Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schoenherr, W.; Jewell, D.E. Nutritional modification of inflammatory diseases. Semin. Vet. Med. Surg. Small Anim. 1997, 12, 212–222. [Google Scholar] [CrossRef]
- Park, H.J.; Park, J.S.; Hayek, M.G.; Reinhart, G.A.; Chew, B.P. Dietary fish oil and flaxseed oil suppress inflammation and immunity in cats. Vet. Immunol. Immunopathol. 2011, 141, 301–306. [Google Scholar] [CrossRef]
- Wander, R.; Hall, J.; Gradin, J.L.; Du, S.-H.; Jewell, D.E. The ratio of dietary (n-6) to (n-3) fatty acids influences immune system function, eicosanoid metabolism, lipid peroxidation and vitamin E status in aged dogs. J. Nutr. 1997, 127, 1198–1205. [Google Scholar] [CrossRef] [Green Version]
- Świątkiewicz, S.; Arczewska-Wlosek, A.; Józefiak, D. The relationship between dietary fat sources and immune response in poultry and pigs: An updated review. Livest. Sci. 2015, 180, 237–246. [Google Scholar] [CrossRef]
- Galli, C.; Calder, P.C. Effects of Fat and Fatty Acid Intake on Inflammatory and Immune Responses: A Critical Review. Ann. Nutr. Metab. 2009, 55, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.I.; Jewell, D.E. Docosahexaenoate-enriched fish oil and medium chain triglycerides shape the feline plasma lipidome and synergistically decrease circulating gut microbiome-derived putrefactive postbiotics. PLoS ONE 2020, 15, e0229868. [Google Scholar] [CrossRef] [PubMed]
- Wikoff, W.R.; Anfora, A.T.; Liu, J.; Schultz, P.G.; Lesley, S.A.; Peters, E.C.; Siuzdak, G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA 2009, 106, 3698–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nat. Cell Biol. 2017, 551, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, Y.; Gao, H.; Zhang, H.; Han, J.; Zhang, D.; Li, Y.; Zhou, J.; Lu, C.; Su, X. Modulation of the gut microbiota by the mixture of fish oil and krill oil in high-fat diet-induced obesity mice. PLoS ONE 2017, 12, e0186216. [Google Scholar] [CrossRef]
- Costantini, L.; Molinari, R.; Farinon, B.; Merendino, N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int. J. Mol. Sci. 2017, 18, 2645. [Google Scholar] [CrossRef] [Green Version]
- Diether, N.E.; Willing, B.P. Microbial Fermentation of Dietary Protein: An Important Factor in Diet–Microbe–Host Interaction. Microorganisms 2019, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mair, R.D.; Sirich, T.L.; Plummer, N.S.; Meyer, T.W. Characteristics of Colon-Derived Uremic Solutes. Clin. J. Am. Soc. Nephrol. 2018, 13, 1398–1404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poesen, R.; Claes, K.; Evenepoel, P.; De Loor, H.; Augustijns, P.; Kuypers, D.; Meijers, B. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD. J. Am. Soc. Nephrol. 2016, 27, 3479–3487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-Y.; Tarng, D.-C. Diet, gut microbiome and indoxyl sulphate in chronic kidney disease patients. Nephrology 2018, 23, 16–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nemet, I.; Saha, P.P.; Gupta, N.; Zhu, W.; Romano, K.A.; Skye, S.M.; Cajka, T.; Mohan, M.L.; Li, L.; Wu, Y.; et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. Cell 2020, 180, 862–877.e22. [Google Scholar] [CrossRef] [PubMed]
- Holmes, E.; Li, J.V.; Athanasiou, T.; Ashrafian, H.; Nicholson, J.K. Understanding the role of gut microbiome–host metabolic signal disruption in health and disease. Trends Microbiol. 2011, 19, 349–359. [Google Scholar] [CrossRef]
- Parthasarathy, A.; Cross, P.J.; Dobson, R.C.J.; Adams, L.E.; Savka, M.A.; Hudson, A.O. A Three-Ring Circus: Metabolism of the Three Proteogenic Aromatic Amino Acids and Their Role in the Health of Plants and Animals. Front. Mol. Biosci. 2018, 5, 29. [Google Scholar] [CrossRef]
- Verbrugghe, A.; Bakovic, M. Peculiarities of One-Carbon Metabolism in the Strict Carnivorous Cat and the Role in Feline Hepatic Lipidosis. Nutrients 2013, 5, 2811–2835. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; He, F.; Wu, C.; Li, P.; Li, N.; Deng, J.; Zhu, G.; Ren, W.-K.; Peng, Y. Betaine in Inflammation: Mechanistic Aspects and Applications. Front. Immunol. 2018, 9, 1070. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; He, C.; Bu, J.; Luo, Y.; Yang, S.; Ye, C.; Yu, S.; He, B.; Yin, Y.; Yang, X. Betaine attenuates LPS-induced downregulation of Occludin and Claudin-1 and restores intestinal barrier function. BMC Vet. Res. 2020, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- García-Ródenas, C.L.; E Bergonzelli, G.; Nutten, S.; Schumann, A.; Cherbut, C.; Turini, M.; Ornstein, K.; Rochat, F.; Corthésy-Theulaz, I. Nutritional Approach to Restore Impaired Intestinal Barrier Function and Growth After Neonatal Stress in Rats. J. Pediatr. Gastroenterol. Nutr. 2006, 43, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-G.; Xia, Y.; Lu, R.; Sun, J. Inflammation and intestinal leakiness in older HIV+ individuals with fish oil treatment. Genes Dis. 2018, 5, 220–225. [Google Scholar] [CrossRef] [PubMed]
- Abulizi, N.; Quin, C.; Brown, K.; Chan, Y.K.; Gill, S.K.; Gibson, D.L. Gut Mucosal Proteins and Bacteriome Are Shaped by the Saturation Index of Dietary Lipids. Nutrients 2019, 11, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belkaid, Y.; Hand, T.W. Role of the Microbiota in Immunity and Inflammation. Cell 2014, 157, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Shen, L.; Tan, Z.; Zhang, P.; Zhao, X.; Xu, Y.; Gan, M.; Yang, Q.; Ma, J.; Jiang, A.; et al. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients 2018, 10, 131. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Laganà, A.S. The Link between Homocysteine and Omega-3 Polyunsaturated Fatty Acid: Critical Appraisal and Future Directions. Biomolecules 2020, 10, 219. [Google Scholar] [CrossRef] [Green Version]
- Floerchinger, A.M.; Jackson, M.I.; Jewell, D.E.; MacLeay, J.M.; Paetau-Robinson, I.; Hahn, K.A. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in dogs. J. Am. Vet. Med. Assoc. 2015, 247, 375–384. [Google Scholar] [CrossRef]
- Hall, J.; Jewell, D.E. Feeding Healthy Beagles Medium-Chain Triglycerides, Fish Oil, and Carnitine Offsets Age-Related Changes in Serum Fatty Acids and Carnitine Metabolites. PLoS ONE 2012, 7, e49510. [Google Scholar] [CrossRef] [Green Version]
- Bright, J.M.; Sullivan, P.; Melton, S.L.; Schneider, J.F.; McDonald, T.P. The Effects of n-3 Fatty Acid Supplementation on Bleeding Time, Plasma Fatty Acid Composition, and In Vitro Platelet Aggregation in Cats. J. Vet. Intern. Med. 1994, 8, 247–252. [Google Scholar] [CrossRef]
- Hall, J.; Brockman, J.A.; Davidson, S.J.; MacLeay, J.M.; Jewell, D.E. Increased dietary long-chain polyunsaturated fatty acids alter serum fatty acid concentrations and lower risk of urine stone formation in cats. PLoS ONE 2017, 12, e0187133. [Google Scholar] [CrossRef] [Green Version]
- Balk, E.M.; Lichtenstein, A.H.; Chung, M.; Kupelnick, B.; Chew, P.; Lau, J. Effects of omega-3 fatty acids on serum markers of cardiovascular disease risk: A systematic review. Atheroscler. 2006, 189, 19–30. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, A.M.; Ding, E.L.; Willett, W.C.; Rimm, E.B. A meta-analysis shows that docosahexaenoic acid from algal oil reduces serum triglycerides and increases HDL-cholesterol and LDL-cholesterol in persons without coronary heart disease. J. Nutr. 2012, 142, 99–104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, H.A.; Corl, B.A.; Lin, X.; Jacobi, S.K.; Harrell, R.J.; Blikslager, A.; Odle, J. Enrichment of Intestinal Mucosal Phospholipids with Arachidonic and Eicosapentaenoic Acids Fed to Suckling Piglets Is Dose and Time Dependent. J. Nutr. 2008, 138, 2164–2171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, J.; Lv, L.; Wu, W.; Li, Y.; Shi, D.; Fang, D.; Guo, F.; Jiang, H.; Yan, R.; Ye, W.; et al. Butyrate Protects Mice Against Methionine–Choline-Deficient Diet-Induced Non-alcoholic Steatohepatitis by Improving Gut Barrier Function, Attenuating Inflammation and Reducing Endotoxin Levels. Front. Microbiol. 2018, 9, 1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuang, P.; Shou, Q.; Lu, Y.; Wang, G.; Qiu, J.; Wang, J.; He, L.; Chen, J.; Jiao, J.; Zhang, Y. Arachidonic acid sex-dependently affects obesity through linking gut microbiota-driven inflammation to hypothalamus-adipose-liver axis. Biochim. Biophys. Acta (BBA)—Mol. Basis Dis. 2017, 1863, 2715–2726. [Google Scholar] [CrossRef]
- Ramakers, J.D.; Mensink, R.P.; Schaart, G.; Plat, J. Arachidonic Acid but not Eicosapentaenoic Acid (EPA) and Oleic Acid Activates NF-κB and Elevates ICAM-1 Expression in Caco-2 Cells. Lipids 2007, 42, 687–698. [Google Scholar] [CrossRef] [Green Version]
- Mödinger, Y.; Schön, C.; Wilhelm, M.; Hals, P.-A. Plasma Kinetics of Choline and Choline Metabolites after A Single Dose of SuperbaBoostTM Krill Oil or Choline Bitartrate in Healthy Volunteers. Nutrients 2019, 11, 2548. [Google Scholar] [CrossRef] [Green Version]
- Piolot, A.; Blache, D.; Boulet, L.; Fortin, L.J.; Dubreuil, D.; Marcoux, C.; Davignon, J.; Lussier-Cacan, S. Effect of fish oil on LDL oxidation and plasma homocysteine concentrations in health. J. Lab. Clin. Med. 2003, 141, 41–49. [Google Scholar] [CrossRef]
- Dong, X.; Wang, J.; Ji, P.; Gao, X.; Sun, L.; Miao, S.; Lei, Y.; Du, X.; Zhang, X. Dietary betaine supplementation promotes growth, n-3 LC-PUFA content and innate immunity in Macrobrachium rosenbergii. Aquaculture. 2020, 525, 735308. [Google Scholar] [CrossRef]
- Dong, L.; Zhong, Z.X.; Cui, H.H.; Wang, S.N.; Luo, Y.; Yu, L.H.; Loor, J.J.; Wang, H. Effects of rumen-protected betaine supplementation on meat quality and the composition of fatty and amino acids in growing lambs. Animals 2020, 14, 435–444. [Google Scholar] [CrossRef]
- Kaur, G. Parenteral Betaine as a Strategy to Prevent Fatty Liver and Improve Docosahexaenoic Acid and Arachidonic Acid Distribution in Parenterally Fed Neonatal Piglets. Master’s Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, March 2019. [Google Scholar]
- Goldstein, L.; Davis, E.M. Taurine, betaine, and inositol share a volume-sensitive transporter in skate erythrocyte cell membrane. Am. J. Physiol. Integr. Comp. Physiol. 1994, 267, R426–R431. [Google Scholar] [CrossRef] [PubMed]
- Varatharajalu, R.; Garige, M.; Leckey, L.C.; Gong, M.; Lakshman, M.R.; Lakshman, M.R. Betaine Protects Chronic Alcohol and ω-3 PUFA-Mediated Down-Regulations of PON1 Gene, Serum PON1 and Homocysteine Thiolactonase Activities With Restoration of Liver GSH. Alcohol. Clin. Exp. Res. 2010, 34, 424–431. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, E.S.; Stephenson, A.; Gramstead, G. Analysis of the chromosome region containing the Drosophila homolog of the jun oncogene. In Proceedings of the 35th Annual Drosophila Research Conference, Chicago, IL, USA, 15 October 1994; p. 304. [Google Scholar]
Ingredient or Analyte | Pre-Trial Food | Control | E&D Food | ARA Food |
---|---|---|---|---|
Rice | 15.9 | 39.6 | 39.6 | 40.2 |
Corn gluten meal | 13.9 | 24.7 | 24.7 | 20.8 |
Poultry by-product meal | 26.1 | 19.7 | 19.7 | 16 |
Corn | 24.6 | 0 | 0 | 0 |
Pork Fat | 13.9 | 9.8 | 8.4 | 9 |
Palatability Enhancer | 1.3 | 1.4 | 1.4 | 1.4 |
Menhaden Fish oil | 0 | 0 | 1.4 | 0 |
Chicken livers, hydrolyzed, dry | 0 | 0 | 0 | 7.5 |
Lactic acid (84% lactic acid) | 1.8 | 1.2 | 1.2 | 1.2 |
Choline Chloride | 0.7 | 0.7 | 0.7 | 0.7 |
Methionine | 0.5 | 0.2 | 0.2 | 0.2 |
Taurine | 0.1 | 0.1 | 0.1 | 0.1 |
Minerals and Vitamins | 1.2 a | 2.6 b | 2.6 c | 2.9 d |
Moisture | 5.77 | 6.55 | 6.56 | 7.04 |
Protein | 31.99 | 34.2 | 33.82 | 33.91 |
Fat | 20.69 | 14.67 | 15.06 | 16.01 |
Atwater Energy € (kcal/kg) | 4121 | 3799 | 3821 | 3880 |
Ash | 5.23 | 4.87 | 4.77 | 4.67 |
Crude Fiber | 0.8 | 1 | 1 | NA |
Calcium | 0.96 | 0.67 | 0.68 | 0.69 |
Phosphorus | 0.82 | 0.67 | 0.63 | 0.64 |
Sodium | 0.34 | 0.31 | 0.29 | 0.31 |
Capric acid [10:0] | 0.02 | 0.01 | 0.01 | 0.01 |
Lauric acid [12:0] | 0.02 | 0.01 | 0.01 | 0.01 |
Myristic acid [14:0] | 0.2 | 0.14 | 0.22 | 0.14 |
Palmitic acid [16:0] | 4.19 | 3.01 | 2.97 | 3.14 |
Palmitoleic acid [16:1] | 0.57 | 0.37 | 0.44 | 0.38 |
Steric acid [18:0] | 2.01 | 1.48 | 1.38 | 1.62 |
Oleic acid [18:1] | 6.87 | 4.80 | 4.55 | 4.90 |
Arachidic acid [20:0] | 0.04 | 0.03 | 0.03 | 0.03 |
LA [18:2 (n-6)] | 3.17 | 2.52 | 2.41 | 2.51 |
aLA [18:3 (n-3)] | 0.13 | 0.12 | 0.13 | 0.11 |
ARA [20:4 (n-6)] | 0.09 | 0.08 | 0.09 | 0.16 |
EPA [20:5 (n-3)] | <0.01 | <0.01 | 0.23 | <0.01 |
DHA [22:6 (n-3)] | 0.01 | 0.01 | 0.13 | 0.02 |
SFA £ | 6.32 | 5.12 | 4.71 | 5.39 |
MUFA ¥ | 7.61 | 5.29 | 5.76 | 5.4 |
PUFA π | 3.39 | 2.87 | 3.23 | 2.96 |
(n-6) FA Ω | 3.43 | 2.72 | 2.62 | 2.8 |
(n-3) FA θ | 0.16 | 0.15 | 0.61 | 0.16 |
(n-6):(n-3) ratio | 21.4 | 18.1 | 4.3 | 17.5 |
Analyte | Control (COF Group) | E&DF Group | ARAF Group | F-test p Value |
---|---|---|---|---|
Body Weight (kg) Initial | 5.21 ± 0.34 | 5.07 ± 0.33 | 4.84 ± 0.33 | 0.74 |
Body Weight (kg) 56 day | 5.00 ± 0.30 | 4.89 ± 0.30 | 4.74 ± 0.29 | 0.83 |
Body Weight (kg) 84 day | 4.94 ± 0.28 | 4.76 ± 0.28 | 4.64 ± 0.27 | 0.74 |
Body Weight (kg) Change | −0.27 ± 0.11 | −0.31 ± 0.11 | -0.20 ± 0.10 | 0.16 |
Albumin (mg/dl) Initial | 3.67 ± 0.05 | 3.74 ± 0.05 | 3.79 ± 0.05 | 0.32 |
Albumin (mg/dl) 56 day | 3.89 ± 0.05 a | 3.93 ± 0.05 a,b | 4.05 ± 0.05 b | 0.08 |
Albumin (mg/dl) 84 day | 3.89 ± 0.06 | 3.92 ± 0.06 | 4.06 ± 0.06 | 0.15 |
Albumin (mg/dl) Change | 0.22 ± 0.05 | 0.16 ± 0.05 | 0.27 ± 0.05 | 0.36 |
Total Protein (mg/dl) Initial | 6.68 ± 0.09 | 6.73 ± 0.08 | 6.79 ± 0.09 | 0.67 |
Total Protein (mg/dl) 56 day | 6.61 ± 0.11 | 6.81 ± 0.11 | 6.80 ± 0.11 | 0.33 |
Total Protein (mg/dl) 84 day | 6.42 ± 0.10 | 6.55 ± 0.10 | 6.57 ± 0.09 | 0.47 |
Total Protein (mg/dl) Change | −0.26 ± 0.07 | −0.22 ± 0.07 | −0.23 ± 0.07 | 0.87 |
Urea Nitrogen (mg/dl) Initial | 20.1 ± 0.8 | 19.2 ± 0.8 | 19.7 ± 0.8 | 0.67 |
Urea Nitrogen (mg/dl) 56 day | 21.5 ± 0.9 | 19.8 ± 0.9 | 19.8 ± 0.8 | 0.32 |
Urea Nitrogen (mg/dl) 84 day | 22.7 ± 1.0 a | 18.9 ± 1.0 b | 19.5 ± 0.9 b | 0.02 |
Urea Nitrogen (mg/dl) Change | 2.5 ± 0.8 a | 0.1 ± 0.8u b | −0.4 ± 0.8 b | 0.03 |
Creatinine (mg/dl) Initial | 1.17 ± 0.05 | 1.11 ± 0.05 | 1.15 ± 0.05 | 0.80 |
Creatinine (mg/dl) 56 day | 1.19 ± 0.05 | 1.20 ± 0.05 | 1.19 ± 0.05 | 0.98 |
Creatinine (mg/dl) 84 day | 1.25 ± 0.05 | 1.13 ± 0.05 | 1.20 ± 0.05 | 0.40 |
Creatinine (mg/dl) Change | 0.08 ± 0.03 | 0.01 ± 0.03 | 0.06 ± 0.03 | 0.28 |
Triglycerides (mg/dl) Initial | 34.6 ± 3.1 | 35.5 ± 3.3 | 35.0 ± 3.3 | 0.98 |
Triglycerides (mg/dl) 56 day | 42.4 ± 9.0 | 50.8 ± 9.0 | 43.6 ± 8.6 | 0.77 |
Triglycerides (mg/dl) 84 day | 37.2 ± 14.1 | 59.5 ± 14.1 | 39.4 ± 13.5 | 0.47 |
Triglycerides (mg/dl) Change | 2.5 ± 13.8 | 22.7 ± 13.8 | 4.3 ± 13.8 | 0.52 |
Cholesterol (mg/dl) Initial | 145.5 ± 7.2 | 140.5 ± 6.9 | 144.3 ± 7.2 | 0.87 |
Cholesterol (mg/dl) 56 day | 152.0 ± 8.5 a,b | 134.4 ± 8.5 a | 169.0 ± 8.1 b | 0.02 |
Cholesterol (mg/dl) 84 day | 153.6 ± 8.7 a,b | 130.9 ± 8.7 a | 161.4 ± 8.4 b | 0.05 |
Cholesterol (mg/dl) Change | 8.2 ± 5.5 a | −9.1 ± 5.5 b | 19.9 ± 5.5 a | <0.01 |
Analyte | Control | E&D Food Group | ARA Food Group | F-test p Value |
---|---|---|---|---|
LA [18:2 (n-6)] Initial | 36.0 ± 2.1 | 35.5 ± 2.0 | 38.2 ± 2.1 | 0.62 |
LA [18:2 (n-6)] 56 day | 45.8 ± 3.5 b | 33.5 ± 3.5 a | 46.1 ± 3.4 b | 0.02 |
LA [18:2 (n-6)] 84 day | 40.8 ± 2.4 b | 30.3 ± 2.4 a | 38.7 ± 2.4 b | 0.01 |
LA [18:2 (n-6)] Change | 4.8 ± 1.8 b | −5.4 ± 1.8 a | 0.5± 1.8 b | <0.01 |
αLA [18:3 (n-3)] Initial | 1.1 ± O.1 | 1.1 ± O.1 | 1.1 ± O.1 | 0.87 |
αLA [18:3 (n-3)] 56 day | 1.3 ± O.1 | 1.0 ± O.1 | 1.1 ± O.1 | 0.14 |
αLA [18:3 (n-3)] 84 day | 1.3 ± O.1 | 1.1 ± O.1 | 1.1 ± O.1 | 0.16 |
αLA [18:3 (n-3)] Change | 0.2 ± O.1 | −0.1 ± O.1 | 0.0 ± O.1 | 0.12 |
ARA [20:4 (n-6)] Initial | 20.0 ± 1.0 | 21.1 ± 0.9 | 22.0 ± 1.0 | 0.32 |
ARA [20:4 (n-6)] 56 day | 20.8 ± 1.5 a | 18.3 ± 1.5 a | 31.4 ± 1.5 b | <0.01 |
ARA [20:4 (n-6)] 84 day | 21.5 ± 1.6 a | 17.1 ± 1.5 a | 31.1 ± 1.5 b | <0.01 |
ARA [20:4 (n-6)] Change | 1.6 ± 1.3 a | −3.8 ± 1.3 b | 9.6 ± 1.3 c | <0.01 |
EPA [20:5 (n-3)] Initial | 0.5 ± 0.03 | 0.5 ± 0.03 | 0.5 ± 0.03 | 0.17 |
EPA [20:5 (n-3)] 56 day | 0.5 ± 0.5 a | 5.7 ± 0.5 b | 0.6 ± 0.5 a | <0.01 |
EPA [20:5 (n-3)] 84 day | 0.6 ± 0.4 a | 5.4 ± 0.4 b | 0.6 ± 0.4 a | <0.01 |
EPA [20:5 (n-3)] Change | 0.1 ± 0.4 a | 4.9 ± 0.4 b | 0.1 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] Initial | 1.7 ± 0.1 | 1.8 ± 0.1 | 1.8 ± 0.1 | 0.72 |
DHA [22:6 (n-3)] 56 day | 1.9 ± 0.4 a | 6.1 ± 0.4 b | 2.6 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] 84 day | 1.7 ± 0.4 a | 6.0 ± 0.4 b | 2.5 ± 0.4 a | <0.01 |
DHA [22:6 (n-3)] Change | 0.0 ± 0.4 a | 4.2 ± 0.4 b | 0.8 ± 0.4 a | <0.01 |
ARA/(EPA+DHA) Initial | 9.2 ± 0.3 | 9.0 ± 0.3 | 9.4 ± 0.3 | 0.52 |
ARA/(EPA+DHA) 56 day | 8.8 ± 0.3 a | 1.7 ± 0.3 b | 9.7 ± 0.3 a | <0.01 |
ARA/(EPA+DHA) 84 day | 9.4 ± 0.3 a | 1.7 ± 0.3 b | 10.0 ± 0.3 a | <0.01 |
ARA/(EPA+DHA) Change | 0.2 ± 0.4 a | −7.3 ± 0.4 b | 0.6 ± 0.4 a | <0.01 |
Sum of n-3 £ Initial | 4.4 ± 0.29 | 4.7 ± 0.2 | 4.6 ± 0.2 | 0.48 |
Sum of n-3 £ 56 day | 4.9 ± 0.8 b | 14.7 ± 0.8 a | 5.9 ± 0.7 b | <0.01 |
Sum of n-3 £ 84 day | 4.7 ± 0.8 b | 14.2 ± 0.8 a | 5.1 ± 0.8 b | <0.01 |
Sum of n-3 £ Change | 0.3 ± 0.8 b | 9.5 ± 0.8 a | 0.9 ± 0.8 b | <0.01 |
Sum of n-6 £ Initial | 61.0 ± 2.7 | 61.6 ± 2.6 | 65.4 ± 2.7 | 0.45 |
Sum of n-6 θ 56 day | 71.8 ± 4.8 a | 55.0 ± 4.8 b | 82.6 ± 4.6 a | <0.01 |
Sum of n-6 θ 84 day | 68.0 ± 4.0 a | 50.7 ± 4.0 b | 75.0 ± 3.8 a | <0.01 |
Sum of n-6 θ Change | 7.0 ± 2.8 a | −10.8 ± 2.8 b | 10.9 ± 2.8 a | <0.01 |
Sum of PUFA ¥ Initial | 65.3 ± 2.8 | 66.3 ± 2.7 | 70.0 ± 2.8 | 0.46 |
Sum of PUFA ¥ 56 day | 76.7 ± 5.1 a,b | 69.7 ± 5.1 a | 88.3 ± 4.9 b | 0.04 |
Sum of PUFA¥ 84 day | 72.7 ± 4.3 a,b | 64.9 ± 4.3 a | 80.4 ± 4.1 b | 0.05 |
Sum of PUFA ¥ Change | 7.4 ± 2.8 b | −1.4 ± 2.8 a | 11.8 ± 2.8 b | <0.01 |
(n-6):(n-3) ratio Initial | 13.9 ± 0.4 | 13.3 ± 0.4 | 14.1 ± 0.4 | 0.32 |
(n-6):(n-3) ratio 56 day | 14.8 ± 0.5 a | 4.0 ± 0.5 b | 14.4 ± 0.5 a | <0.01 |
(n-6):(n-3) ratio 84 day | 14.4 ± 0.4 a | 3.9 ± 0.4 b | 13.8 ± 0.4 a | <0.01 |
(n-6):(n-3) ratio Change | 0.4 ± 0.5 a | −9.5 ± 0.5 b | −0.3 ± 0.5 a | <0.01 |
Analyte | Control | E&D Food Group | ARA Food Group | F-test p Value |
---|---|---|---|---|
Myristic acid [14:0] Initial | 0.51 ± 0.13 | 0.83 ± 0.12 | 0.60 ± 0.13 | 0.17 |
Myristic acid [14:0] 56 day | 0.55 ± 0.08 | 0.44 ± 0.08 | 0.42 ± 0.07 | 0.46 |
Myristic acid [14:0] 84 day | 0.48 ± 0.13 | 0.53 ± 0.13 | 0.64 ± 0.12 | 0.67 |
Myristic acid [14:0] Change | −0.02 ± 0.17 | −0.27 ± 0.17 | 0.26 ± 0.17 | 0.45 |
Palmitic acid [16:0] Initial | 19.7 ± 1.5 | 23.2 ± 1.5 | 22.3 ± 1.6 | 0.28 |
Palmitic acid [16:0] 56 day | 23.6 ± 1.7 a,b | 20.7 ± 1.6 a | 25.6 ± 1.5 b | 0.09 |
Palmitic acid [16:0] 84 day | 22.3 ± 1.8 a,b | 20.9 ± 1.8 a | 26.1 ± 1.7 b | 0.11 |
Palmitic acid [16:0] Change | 2.6 ± 2.0 a,b | −1.9 ± 2.0 a | 4.0 ± 2.0 b | 0.11 |
Stearic acid [18:0] Initial | 38.4 ± 2.1 | 41.7 ± 2.0 | 43.2 ± 2.1 | 0.25 |
Stearic acid [18:0] 56 day | 42.5 ± 2.8 a,b | 40.1 ± 2.8 a | 50.3 ± 2.7 b | 0.04 |
Stearic acid [18:0] 84 day | 43.5 ± 3.1 a,b | 39.8 ± 3.1 a | 51.7 ± 2.9 b | 0.02 |
Stearic acid [18:0] Change | 5.1 ± 2.5 a,b | −1.5 ± 2.5 a | 9.3 ± 2.5 b | 0.01 |
Palmitoleic acid [16:1] Initial | 1.5 ± 0.14 | 1.6 ± 0.13 | 1.4 ± 0.14 | 0.71 |
Palmitoleic acid [16:1] 56 day | 1.6 ± 0.09 a | 1.1 ± 0.09 b | 1.2 ± 0.09 b | 0.01 |
Palmitoleic acid [16:1] 84 day | 1.5 ± 0.11 a | 1.1 ± 0.11 b | 1.3 ± 0.10 a,b | 0.08 |
Palmitoleic acid [16:1] Change | 0.01 ± 0.14 a | −0.4 ± 0.14 b | −0.1 ± 0.14 a,b | 0.06 |
Oleic acid [18:1] Initial | 22.2 ± 1.8 | 23.7 ± 1.7 | 22.5 ± 1.8 | 0.81 |
Oleic acid [18:1] 56 day | 25.8 ± 1.6 a | 18.9 ± 1.6 b | 22.9 ± 1.6 a,b | 0.05 |
Oleic acid [18:1] 84 day | 26.5 ± 1.8 a | 20.2 ± 1.8 b | 25.1 ± 1.8 a,b | 0.05 |
Oleic acid [18:1] Change | 4.3 ± 1.8 a | −3.4 ± 1.8 b | 2.7 ± 1.8 a | 0.01 |
SFA £ Initial | 58.6 ± 3.5 | 65.7 ± 3.4 | 66.1 ± 3.5 | 0.25 |
SFA £ 56 day | 66.7 ± 4.3 a,b | 61.3 ± 4.3 a | 76.3 ± 4.1 b | 0.05 |
SFA £ 84 day | 66.4 ± 4.7 a,b | 61.3 ± 4.7 a | 78.4 ± 4.5 b | 0.03 |
SFA £ Change | 7.8 ± 4.4 a,b | −3.6 ± 4.4 a | 13.4 ± 4.4 b | 0.03 |
MUFA¥ Initial | 23.7 ± 1.9 | 25.3 ± 1.8 | 23.9 ± 1.9 | 0.81 |
MUFA ¥ 56 day | 27.4 ± 1.6 a | 20.0 ± 1.6 b | 24.1 ± 1.6 a,b | 0.02 |
MUFA ¥ 84 day | 28.0 ± 1.8 a | 21.4 ± 1.8 b | 26.4 ± 1.8 a,b | 0.05 |
MUFA ¥ Change | 4.3 ± 2.0 a | −3.8 ± 2.0 b | 2.6 ± 2.0 a | 0.01 |
Biochemical | Change in Control Food (COF) Group | Change in E&D Food (E&DF) Group | Change in ARA Food (ARAF) Group | E&DF to COF Group End of Study | ARAF to COF Groups End of Study | ARAF to E&DF Groups End of Study |
---|---|---|---|---|---|---|
Amino acid metabolites | ||||||
Sarcosine | 0.53 | 0.37 | 0.4 | 0.69 | 0.75 | 1.09 |
Dimethylglycine | 1.03 | 0.95 | 0.88 | 0.81 | 0.78 | 0.96 |
Betaine | 1.44 | 0.89 | 1.02 | 0.56 | 0.69 | 1.23 |
1-methyl-4-imidazoleacetate | 0.85 | 0.76 | 1.16 | 0.73 | 1.32 | 1.82 |
1-ribosyl-imidazoleacetate | 0.55 | 0.52 | 0.65 | 0.77 | 1.39 | 1.8 |
4-imidazoleacetate | 0.62 | 0.61 | 0.88 | 0.65 | 1.2 | 1.84 |
N-acetylhistamine | 1 | 1.34 | 2.65 | 0.64 | 2.32 | 3.66 |
Urea | 1.15 | 1.01 | 0.98 | 0.83 | 0.85 | 1.04 |
N-delta-acetylornithine | 0.38 | 0.35 | 0.4 | 0.67 | 0.99 | 1.47 |
5-oxoproline | 1.07 | 1.09 | 1.02 | 1.16 | 1.01 | 0.87 |
Postbiotics | ||||||
phenol sulfate | 1.11 | 0.78 | 1.48 | 0.51 | 1.24 | 2.42 |
4-methoxyphenol sulfate | 3.89 | 2.4 | 6.03 | 0.27 | 0.96 | 3.52 |
2-hydroxyphenylacetate | 1.04 | 0.87 | 1.51 | 0.81 | 1.28 | 1.58 |
Indoleacetate | 0.91 | 1.13 | 1.49 | 0.64 | 1.33 | 2.08 |
Indolepropionate | 1.03 | 0.88 | 1.38 | 0.69 | 1.31 | 1.9 |
Indoleacetylglutamine | 1.1 | 1.04 | 1.7 | 0.55 | 1.3 | 2.37 |
Phenylacetylglutamate | 1.63 | 1.14 | 1.58 | 0.62 | 0.87 | 1.41 |
Phenylacetylglutamine | 1.73 | 1.14 | 1.62 | 0.51 | 0.87 | 1.72 |
Phenylacetylglycine | 1.45 | 1.16 | 1.16 | 0.59 | 0.71 | 1.21 |
Phenylacetylserine | 1.87 | 1.27 | 1.24 | 0.29 | 0.43 | 1.49 |
3-methyl catechol sulfate | 1.75 | 0.89 | 2.44 | 0.18 | 0.62 | 3.51 |
4-methylcatechol sulfate | 1.16 | 1.44 | 2.01 | 0.60 | 0.88 | 1.47 |
4-ethylphenylsulfate | 1.6 | 0.7 | 1.51 | 0.35 | 0.71 | 2.00 |
4-vinylphenol sulfate | 1.16 | 0.6 | 1.02 | 0.34 | 0.65 | 1.93 |
p-cresol sulfate | 1.34 | 1.23 | 1.4 | 0.50 | 0.75 | 1.49 |
Lipids | ||||||
myristate (14:0) | 1.03 | 1.45 | 1.14 | 1.33 | 1.01 | 0.75 |
heneicosapentaenoate (21:5n3) | 1 | 20.07 | 1.05 | 20.00 | 1.05 | 0.05 |
hexadecadienoate (16:2n6) | 0.86 | 1.83 | 0.9 | 2.22 | 1.03 | 0.46 |
hexadecatrienoate (16:3n3) | 1.63 | 13.64 | 1.47 | 14.29 | 1.03 | 0.07 |
stearidonate (18:4n3) | 0.81 | 21.87 | 1.2 | 25.10 | 1.3 | 0.05 |
eicosapentaenoate (EPA; 20:5n3) | 0.89 | 24.68 | 1.23 | 32.26 | 1.36 | 0.04 |
docosapentaenoate (n3 DPA; 22:5n3) | 0.86 | 3.19 | 1.1 | 4.35 | 1.29 | 0.29 |
docosahexaenoate (DHA; 22:6n3) | 0.77 | 6.26 | 1.41 | 9.09 | 1.73 | 0.19 |
arachidonate (20:4n6) | 1.01 | 1.02 | 1.26 | 1.22 | 1.52 | 1.25 |
adrenate (22:4n6) | 0.99 | 0.9 | 1.41 | 1.14 | 1.31 | 1.15 |
docosapentaenoate (n6 DPA; 22:5n6) | 0.91 | 1.31 | 1.9 | 1.61 | 2.15 | 1.33 |
sebacate (C10-DC) | 1.11 | 2.06 | 1.37 | 1.37 | 1.17 | 0.86 |
myristoylcarnitine (C14) | 1.29 | 1.57 | 1.38 | 1.54 | 1.14 | 0.75 |
arachidonoylcarnitine (C20:4) | 1.26 | 1.06 | 1.74 | 0.97 | 1.64 | 1.69 |
adrenoylcarnitine (C22:4) | 1.33 | 0.89 | 1.73 | 0.78 | 1.58 | 2.01 |
cerotoylcarnitine (C26) | 1.28 | 1.31 | 1.51 | 1.39 | 1.38 | 0.99 |
3-hydroxybutyrate (BHBA) | 1.07 | 1.29 | 1.69 | 1.61 | 1.73 | 1.08 |
1-palmitoyl-2-oleoyl-GPC (16:0/18:1) | 1.08 | 0.98 | 1.06 | 0.90 | 1.01 | 1.11 |
1-palmitoyl-2-linoleoyl-GPC (16:0/18:2) | 1.04 | 0.85 | 1.03 | 0.83 | 1.07 | 1.28 |
1-palmitoyl-2-arachidonoyl-GPC (16:0/20:4n6) | 1.03 | 0.88 | 1.23 | 0.89 | 1.35 | 1.51 |
1-palmitoyl-2-docosahexaenoyl-GPC (16:0/22:6) | 1.08 | 3.76 | 1.59 | 3.70 | 1.71 | 0.46 |
1-palmitoleoyl-2-linoleoyl-GPC (16:1/18:2) | 1.13 | 0.58 | 0.92 | 0.52 | 0.83 | 1.58 |
1-palmitoleoyl-2-linolenoyl-GPC (16:1/18:3) * | 1.3 | 0.54 | 0.92 | 0.45 | 0.72 | 1.62 |
1,2-distearoyl-GPC (18:0/18:0) | 1.13 | 0.7 | 1 | 0.60 | 0.8 | 1.35 |
1-stearoyl-2-oleoyl-GPC (18:0/18:1) | 1.09 | 0.96 | 1.04 | 0.85 | 0.96 | 1.14 |
1-stearoyl-2-linoleoyl-GPC (18:0/18:2) | 1.03 | 0.91 | 0.99 | 0.87 | 1.02 | 1.18 |
1-stearoyl-2-arachidonoyl-GPC (18:0/20:4) | 1 | 0.95 | 1.21 | 0.95 | 1.28 | 1.35 |
1-stearoyl-2-docosahexaenoyl-GPC (18:0/22:6) | 1.13 | 4.13 | 1.65 | 3.70 | 1.71 | 0.46 |
1-oleoyl-2-docosahexaenoyl-GPC (18:1/22:6) * | 1.24 | 2.38 | 1.21 | 1.92 | 0.89 | 0.47 |
1,2-dilinoleoyl-GPC (18:2/18:2) | 1.1 | 0.56 | 0.86 | 0.51 | 0.78 | 1.54 |
1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) | 1.52 | 0.79 | 1.03 | 0.56 | 0.76 | 1.36 |
1-linoleoyl-2-arachidonoyl-GPC (18:2/20:4n6) * | 1.04 | 0.84 | 1.03 | 0.78 | 1.01 | 1.29 |
1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) | 1.33 | 1.33 | 0.83 | 1.05 | 0.82 | 0.79 |
1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4) * | 1.21 | 0.86 | 0.96 | 0.78 | 1.12 | 1.44 |
1-palmitoyl-2-docosahexaenoyl-GPE (16:0/22:6) * | 1.21 | 6.41 | 1.8 | 5.56 | 2.2 | 0.4 |
1-stearoyl-2-linoleoyl-GPE (18:0/18:2) | 1.27 | 1.09 | 0.92 | 0.81 | 0.88 | 1.09 |
1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) | 1.08 | 1.08 | 1.19 | 0.94 | 1.43 | 1.51 |
1-oleoyl-2-linoleoyl-GPE (18:1/18:2) * | 1.46 | 0.79 | 0.81 | 0.51 | 0.6 | 1.18 |
1-palmitoyl-2-oleoyl-GPI (16:0/18:1) | 1.24 | 0.94 | 1.12 | 0.67 | 0.84 | 1.25 |
1-palmitoyl-2-linoleoyl-GPI (16:0/18:2) | 1.3 | 1.09 | 1.09 | 0.74 | 0.88 | 1.2 |
1-palmitoyl-2-arachidonoyl-GPI (16:0/20:4) * | 1.09 | 1 | 1.22 | 0.85 | 1.29 | 1.5 |
1-stearoyl-2-oleoyl-GPI (18:0/18:1) | 1.2 | 0.93 | 1.08 | 0.70 | 0.75 | 1.06 |
1-stearoyl-2-linoleoyl-GPI (18:0/18:2) | 1.37 | 0.96 | 1.06 | 0.72 | 0.83 | 1.15 |
1-oleoyl-2-linoleoyl-GPI (18:1/18:2) | 1.47 | 0.88 | 1.09 | 0.57 | 0.74 | 1.31 |
1-stearoyl-2-arachidonoyl-GPI (18:0/20:4) | 1.09 | 0.96 | 1.12 | 0.88 | 1.12 | 1.27 |
1-palmitoleoyl-GPC (16:1) * | 1.04 | 0.65 | 0.8 | 0.65 | 0.74 | 1.15 |
1-oleoyl-GPC (18:1) | 1.1 | 0.82 | 0.95 | 0.72 | 0.81 | 1.12 |
1-linoleoyl-GPC (18:2) | 0.98 | 0.72 | 0.89 | 0.72 | 0.88 | 1.21 |
1-linolenoyl-GPC (18:3) | 1.07 | 0.75 | 0.98 | 0.75 | 0.91 | 1.21 |
1-arachidonoyl-GPC (20:4n6) | 1.02 | 0.76 | 1.31 | 0.74 | 1.36 | 1.83 |
1-lignoceroyl-GPC (24:0) | 1.16 | 0.96 | 1.1 | 0.86 | 1.13 | 1.32 |
1-palmitoyl-GPE (16:0) | 1.09 | 2.03 | 1.1 | 1.89 | 1.23 | 0.65 |
1-oleoyl-GPE (18:1) | 1.36 | 0.72 | 1.08 | 0.51 | 0.68 | 1.36 |
1-linoleoyl-GPE (18:2) | 1.2 | 0.6 | 0.95 | 0.53 | 0.83 | 1.55 |
1-arachidonoyl-GPE (20:4n6) | 1.13 | 0.64 | 1.27 | 0.66 | 1.28 | 1.95 |
1-stearoyl-GPG (18:0) | 1.29 | 0.84 | 1.06 | 0.68 | 1.05 | 1.56 |
1-linoleoyl-GPG (18:2) | 1.17 | 0.66 | 1.09 | 0.53 | 0.96 | 1.83 |
1-oleoyl-GPI (18:1) | 1.58 | 1.14 | 1.51 | 0.57 | 0.75 | 1.34 |
1-(1-enyl-palmitoyl)-2-oleoyl-GPE (P-16:0/18:1) * | 0.76 | 0.51 | 0.67 | 0.50 | 0.7 | 1.39 |
1-(1-enyl-palmitoyl)-2-linoleoyl-GPE (P-16:0/18:2) | 0.58 | 0.38 | 0.52 | 0.46 | 0.67 | 1.45 |
1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC (P-16:0/16:1) | 0.85 | 0.46 | 0.75 | 0.46 | 0.75 | 1.64 |
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPE (P-16:0/20:4) | 0.91 | 0.67 | 1.08 | 0.67 | 1.16 | 1.72 |
1-(1-enyl-stearoyl)-2-oleoyl-GPE (P-18:0/18:1) | 0.8 | 0.53 | 0.76 | 0.54 | 0.88 | 1.62 |
1-(1-enyl-stearoyl)-2-linoleoyl-GPE (P-18:0/18:2) | 0.77 | 0.51 | 0.7 | 0.58 | 0.9 | 1.55 |
1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) | 0.89 | 0.65 | 1.29 | 0.74 | 1.48 | 2.02 |
1-(1-enyl-palmitoyl)-2-linoleoyl-GPC (P-16:0/18:2) | 1.04 | 0.53 | 0.87 | 0.47 | 0.8 | 1.68 |
1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) | 0.94 | 0.67 | 1.21 | 0.73 | 1.46 | 2 |
palmitoleoyl-linoleoyl-glycerol (16:1/18:2) | 1.18 | 0.68 | 1.12 | 0.55 | 0.9 | 1.63 |
stearoyl-arachidonoyl-glycerol (18:0/20:4) | 1.29 | 0.86 | 1.32 | 0.71 | 1.16 | 1.63 |
stearoyl-arachidonoyl-glycerol (18:0/20:4) | 1.21 | 0.93 | 1.43 | 0.78 | 1.29 | 1.66 |
oleoyl-arachidonoyl-glycerol (18:1/20:4) | 1.02 | 0.72 | 1.46 | 0.74 | 1.63 | 2.2 |
oleoyl-arachidonoyl-glycerol (18:1/20:4) | 1.14 | 0.88 | 1.62 | 0.81 | 1.58 | 1.95 |
linoleoyl-arachidonoyl-glycerol (18:2/20:4) | 1.1 | 1.97 | 1.86 | 2.00 | 2.09 | 1.04 |
Sphinganine | 0.93 | 0.74 | 1 | 0.8 | 1.03 | 1.3 |
sphinganine-1-phosphate | 1 | 0.65 | 0.86 | 0.67 | 1.04 | 1.54 |
palmitoyl sphingomyelin (d18:1/16:0) | 1.04 | 0.85 | 1.08 | 0.81 | 1 | 1.24 |
stearoyl sphingomyelin (d18:1/18:0) | 1.02 | 1.15 | 1.17 | 1.14 | 1.15 | 1.01 |
behenoyl sphingomyelin (d18:1/22:0) | 1.08 | 0.98 | 1.18 | 0.85 | 0.99 | 1.17 |
tricosanoyl sphingomyelin (d18:1/23:0) | 1.24 | 1.01 | 1.25 | 0.80 | 0.96 | 1.2 |
lignoceroyl sphingomyelin (d18:1/24:0) | 1.26 | 1.06 | 1.19 | 0.83 | 0.92 | 1.11 |
sphingomyelin (d18:2/18:1) | 1.09 | 0.78 | 1 | 0.71 | 0.86 | 1.2 |
sphingomyelin (d17:1/14:0, d16:1/15:0) | 1.18 | 0.89 | 1.05 | 0.66 | 0.71 | 1.08 |
sphingomyelin (d18:1/14:0, d16:1/16:0) | 1.05 | 0.88 | 0.96 | 0.73 | 0.74 | 0.98 |
sphingomyelin (d18:2/14:0, d18:1/14:1) | 1.28 | 0.95 | 1.03 | 0.67 | 0.67 | 1 |
sphingomyelin (d17:1/16:0, d18:1/15:0, d16:1/17:0) | 1.04 | 0.84 | 1.08 | 0.81 | 0.93 | 1.15 |
sphingomyelin (d17:2/16:0, d18:2/15:0) | 1.27 | 1.04 | 1.27 | 0.76 | 0.91 | 1.19 |
sphingomyelin (d18:2/16:0, d18:1/16:1) | 1.08 | 0.85 | 1.06 | 0.75 | 0.95 | 1.26 |
sphingomyelin (d18:1/18:1, d18:2/18:0) | 1.08 | 0.9 | 1.11 | 0.87 | 1.08 | 1.26 |
sphingomyelin (d18:1/21:0, d17:1/22:0, d16:1/23:0) | 1.1 | 0.87 | 1.05 | 0.76 | 0.82 | 1.08 |
Cholesterol | 1.03 | 0.91 | 1.15 | 0.81 | 1.12 | 1.38 |
7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) | 0.94 | 0.84 | 0.79 | 0.76 | 1.1 | 1.45 |
3beta-hydroxy-5-cholestenoate | 0.92 | 0.59 | 0.69 | 0.52 | 1.06 | 2.05 |
4-cholesten-3-one | 1.24 | 1.05 | 1.51 | 0.85 | 1.22 | 1.43 |
Campesterol | 1.13 | 0.97 | 1.3 | 0.78 | 1.07 | 1.37 |
Nucleotides, vitamins | ||||||
Guanine | 0.67 | 0.79 | 0.53 | 1.41 | 0.89 | 0.63 |
5-hydroxymethylcytidine | 1.75 | 1.75 | 1.22 | 1.08 | 0.49 | 0.45 |
N1-Methyl-2-pyridone-5-carboxamide | 1.21 | 1.01 | 1.16 | 0.53 | 1.01 | 1.88 |
alpha-tocopherol | 1.2 | 1.13 | 1.33 | 0.89 | 1.08 | 1.21 |
Pyridoxate | 2.06 | 1.79 | 1.68 | 0.8 | 0.69 | 0.87 |
2-isopropylmalate | 0.66 | 0.83 | 1 | 1.18 | 2.34 | 1.98 |
equol sulfate | 1.22 | 1.35 | 1.79 | 0.84 | 1.72 | 2.04 |
stachydrine | 0.75 | 0.56 | 0.58 | 0.69 | 0.77 | 1.12 |
4-vinylguaiacol sulfate | 1.22 | 0.87 | 1.12 | 0.66 | 0.79 | 1.42 |
2,5-dimethylphenol sulfate | 1.24 | 1.24 | 1.45 | 0.87 | 1.1 | 1.26 |
2,4-dichlorophenol sulfate | 1.64 | 1.27 | 1.85 | 0.75 | 1.55 | 2.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jewell, D.E.; Jackson, M.I. Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals 2020, 10, 2310. https://doi.org/10.3390/ani10122310
Jewell DE, Jackson MI. Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals. 2020; 10(12):2310. https://doi.org/10.3390/ani10122310
Chicago/Turabian StyleJewell, Dennis E., and Matthew I. Jackson. 2020. "Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat" Animals 10, no. 12: 2310. https://doi.org/10.3390/ani10122310
APA StyleJewell, D. E., & Jackson, M. I. (2020). Dietary Fatty Acids Change Circulating Fatty Acids, Microbial Putrefactive Postbiotics and Betaine Status in the Cat. Animals, 10(12), 2310. https://doi.org/10.3390/ani10122310