | 2 | 2 | 2 | 2 |
Number of feed tables per plot | 400 | 400 | 400 | 400 |
Item | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
K | N-Ag | N-Ag + EM | EM | |||
Total bacterial count (CFU/swab) | 3.3 × 106 BD | 1.5 × 10 6Aa | 2.2 × 106 Cb | 2.5 × 106 B | 2.22 × 105 | 0.001 |
Fecal streptococci (CFU/swab) | 5.0 × 102 B | 1.9 × 102 Aa | 2.6 × 102 A | 2.8 × 102 Ab | 38.30 | 0.000 |
Listeria monocytogenes (CFU/swab) | absent | absent | absent | absent | - | - |
Escherichia coli (CFU/swab) | 3.4 × 104 B | 2.1 × 104 Aa | 2.4 × 104 A | 2.9 × 104 b | 2.03 × 103 | 0.001 |
Mold and yeast (CFU/swab) | 7.2 × 105 B | 7.5 × 105 B | 1.53 × 105 A | 2.0 × 105 A | 3.65 × 104 | 0.000 |
Item | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
K | N-Ag | N-Ag+ EM | EM | |||
I | 21.72 Aa | 17.54 Bd | 15.90 BD | 19.54 Cbc | 0.687 | 0.000 |
II | 96.52 BC | 85.25 BD | 90.94 B | 106.44 A | 2.424 | 0.000 |
III | 104.46 Cbc | 94.23 BD | 96.90 Bd | 113.96 Aa | 2.611 | 0.000 |
Item | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
K | N-Ag | N-Ag + EM | EM | |||
Carcass weight (g) | 6.95 a | 5.54 b | 6.76 ab | 7.40 a | 0.461 | 0.045 |
Shell length (mm) | 33.42 a | 30.31 b | 32.04 a | 33.77 a | 0.772 | 0.012 |
Shell width (mm) | 23.49 | 22.48 | 23.03 | 24.48 | 0.725 | 0.556 |
Item | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
K | N-Ag | Ag + EM | EM | |||
Ca (g/kg) | 387.0 BD | 417.0 A | 389.6 BD | 401.9 BC | 2.342 | 0.000 |
The crushing force of the shells (N) | 115.2 B | 138.1 A | 135.9 A | 115.0 B | 4.086 | 0.001 |
Item | Experimental Groups | SEM | p-Value | |||
---|---|---|---|---|---|---|
K | N-Ag | N-Ag + EM | EM | |||
Ag (µg/kg) | 14.87 B | 29.62 A | 31.7 A | 13.55 B | 0.927 | 0.000 |
TBARS (nmol/mg lyophilisate) | 0.63 BD | 1.01 A | 0.86 BC | 0.68 BD | 0.023 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łozicki, A.; Niemiec, T.; Pietrasik, R.; Pawęta, S.; Rygało-Galewska, A.; Zglińska, K. The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells. Animals 2020, 10, 2260. https://doi.org/10.3390/ani10122260
Łozicki A, Niemiec T, Pietrasik R, Pawęta S, Rygało-Galewska A, Zglińska K. The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells. Animals. 2020; 10(12):2260. https://doi.org/10.3390/ani10122260
Chicago/Turabian StyleŁozicki, Andrzej, Tomasz Niemiec, Robert Pietrasik, Sylwester Pawęta, Anna Rygało-Galewska, and Klara Zglińska. 2020. "The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells" Animals 10, no. 12: 2260. https://doi.org/10.3390/ani10122260
APA StyleŁozicki, A., Niemiec, T., Pietrasik, R., Pawęta, S., Rygało-Galewska, A., & Zglińska, K. (2020). The Effect of Ag Nanoparticles and Multimicrobial Preparation as Factors Stabilizing the Microbiological Homeostasis of Feed Tables for Cornu aspersum (Müller) Snails on Snail Growth and Quality Parameters of Carcasses and Shells. Animals, 10(12), 2260. https://doi.org/10.3390/ani10122260