Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Feed Intake and Digestibility
2.3. Enteric Methane Emissions
2.4. Milk Sampling and Analysis
2.5. Rumen Sample Collection and Analyses
2.6. Chemical Analysis of Feed and Feces
2.7. Relative Quantitative PCR Analysis of Ruminal Protozoa and Methanogenic Populations in Rumen Fluid
2.8. Statistical Analysis
3. Results
3.1. Feed Intake and Diet Digestibility
3.2. Animal Performance
3.3. Enteric Methane Emissions
3.4. Rumen Fermentation Variables
3.5. Ruminal Abundance of Protozoa and Methanogenic Populations
4. Discussion
4.1. Feed Intake and Diet Digestibility
4.2. Enteric Methane Emissions
4.3. Animal Performance
4.4. Rumen Methanogen Populations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hristov, A.N.; Oh, J.; Lee, C.; Meinen, R.; Montes, F.; Ott, T.; Firkins, J.; Rotz, A.; Dell, C.; Adesogan, A.; et al. Mitigation of greenhouse gas emissions in livestock production—A review of technical options for non-CO2 emissions. In FAO Animal Production and Health Paper No. 177; Gerber, P.J., Henderson, B., Makkar, H.P.S., Eds.; FAO: Rome, Italy, 2013. [Google Scholar]
- Herrero, M.; Henderson, B.; Havel, P.; Thornton, P.K.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerrber, P.; Gill, M.; Butterbach-Bahl, K.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Environmental Protection Agency. Ireland’s Greenhouse Gas Emissions in 2017; Environmental Protection Agency, Johnstown Castle, Co.: Wexford, Ireland, 2019. [Google Scholar]
- Duffy, P.; Black, K.; Hyde, B.; Ryan, A.M.; Ponzi, J. Ireland National Inventory Report 2011; Greenhouse gas emissions 1990–2017 Reported to the United Nations Framework Convention on Climate Change; Environmental Protection Agency, Johnstown Castle, Co.: Wexford, Ireland, 2019. [Google Scholar]
- DAFM (Department of Agriculture, Food and the Marine). Food Harvest 2020: A Vision for Irish Agri-Food and Fisheries. 2010. Available online: https://www.agriculture.gov.ie/media/migration/foodindustrydevelopmenttraemarkets/agrifoodandtheeconomy/foodharvest2020/2020FoodHarvestExeSummary240810.pdf (accessed on 27 October 2018).
- O’Brien, D.; Shallo, L.; Grainger, C.; Buckley, F.; Horan, B.; Wallace, M. The influence of strain of Holstein-Friesian cow and feeding system on greenhouse gas emissions from pastoral dairy farms. J. Dairy Sci. 2010, 93, 3390–3402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, P.; Roche, J.R.; Shalloo, L.; Horan, B. Optimising financial return from grazing in temperate pastures. In Utilisation of Grazed Grass in Temperate Animal Systems: Proceedings of A Satellite Workshop of the 20th International Grassland Congress; Murphy, J.J., Ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005; pp. 131–147. [Google Scholar]
- Finneran, E.; Crosson, P.; O’Kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Stochastic simulation of the cost of home-produced feeds for ruminant livestock systems. J. Agric. Sci. 2011, 150, 123–139. [Google Scholar] [CrossRef] [Green Version]
- Ganche, E.; O’Donovan, M.; Delaby, L.; Boland, T.M.; Kennedy, E. Does post-grazing sward height influence sward characteristics, seasonal herbage dry matter production, and herbage quality? Grass Forage Sci. 2014, 70, 130–143. [Google Scholar] [CrossRef]
- Wims, C.; Deighton, M.; Lewis, E.; O’Loughlin, B.; Delaby, L.; Boland, T.M.; O’Donovan, M. Effect of pre grazing herbage mass on methane production, dry matter intake and milk production of grazing dairy cows during the mid season period. J. Dairy Sci. 2010, 93, 4976–4985. [Google Scholar] [CrossRef]
- Hart, K.J.; Martin, P.G.; Foley, P.A.; Kenny, D.A.; Boland, T.M. Effect of sward in vitro dry matter digestibility on methane production of zero-grazed beef cattle. J. Anim. Sci. 2009, 87, 3342–3350. [Google Scholar] [CrossRef] [Green Version]
- Boland, T.M.; Quinlan, C.; Pierce, K.M.; Lynch, M.B.; Kenny, D.A.; Kelly, A.K.; Purcell, P.J. The effect of pasture pre-grazing herbage mass on methane emissions, ruminal fermentation, and average daily gain of grazing beef heifers. J. Anim Sci. 2013, 91, 3867–3874. [Google Scholar] [CrossRef]
- Creighton, P.; Kennedy, E.; Shalloo, L.; Boland, T.M.; O’ Donovan, M. A survey analysis of grassland dairy farming in Ireland, investigating grassland management, utilisation, uptake of grassland research technologies and the frequency and methods of sward renewal. Grass Forage Sci. 2011, 66, 251–264. [Google Scholar] [CrossRef]
- Martin, C.; Pomiès, D.; Ferlay, A.; Rochette, Y.; Martin, B.; Chilliard, Y.; Morgavi, D.P.; Doreau, M. Methane output and rumen microbiota in dairy cows in response to longterm supplementation with linseed or rapeseed of grass silage- or pasturebased diets. Proc. N. Z. Soc. Anim. Prod. 2011, 71, 242–247. [Google Scholar]
- Hristov, A.N.; Oh, J.; Firkins, J.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Adesogan, A.; Yang, W.; Tricarico, J.; Lee, C.; et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [Green Version]
- Rabiee, A.R.; Breinhild, K.; Scott, W.; Golder, H.M.; Block, E.; Lean, U.J. Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and metaregression. J. Dairy Sci. 2012, 9, 3225–3247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kliem, K.; Humphries, D.; Kirton, P.; Givens, D.; Reynolds, C. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animal 2019, 13, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Jordan, E.; Kenny, D.A.; Hawkins, M.; Malone, R.; Lovett, D.K.; O’Mara, F.P. Effect of refined soy oil or whole soybeans on intake, methane output, and performance of young bulls. J. Anim. Sci. 2006, 84, 2418–2425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Rouel, J.; Jouany, J.P.; Doreau, M.; Chilliard, Y. Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J. Anim. Sci. 2008, 86, 2642–2650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, C.; Ferlay, A.; Mosoni, P.; Rochette, Y.; Chilliard, Y.; Doreau, M. Increasing linseed supply in dairy cow diets based on hay or corn silage: Effect on enteric methane emission, rumen microbial fermentation, and digestion. J. Dairy Sci. 2016, 99, 3445–3456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillis, L.; Boots, G.; Kenny, D.; Petrie, K.; Boland, T.; Clipson, N.; Doyle, E. The effect of dietary concentrate and soya oil inclusion on microbial diversity in the rumen of cattle. J. Appl. Microbiol. 2011, 111, 1426–1435. [Google Scholar] [CrossRef]
- Lyons, T.; Boland, T.; Storey, S.; Doyle, E. Linseed Oil Supplementation of Lambs’ Diet in Early Life Leads to Persistent Changes in Rumen Microbiome Structure. Front. Microbiol. 2017, 8, 1656. [Google Scholar] [CrossRef] [Green Version]
- Czerkawski, J.W.; Clapperton, J.L. Fats as energy-yielding compounds in the ruminant diet. In Fats in Animal Nutrition; Wiseman, J., Ed.; Butterworths: Boston, MA, USA, 1984; pp. 249–263. [Google Scholar]
- Jenkins, T.C.; Wallace, R.J.; Moate, P.J.; Mosley, E.E. Board-invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J. Anim. Sci. 2008, 86, 397–412. [Google Scholar] [CrossRef]
- Demeyer, D.I.; Henderickx, H.K. The effect of C18 unsaturated fatty acids on methane production in vitro by mixed rumen bacteria. Biochem. Biophys. Acta. 1967, 137, 484–497. [Google Scholar] [CrossRef]
- Henderson, C. The effects of fatty acids on pure cultures of rumen bacteria. J. Agric. Sci. 1973, 81, 107–112. [Google Scholar] [CrossRef]
- Zhang, C.M.; Guo, Y.Q.; Yuan, Z.P.; Wu, Y.M.; Wang, J.K.; Liu, J.X.; Zhu, W.Y. Effect of octadeca carbon fatty acids on microbial fermentation, methanogenesis and microbial flora in vitro. Anim. Feed Sci. Tech. 2008, 146, 259–269. [Google Scholar] [CrossRef]
- McCartney, C.A.; Bull, I.D.; Waters, S.M.; Dewhurst, R.J. Technical note: Comparison of biomarker and molecular biological methods for estimating methanogen abundance. J. Anim Sci. 2013, 91, 5724–5728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moate, P.J.; Williams, S.R.O.; Grainger, C.; Hannah, M.C.; Ponnampalam, E.N.; Eckard, R.J. Influence of cold-pressed canola, brewers grains and hominy meal as dietary supplements suitable for reducing enteric methane emissions from lactating dairy cows. Anim. Feed Sci. Technol. 2011, 166, 254–264. [Google Scholar] [CrossRef]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Tech. 2011, 166–167, 308–320. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Newbold, C.J.; Van Nevel, C.J.; Demeyer, D.I. Manipulation of ruminal fermentation. In The Rumen Microbial Ecosystem; Hobson, P.N., Stewart, C.S., Eds.; Blackie Academic and Professional: London, UK, 1997; pp. 523–623. [Google Scholar]
- Beauchemin, K.A.; McGinn, S.M.; Petit, H.V. Methane abatement strategies for cattle: Lipid supplementation of diets. Can. J. Anim. Sci. 2007, 87, 431–440. [Google Scholar] [CrossRef]
- Van Zijderveld, S.M.; Dijkstra, J.; Perdok, H.B.; Newbold, J.R.; Gerrits, W.J.J. Dietary inclusion of diallyl disulfide, yucca powder, calcium fumarate, an extruded linseed product, or medium-chain fatty acids does not affect methane production in lactating dairy cows. J. Dairy Sci. 2011, 94, 3094–3104. [Google Scholar] [CrossRef]
- Doreau, M.; Martin, C.; Eugène, M.; Popova, M.; Morgavi, D. Levers of action to reduce the production of enteric methane by ruminants. INRA Prod. Anim. 2011, 24, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Department of Health and Children. Cruelty to Animals Act 1876 (as amended by European Communities. Regulations 2002 and 2005). In Statutory Instruments No. 613; S.I.613.; Department of Health and Children: Dublin, Ireland, 2005. [Google Scholar]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Whelan, S.J.; Pierce, K.M.; McCarney, C.; Flynn, B.; Mulligan, F.J. Effect of supplementary concentrate type on nitrogen partitioning in early lactation dairy cows offered perennial ryegrass-based pasture. J. Dairy Sci. 2012, 95, 4468–4477. [Google Scholar] [CrossRef]
- Mayes, R.W.; Lamb, C.S.; Colgrove, P.M. The use of dosed and herbage n-alkanes as markers for the determination of herbage intake. J. Agric. Sci. 1986, 107, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, F.J.; Dillon, P.; Callan, J.J.; Rath, M.; O’Mara, F.P. Supplementary concentrate type affects nitrogen excretion of grazing dairy cows. J. Dairy Sci. 2004, 87, 3451–3460. [Google Scholar] [CrossRef]
- Johnson, K.; Huyler, M.; Westberg, H.; Lamb, B.; Zimmerman, P. Measurement of methane emissions from ruminant livestock using a sulfur hexafluoride tracer technique. Environ. Sci. Technol. 1994, 28, 359–362. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, B.F.; Deighton, M.H.; O’Loughlin, B.M.; Mulligan, F.J.; Boland, T.M.; O’Donovan, M.; Lewis, E. Effects of a perennial ryegrass diet or total mixed ration diet offered to spring-calving Holstein-Friesian dairy cows on methane emissions, dry matter intake, and milk production. J. Dairy Sci. 2011, 94, 1941–1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lovett, D.; Lovell, S.; Stack, L.; Callan, J.; Finlay, M.; Conolly, J.; O’Mara, F.P. Effect of forage/concentrate ratio and dietary coconut oil level on methane output and performance of finishing beef heifers. Livest. Prod. Sci. 2003, 84, 135–146. [Google Scholar] [CrossRef]
- IDF. Milk-Determination of Casein Nitrogen Content—Part 2: Direct Method; IDF 29-2:2004(E); International Dairy Federation: Brussels, Belgium, 2004. [Google Scholar]
- Whelan, S.J.; Pierce, K.M.; Flynn, B.; Mulligan, F.J. Effect of supplemental concentrate type on milk production and metabolic status in early-lactation dairy cows grazing perennial ryegrass-based pasture. J. Dairy Sci. 2012, 95, 4541–4549. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- AOAC International. Moisture in animal feed. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; p. 960. [Google Scholar]
- AOAC International. Ash in animal feed. In Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; p. 942. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.T.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Dove, H.; Mayes, R.W. Protocol for the analysis of n-alkanes and other plant-wax compounds and for their use as markers for quantifying the nutrient supply of large mammalian herbivores. Nat. Protoc. 2006, 1, 1680–1697. [Google Scholar] [CrossRef]
- Sukhija, P.S.; Palmquist, D.L. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 1988, 36, 1202–1206. [Google Scholar] [CrossRef]
- Palladino, R.A.; O’Donovan, M.; Murphy, J.J.; McEvoy, M.; Callan, J.; Boland, T.M.; Kenny, D.A. Fatty acid intake and milk fatty acid composition of Holstein dairy cows under different grazing strategies: Herbage mass and daily herbage allowance. J. Dairy Sci. 2009, 92, 5212–5223. [Google Scholar] [CrossRef] [PubMed]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar] [PubMed]
- Carberry, C.A.; Kenny, D.A.; Han, S.; McCabe, M.S.; Waters, S.M. Effect of phenotypic residual feed intake and dietary forage content on the rumen microbial community of beef cattle. Appl. Environ. Microbiol. 2012, 8, 4949–4958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Z.; Morrison, M. Improved extraction of PCR-quality community DNA from digesta and fecal samples. Biotechniques 2004, 36, 808–812. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 1993, 59, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Hook, S.E.; Northwood, K.S.; Wright, A.D.; McBride, B.W. Long-term monensin supplementation does not significantly affect the quantity or diversity of methanogenens in the rumen of the lactating dairy cow. Appl. Environ. Microbiol. 2009, 75, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Hernandez-Sanabria, E.; Guan, L.L. Assessment of the microbial ecology of ruminal methanogens in cattle with different feed efficiencies. Appl. Environ. Microbiol. 2009, 75, 6524–6533. [Google Scholar] [CrossRef] [Green Version]
- Dridi, B.; Henry, M.; El Khéchine, A.; Raoult, D.; Drancourt, M. High prevalence of Methanobrevibacter smithii and Methanosphaera stadtmanae detected in the human gut using an improved DNA detection protocol. PLoS ONE 2009, 4, e7063. [Google Scholar] [CrossRef]
- Chen, X.L.; Wang, J.K.; Wu, Y.M.; Liu, J.X. Effects of chemical treatments of rice straw on rumen fermentation characteristics, fibrolytic enzyme activities and populations of liquid- and solid-associated ruminal microbes in vitro. Anim. Feed Sci. Technol. 2008, 141, 1–14. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McCallister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Woodward, S.L.; Waghorn, G.C.; Thomson, N.A. Supplementing dairy cows with oils to improve performance and reduce methane—Does it work? Proc. N. Z. Soc. Anim. Prod. 2006, 66, 176–181. [Google Scholar]
- Whelan, S.J.; Carey, W.; Boland, T.M.; Lynch, M.B.; Kelly, A.K.; Rajauria, G.; Pierce, K.M. The effect of by-product inclusion level on milk production, nutrient digestibility and excretion, and rumen fermentation parameters in lactating dairy cows offered a pasture-based diet. J. Dairy Sci. 2017, 100, 1055–1062. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Condren, S.A.; Kelly, A.K.; Lynch, M.B.; Boland, T.M.; Whelan, S.J.; Grace, C.; Rajauria, G.; Pierce, K.M. The effect of by-product inclusion and concentrate feeding rate on milk production and composition, pasture dry matter intake, and nitrogen excretion of mid-late lactation spring-calving cows grazing a perennial ryegrass-based pasture. J. Dairy Sci. 2019, 102, 1247–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKay, Z.C.; Lynch, M.B.; Mulligan, F.J.; Rajauria, G.; Miller, C.; Pierce, K.M. The effect of concentrate supplementation type on milk production, dry matter intake, rumen fermentation, and nitrogen excretion in late-lactation, spring-calving grazing dairy cows. J. Dairy Sci. 2019, 102, 5042–5053. [Google Scholar] [CrossRef] [PubMed]
- Harvatine, K.J.; Allen, M.S. Effects of Fatty Acid Supplements on Feed Intake, and Feeding and Chewing Behavior of Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1104–1112. [Google Scholar] [CrossRef]
- Choi, B.R.; Palmquist, D.L.; Allen, M.S. Cholecystokinin mediates depression of feed intake in dairy cattle fed high fat diets. Domest. Anim. Endocrinol. 2000, 19, 159–175. [Google Scholar] [CrossRef]
- Benson, J.A.; Reynolds, C.K.; Humphries, D.J.; Rutter, S.M.; Beever, D.E. Effects of Abomasal Infusion of Long-Chain Fatty Acids on Intake, Feeding Behavior and Milk Production in Dairy Cows. J. Dairy Sci. 2001, 84, 1182–1191. [Google Scholar] [CrossRef]
- Patra, A.K. The effect of dietary fats on methane emissions, and its other effects on digestibility, rumen fermentation and alctation performance in cattle: A meta-analysis. Livest. Sci. 2013, 155, 244–254. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Ikwuegbu, O.A.; Sutton, J.D. The effect of varying the amount of linseed oil supplementation on rumen metabolism in sheep. Br. J. Nutr. 1982, 48, 365–375. [Google Scholar] [CrossRef]
- Newbold, C.J. Lipids as rumen defaunation agents. Proc. Nutr. Soc. 1988, 47, 154. [Google Scholar]
- Tesfa, A.T. Effects of rape-seed oil supplementation on digestion, microbial protein synthesis and duodenal microbial amino acid composition in ruminants. Anim. Feed Sci. Tech. 1993, 41, 313–328. [Google Scholar] [CrossRef]
- Ushida, K.; Jouany, J.P.; Lassalas, B.; Thivend, P. Protozoal contribution to nitrogen digestion in sheep. Can. J. Anim. Sci. 1984, 64, 20–21. [Google Scholar] [CrossRef]
- Patel, M.; Wredle, E.; Börjesson, G.; Danielsson, R.; Iwaasa, A.D.; Spörndly, E.; Bertilsson, J. Enteric methane emissions from dairy cows fed different proportions of highly digestible grass silage. Acta Agric. Scand. A Anim. Sci. 2011, 61, 128–136. [Google Scholar] [CrossRef]
- Pinares-Patiño, C.S.; Waghorn, G.C.; Machmüller, A.; Vlaming, B.; Molano, G.; Cavanagh, A.; Clark, H. Methane emissions and digestive physiology of non-lactating dairy cows fed pasture forage. Can. J. Anim. Sci. 2007, 87, 601–613. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cows diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- Demeyer, D.; Van Nevel, C.J. Methanogenesis, an integrated part of carbohydrate fermentation and its control. In Digestion and Metabolism in the Ruminant; McDonald, W., Ed.; Warner Education, The University of New England Publishing Unit: New South Wales, Australia, 1975. [Google Scholar]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed Sci. Tech. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Giger-Reverdin, S.; Morand-Fehr, P.; Tran, G. Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest. Prod. Sci. 2003, 82, 73–79. [Google Scholar] [CrossRef]
- Murphy, M.; Udén, P.; Palmquist, D.L.; Wiktorsson, H. Rumen and Total Diet Digestibilities in Lactating Cows Fed Diets Containing Full-Fat Rapeseed. J. Dairy Sci. 1987, 70, 1572–1582. [Google Scholar] [CrossRef]
- Scollan, N.D.; Dhanoa, M.S.; Choi, N.J.; Maeng, W.J.; Enser, M.; Wood, J.D. Biohydrogenation and digestion of long chain fatty acids in steers fed on different sources of lipid. J. Agric. Sci. 2001, 136, 345–355. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Hannah, M.C.; Ribaux, B.E.; Wales, W.J.; Eckard, R.J. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim. Feed Sci. Technol. 2011, 170, 265–276. [Google Scholar] [CrossRef]
- Deighton, M.H.; O’Loughlin, B.M.; Williams, S.R.O.; Moate, P.J.; Kennedy, E.; Boland, T.M.; Eckard, R.J. Declining sulphur hexafluoride permeability of polytetrafluoroethylene membranes causes overestimation of calculated ruminant methane emissions using the tracer technique. Anim. Feed Sci. Technol. 2013, 183, 86–95. [Google Scholar] [CrossRef]
- Deighton, M.H.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Boland, T.M.; Wales, W.J.; Moate, P.J. A modified Sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2014, 197, 47–63. [Google Scholar] [CrossRef] [Green Version]
- McGinn, S.M.; Beauchemin, K.A.; Iwaasa, A.D.; McAllister, T.A. Assessment of the sulfur hexafluoride (SF6) tracer technique for measuring enteric methane emissions from cattle. J. Environ. Qual. 2006, 3, 1686–1691. [Google Scholar] [CrossRef]
- Grainger, C.; Clarke, T.; McGinn, S.M.; Auldist, M.J.; Beauchemin, K.A.; Hannah, M.C.; Waghorn, G.C.; Clark, H.; Eckard, R.J. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J. Dairy Sci. 2007, 90, 2755–2766. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional regulation of milk fat synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baumgard, L.H.; Sangster, J.K.; Bauman, D.E. Milk Fat Synthesis in Dairy Cows Is Progressively Reduced by Increasing Supplemental Amounts of trans-10, cis-12 Conjugated Linoleic Acid (CLA). J. Nutr. 2001, 131, 1764–1769. [Google Scholar] [CrossRef] [PubMed]
- Peterson, D.G.; Matitashvili, E.A.; Bauman, D.E. Diet-Induced Milk Fat Depression in Dairy Cows Results in Increased trans-10, cis-12 CLA in Milk Fat and Coordinate Suppression of mRNA Abundance for Mammary Enzymes Involved in Milk Fat Synthesis. J. Nutr. 2003, 133, 3098–3102. [Google Scholar] [CrossRef] [Green Version]
- Benchaar, C.; Romero-Pérez, G.A.; Chouinard, P.Y.; Hassanat, F.; Eugene, M.; Petit, H.V.; Côrtes, C. Supplementation of increasing amounts of linseed oil to dairy cows fed total mixed rations: Effects on digestion, ruminal fermentation characteristics, protozoal populations, and milk fatty acid composition. J. Dairy Sci. 2012, 95, 4578–4590. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar] [CrossRef]
- Castillo, A.R.; Kebreab, E.; Beever, D.E.; Barbi, J.H.; Sutton, J.D.; Kirby, H.C.; France, J. The effect of energy supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 2001, 79, 240–246. [Google Scholar] [CrossRef]
- Ipharraguerre, I.R.; Clark, J.H. Varying Protein and Starch in the Diet of Dairy Cows. II. Effects on Performance and Nitrogen Utilization for Milk Production. J. Dairy Sci. 2005, 88, 2556–2570. [Google Scholar] [CrossRef]
- Li, L.; Schoenhals, K.E.; Brady, P.A.; Estill, C.T.; Perumbakkam, S.; Craig, A.M. Flaxseed supplementation decreases methanogenic gene abundance in the rumen of dairy cows. Animal 2012, 6, 1784–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgavi, D.P.; Martin, C.; Jouany, J.P.; Ranilla, M.J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morgavi, D.P.; Forano, E.; Martin, C. Microbial ecosystem and methanoenesis in ruminants. Animal 2010, 4, 1024–1036. [Google Scholar] [CrossRef] [Green Version]
Items | Pasture Herbage | Concentrate Feed 2 | |||
---|---|---|---|---|---|
MP 1 1 | MP 2 | SA | SO | LO | |
Ingredients (%, as fed) | - | - | - | - | - |
Barley | - | - | 28.5 | 28.5 | 28.5 |
Citrus pulp | - | - | 25.0 | 25.0 | 25.0 |
Soy bean meal | - | - | 20.4 | 20.4 | 20.4 |
Stearic acid | - | - | 16.0 | - | - |
Linseed oil | - | - | - | - | 16.0 |
Soy oil | - | - | - | 16.0 | - |
Cane molasses | - | - | 6.0 | 6.0 | 6.0 |
Minerals and vitamins | - | - | 4.1 | 4.1 | 4.1 |
Chemical composition (% of DM 3, unless stated) | |||||
DM (% as fed) | 22.2 | 17.2 | 88.6 | 88.5 | 89.6 |
OM | 92.3 | 91.4 | 91.9 | 91.5 | 92.7 |
CP | 11.5 | 16.7 | 16.6 | 16.4 | 15.9 |
NDF | 50.2 | 55.0 | 22.9 | 22.6 | 22.5 |
ADF | 27.0 | 28.7 | 10.1 | 11.7 | 10.5 |
ADL | 2.3 | 2.5 | 1.6 | 2.7 | 2.5 |
WSC (% as fed) | 4.7 | 2.5 | - | - | - |
Ether extract | 2.6 | 3.1 | 1.4 | 1.3 | 1.8 |
Gross energy (MJ/kg DM) | 18.4 | 18.7 | 19.9 | 18.6 | 20.3 |
Fatty Acids (% of total fatty acids) | |||||
Tetradecanoic (C14:0) | 1.8 | 2.0 | 0.2 | 0.3 | 0.1 |
Hexadecanoic (C16:0) | 19.2 | 18.3 | 6.5 | 12.5 | 7.5 |
c/t-9-Hexadecanoic (C16:1) | 1.8 | 2.4 | 0 | 0 | 0 |
Octadecanoic (C18:0) | 0.5 | 0.5 | 80.4 | 2.8 | 3.7 |
c/t-9-Octadecanoic (C18:1) | 1.2 | 1.0 | 1.6 | 23.5 | 22.1 |
c-9,12-Octadecanoic (C18:2) | 9.7 | 10.7 | 6.9 | 52.9 | 22.1 |
Octadecatrienoic (C18:3) | 34.8 | 44.1 | 2.7 | 5.2 | 42.4 |
Others | 31.0 | 21.0 | 1.7 | 2.8 | 2.1 |
Target | Primer/Probe Name and Sequence | Assay | Efficiency (%) | Reference |
---|---|---|---|---|
Total bacteria (rrs) | V3-16S-F, 5′-CCTACGGGAGGCAGCAG-3′ V3-16S-R, 5′-ATTACCGCGGCTGCTGG-3′ | SYBR | 96 | [56] |
Total methanogens (rrs) | Met630F, 5′-GGATTAGATACCCSGGTAGT-3′ | SYBR | 92 | [57] |
Met803R, 5′-GTTGARTCCAATTAAACCGCA-3′ | ||||
Total prokaryotes (rrs; reference gene) | V3-F, 5′-CCTACGGGAGGCAGCAG-3′ | SYBR | 91 | [56] |
V3-R, 5′-ATTACCGCGGCTGCTGG-3′ | ||||
M. stadtmanae (rrs) | Stad-F, 5′-CTTAACTATAAGAATTGCTGG-3′ | SYBR | 98 | [58] |
Stad-R, 5′-TTCGTTACTCACCGTCAAGAT-3′ | ||||
M. smithii (rrs) | Smit.16S-740F, 5′-CCGGGTATCTAATCCGGTTC-3′ | FAM 1 | 91 | [59] |
Smit.16S-862R, 5′-TCCCAGGGTAGAGGTGAAA-3′ | ||||
Smit.16S FAM, 5′CGTCAGAATCGTTCCAGTCA-3′ | ||||
M. ruminantium (rrs) | Rum16S 740F, 5′-TCCCAGGGTAGAGGTGAAA-3′ | FAM | 92 | [28] |
Rum16S 862R, 5′CGTCAGAATCGTTCCAGTCA-3′ | ||||
Rum16S FAM, 5′-CCGTCAGGTTCGTTCCAGTTAG-3′ | ||||
Protozoa | Prot 18S F 5′-GCTTTCGWTGGTAGTGTATT-3′ | SYBR | 95 | [54] |
Prot 18S R 5′-CTTGCCCTCYAATCGTWCT-3′ |
Items | Treatment 1 | Measurement Period (MP) 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SA | SO | LO | SEM | 1 | 2 | SEM | Treatment | MP | ||
Intake (kg DM 3/d) | ||||||||||
Pasture | 12.6 a | 11.5 b | 11.3 b | 0.32 | 11.9 | 11.6 | 0.26 | 0.02 | 0.53 | |
Concentrate | 4.0 | 4.1 | 3.9 | 0.08 | 4.0 | 4.0 | 0.06 | 0.09 | 0.63 | |
Total | 16.6 a | 15.6 a,b | 15.2 b | 0.31 | 15.9 | 15.6 | 0.26 | 0.01 | 0.44 | |
GEI 3 (MJ/d) | 315 a | 292 b | 287 b | 5.8 | 298 | 298 | 4.7 | 0.004 | 0.90 | |
Digestibility (%) | ||||||||||
DM 3 | 66.9 b | 67.6 a,b | 69.1 a | 0.05 | 68.5 | 67.3 | 0.04 | 0.02 | 0.05 | |
OM 3 | 70.1 b | 71.0 a,b | 72.4 a | 0.05 | 71.4 | 70.9 | 0.04 | 0.007 | 0.45 | |
CP 3 | 64.6 a | 61.2 b | 62.3 b | 0.06 | 58.9 | 66.5 | 0.05 | 0.001 | <0.001 | |
NDF 3 | 63.4 a | 64.7 a,b | 66.3 b | 0.09 | 63.7 b | 65.9 | 0.07 | 0.07 | 0.03 | |
ADF 3 | 62.0 | 62.5 | 64.8 | 0.01 | 62.7 | 63.5 | 0.08 | 0.12 | 0.46 |
Items | Treatment 1 | ||||
---|---|---|---|---|---|
SA | SO | LO | SEM | p-Value | |
Milk yield (kg/d) | 19.7 b | 21.3 a | 21.0 a | 0.21 | <0.001 |
Fat yield (kg/d) | 0.85 | 0.84 | 0.83 | 0.014 | 0.60 |
Protein yield (kg/d) | 0.67 b | 0.73 a | 0.74 a | 0.008 | <0.001 |
Fat + Protein yield 2 (kg/d) | 1.50 a | 1.58 b | 1.56 a,b | 0.018 | <0.05 |
Fat % | 4.14 a | 3.89 b | 3.88 b | 0.068 | 0.008 |
Protein % | 3.29 a | 3.42 b | 3.36 a,b | 0.032 | 0.03 |
BCS 3 | 2.8 | 2.9 | 2.8 | 0.05 | 0.60 |
BW 4 change (kg/d) | 0.16 | 0.16 | 0.05 | 0.09 | 0.42 |
Methane (CH4) Variable | Treatment 1 | Measurement Period (MP) 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SA | SO | LO | SEM | 1 | 2 | SEM | Treatment | MP | Treatment x MP | |
Total CH4, g/d | 293 a | 289 a | 245 b | 8.9 | 241 | 311 | 7.2 | 0.002 | <0.001 | 0.15 |
g CH4/kg milk | 15.7 a | 14.8 a | 12.4 b | 0.5 | 12.3 | 16.3 | 0.4 | <0.001 | <0.001 | 0.14 |
g CH4/kg milk solids | 207 a | 195 a | 165 b | 6.3 | 166 | 211 | 5 | <0.001 | <0.001 | 0.12 |
g CH4/kg DMI 3 | 17.9 a | 18.7 a | 16.3 b | 0.51 | 15.2 | 20.0 | 0.42 | 0.004 | <0.001 | 0.02 |
g CH4/g of added FA 4 | 0.46 a | 0.45 a | 0.40 b | 0.16 | 0.38 | 0.49 | 0.01 | 0.02 | <0.001 | 0.19 |
CH4/GEI 5, MJ/MJ | 0.052 a,b | 0.055 a | 0.047 b | 0.0015 | 0.045 | 0.058 | 0.0012 | 0.002 | <0.001 | 0.02 |
Items | Treatment 1 | Measurement Period 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
SA | SO | LO | SEM | 1 | 2 | SEM | Treatment | MP | Treatment x MP | |
Total VFA 3, mmol/L | 104 a | 97 a,b | 93 b | 3.1 | 94 | 102 | 2.5 | 0.04 | 0.03 | 0.65 |
Individual VFA proportions in total VFA | ||||||||||
Acetic acid | 0.67 | 0.68 | 0.67 | 0.003 | 0.67 | 0.67 | 0.003 | 0.14 | 0.62 | 0.43 |
Propionic acid | 0.18 | 0.17 | 0.18 | 0.003 | 0.18 | 0.17 | 0.002 | 0.13 | 0.21 | 0.93 |
Iso-butyric acid | 0.0071 | 0.0069 | 0.0078 | 0.00033 | 0.0066 | 0.0081 | 0.00027 | 0.11 | <0.001 | 0.58 |
Butyric acid | 0.1300 a | 0.1242 b | 0.1215 b | 0.00185 | 0.1254 | 0.1251 | 0.00150 | 0.006 | 0.68 | 0.04 |
Iso-valeric acid | 0.0086 a,b | 0.0077 a | 0.0093 b | 0.00036 | 0.0080 | 0.0091 | 0.00030 | 0.01 | 0.01 | 0.98 |
Valeric acid | 0.0092 | 0.0095 | 0.0097 | 0.00022 | 0.095 | 0.0094 | 0.00021 | 0. 40 | 0.81 | 0.88 |
Acetic:propionic | 3.81 | 3.98 | 3.77 | 0.079 | 3.82 | 3.89 | 0.065 | 0.14 | 0.49 | 0.67 |
NH3 4, mg/L | 55.0 a | 40.1 a,b | 32.6 b | 4.41 | 25. | 60.0 | 3.48 | 0.002 | <0.001 | 0.12 |
Items | Treatment 2 | Measurement Period 3 | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|
SA | LO | SEM | MP1 | MP2 | SEM | Treatment | MP | Treatment x MP | |
Methanogens | 1.9877 | 1.7332 | 0.2744 | 2.1733 | 1.5477 | 0.2905 | 0.311 | 0.18 | 0.215 |
Protozoa | 6.3317 | 6.7198 | 1.2730 | 3.2446 | 9.8068 | 1.1562 | 0.806 | 0.028 | 0.601 |
Methanosphaera stadtmanae 4 | 0.0184 | 0.0061 | 0.00027 | 0.0100 | 0.00560 | 0.00029 | 0.19 | 0.21 | 0.169 |
Methanobrevibacter smithii 4 | 0.2248 | 0.1169 | 0.00439 | 0.1824 | 0.1497 | 0.0062 | 0.12 | 0.67 | 0.18 |
Methanobrevibacter ruminantium 4 | 0.1796 | 0.0879 | 0.00371 | 0.1776 | 0.0920 | 0.0038 | 0.011 | 0.326 | 0.269 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boland, T.M.; Pierce, K.M.; Kelly, A.K.; Kenny, D.A.; Lynch, M.B.; Waters, S.M.; Whelan, S.J.; McKay, Z.C. Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals 2020, 10, 2380. https://doi.org/10.3390/ani10122380
Boland TM, Pierce KM, Kelly AK, Kenny DA, Lynch MB, Waters SM, Whelan SJ, McKay ZC. Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals. 2020; 10(12):2380. https://doi.org/10.3390/ani10122380
Chicago/Turabian StyleBoland, Tommy M., Karina M. Pierce, Alan K. Kelly, David A. Kenny, Mary B. Lynch, Sinéad M. Waters, Stephen J. Whelan, and Zoe C. McKay. 2020. "Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources" Animals 10, no. 12: 2380. https://doi.org/10.3390/ani10122380
APA StyleBoland, T. M., Pierce, K. M., Kelly, A. K., Kenny, D. A., Lynch, M. B., Waters, S. M., Whelan, S. J., & McKay, Z. C. (2020). Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals, 10(12), 2380. https://doi.org/10.3390/ani10122380