Utilization of Optical Flow Algorithms to Monitor Development of Tail Biting Outbreaks in Pigs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Housing, and Management
2.2. Data Collection
2.2.1. Outbreaks of Tail Biting and Tail Damage
2.2.2. Behavior and Optical Flow
2.2.3. Data Analysis
3. Results
3.1. Number of Tail-Biting Outbreaks Observed
3.2. Effects of Day Relative to the First Outbreak of Tail Biting
3.3. Effects of Time of Day (Morning, Noon, and Afternoon)
3.4. Correlation between Optical Flow Measures and Behavioral Time Budget
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schrøder-Petersenf, D.L.; Simonsen, H.B. Tail biting in pigs. Vet. J. 2001, 162, 196–210. [Google Scholar] [CrossRef]
- Kritas, S.K.; Morrison, R.B. An observational study on tail biting in commercial grower-finisher barns. J. Swine Health Prod. 2004, 12, 17–22. [Google Scholar]
- D’Eath, R.B.D.; Arnott, G.; Turner, S.P.; Jensen, T.; Lahrmann, H.P.; Busch, M.E.; Niemi, J.K.; Lawrence, A.B.; Sandøe, P. Injurious tail biting in pigs: How can it be controlled in existing systems without tail docking? Animal 2014, 8, 1479–1497. [Google Scholar] [CrossRef] [Green Version]
- Widowski, T. Causes and prevention of tail biting in growing pigs: A review of recent research. In Proceedings of the 2nd London Swine Conference—Conquering the Challenges, London, ON, Canada, 11–12 April 2002. [Google Scholar]
- European Food Safety Authority (EFSA). The risks associated with tail biting in pigs and possible means to reduce the need for tail docking considering the different housing and husbandry systems. EFSA J. 2007, 611, 1–13. [Google Scholar]
- Taylor, N.R.; Parker, R.M.A.; Mendl, M.; Edwards, S.A.; Main, D.C.J. Prevalence of risk factors for tail biting on commercial farms and intervention strategies. Vet. J. 2012, 194, 77–83. [Google Scholar] [CrossRef]
- Edwards, S.A. Tail biting in pigs: Understanding the intractable problem. Vet. J. 2006, 171, 198–199. [Google Scholar] [CrossRef]
- Meintjes, R.A. An overview of the physiology of pain for the veterinarian. Vet. J. 2012, 193, 344–348. [Google Scholar] [CrossRef]
- Herskin, M.S.; Thodberg, K.; Jensen, H.E. Effects of tail docking and docking length on neuroanatomical changes in healed tail tips of pigs. Animal 2015, 9, 677–681. [Google Scholar] [CrossRef]
- European Commission. Council Directive 2008/120/EC of 18 December 2008: Laying Down Minimum Standards for the Protection of Pigs (Codified Version). Off. J. Eur. Union 2009, 54, 147–155. [Google Scholar]
- Statham, P.; Green, L.; Bichard, M.; Mendl, M. Predicting tail-biting from behavior of pigs prior to outbreaks. Appl. Anim. Behav. Sci. 2009, 121, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Zonderland, J.J.; Schepers, F.; Bracke, M.B.M.; den Hartog, L.A.; Kemp, B.; Spoolder, H.A.M. Characteristics of biters and victim piglets apparent before a tail-biting outbreak. Animal 2011, 5, 767–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, M.L.V.; Andersen, H.M.L.; Pedersen, L.J. Can tail damage outbreaks in the pig be predicted by behavioural change? Vet. J. 2016, 209, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Dawkins, M.S.; Lee, H.-J.; Waitt, C.D.; Roberts, S.J. Optical flow patterns in broiler chicken flocks as automated measures of behavior and gait. Appl. Anim. Behav. Sci. 2009, 119, 203–209. [Google Scholar] [CrossRef]
- Guzman, P.; Diaz, J.; Agis, R.; Ros, E. Optical flow in a smart sensor based on hybrid analog-digital architecture. Sensors 2010, 10, 2975–2994. [Google Scholar] [CrossRef] [Green Version]
- Sun, D.; Roth, S.; Black, M.J. A quantitative analysis of current practices in optical flow estimation and the principles behind them. Int. J. Comput. Vis. 2014, 106, 115–137. [Google Scholar] [CrossRef] [Green Version]
- Dawkins, M.S.; Cain, R.; Roberts, S. Optical flow, flock behavior and chicken welfare. Anim. Behav. 2012, 84, 219–223. [Google Scholar] [CrossRef]
- Li, W.; Yuan, J.; Ji, Z.; Wang, L.; Sun, C.; Yang, X. Correlation search between growth performance and flow activity in automated assessment of Pekin duck stocking density. Comput. Electr. Agric. 2018, 152, 26–31. [Google Scholar] [CrossRef]
- Li, Y.Z.; Zhang, H.Z.; Johnston, L.J.; Martin, W.; Peterson, J.D.; Coetzee, J.F. Effects of tail docking and tail biting on performance and welfare of growing–finishing pigs in a confinement housing system. J. Anim. Sci. 2017, 95, 4835–4845. [Google Scholar] [CrossRef] [Green Version]
- National Farm Animal Care Council. Canada. Code of Practice for the Care and Handling of Pigs. (Feeding/Watering Areas). 2014, p. 18. Available online: https://www.nfacc.ca/pdfs/codes/pig_code_of_practice.pdf (accessed on 7 February 2020).
- Gonyou, H.W.; Lou, Z. Effects of eating space and availability of water in feeders on productivity and eating behavior of grower/finisher pigs. J. Anim. Sci. 2000, 78, 856–870. [Google Scholar] [CrossRef]
- Wastell, M.E.; Garbossa, C.A.P.; Schinckel, A.P. Effects of wet/dry feeder and pen stocking density on grow-finish pig performance Transl. Anim. Sci. 2018, 2, 358–364. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Swine, 11th ed.; Natl. Acad. Press: Washington, DC, USA, 2012. [Google Scholar]
- National Pork Board (NPB). Good Production Practice 5: Provide proper care to improve swine well-being. Pork Quality Assurance Plus (PQA Plus); National Pork Board: Des Moines, IA, USA, 2016; pp. 36–49. Available online: https://d3fns0a45gcg1a.cloudfront.net/sites/all/files/documents/PQAPlus/V3.0/BinderMaterial/Tab%202/1%20PQAhandbook.pdf (accessed on 4 May 2019).
- Dawkins, M.S.; Cain, R.; Merelie, K.; Roberts, S.J. In search of correlates of optical flow patterns in the automated assessment of broiler chicken welfare. Appl. Anim. Behav. Sci. 2013, 145, 44–50. [Google Scholar] [CrossRef]
- Brunberg, E.; Wallenbeck, A.; Keeling, L.J. Tail biting in fattening pigs: Associations between frequency of tail biting and other abnormal behaviors. Appl. Anim. Behav. Sci. 2011, 133, 18–25. [Google Scholar] [CrossRef]
- He, Y.; Deen, J.; Shurson, G.C.; Li, Y.Z. Behavioral indicators of slow growth in nursery pigs. J. Appl. Anim. Welf. Sci. 2018, 21, 389–399. [Google Scholar] [CrossRef]
- Martin, P.; Bateson, P. Recording Methods. In Measuring behavior: An Introductory Guide, 2nd ed.; Cambridge University Press: New York, NY, USA, 1993; pp. 84–100. [Google Scholar]
- SAS Institute Inc. Base SAS 9.4. Procedures Guide: Statistical Procedures, 2nd ed.; Statistical Analysis System Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Ursinus, W.W.; Van Reenen, C.G.; Kemp, B.; Bolhuis, J.E. Tail biting behavior and tail damage in pigs and the relationship with general behavior: Predicting the inevitable? Appl. Anim. Behav. Sci. 2014, 156, 22–36. [Google Scholar] [CrossRef]
- Wedin, M.; Baxter, E.M.; Jack, M.; Futro, A.; E’Eath, R.B. Early indicators of tail biting outbreaks in pigs. Appl. Anim. Behav. Sci. 2018, 208, 7–13. [Google Scholar] [CrossRef]
- Pedersen, L.J.; Herskin, M.S.; Forkman, B.; Halekoh, U.; Kristensen, K.M.; Jensen, M.B. How much is enough? The amount of straw to satisfy pigs’ need to perform exploratory behavior. Appl. Anim. Behav. Sci. 2014, 160, 46–55. [Google Scholar] [CrossRef]
Item | Days Relative to the First Outbreak of Tail Biting | SEM | p-Value | |||
10 d Before | 7 d Before | 3 d Before | Outbreak | |||
Number of pens 1 | 4 | 4 | 4 | 4 | ||
Number of observations | 12 | 12 | 12 | 12 | ||
Optical flow measures: | ||||||
Mean | 5.7 a | 6.0 ab | 6.3 b | 6.2 b | 0.08 | 0.002 |
Variance | 187.2 a | 191.6 a | 209.6 b | 212.9 b | 3.06 | 0.001 |
Skewness | 5.8 a | 5.5 b | 5.4 b | 5.5 b | 0.05 | 0.002 |
Kurtosis | 56.3 a | 50.7 b | 47.6 b | 50.2 b | 0.93 | 0.001 |
Behavioral time budget 2, %: | ||||||
Standing | 17.6 ef | 17.2 ef | 17.7 e | 14.1 f | 0.99 | 0.09 |
Lying | 63.7 e | 65.6 ef | 64.7 ef | 68.3 f | 1.36 | 0.10 |
Eating | 14.1 | 13.8 | 13.9 | 13.5 | 0.22 | 0.31 |
Drinking | 2.6 a | 1.7 ab | 1.8 ab | 1.4 b | 0.29 | 0.05 |
Pig-directed | 1.8 | 1.4 | 1.6 | 1.2 | 0.24 | 0.26 |
Tail biting | 0 | 0.1 | 0 | 0.2 | 0.91 | 0.95 |
Item | Time of Day 2 | SEM | p-Value | |||
Morning | Noon | Afternoon | Time of Day | Time of Day × Day Relative to Outbreak | ||
Number of pens 3 | 4 | 4 | 4 | |||
Number of observations | 16 | 16 | 16 | |||
Optical flow measures: | ||||||
Mean | 6.2 a | 6.2 a | 5.8 b | 0.07 | 0.01 | <0.001 |
Variance | 210.1 a | 201.4 a | 189.2 b | 2.63 | 0.01 | <0.001 |
Skewness | 5.6 a | 5.4 b | 5.6 a | 0.04 | 0.02 | <0.001 |
Kurtosis | 52.3 a | 48.6 b | 52.5 a | 0.77 | 0.02 | <0.001 |
Behavioral time budget 4, %: | ||||||
Standing | 18.0 e | 17.6 e | 14.5 f | 0.89 | 0.06 | 0.01 |
Lying | 64.2 | 65.0 | 67.6 | 1.03 | 0.12 | 0.02 |
Eating | 14.4 a | 13.5 b | 13.8 ab | 0.19 | 0.04 | 0.03 |
Drinking | 1.6 | 2.2 | 1.7 | 0.24 | 0.21 | 0.66 |
Pig-directed | 1.6 | 1.4 | 1.4 | 0.20 | 0.61 | 0.88 |
Tail biting | 0.01 | 0.01 | 0 | 3.30 | 1.00 | 0.98 |
Item | Optical Flow Measures | |||
---|---|---|---|---|
Mean | Variance | Skewness | Kurtosis | |
Behavioral time budget 2, %: | ||||
Standing | 0.522 *** | 0.356 *** | −0.506 *** | −0.462 *** |
Pig-directed | 0.254 * | 0.286 ** | −0.188 | −0.172 |
Tail biting | −0.107 | −0.252 * | −0.077 | −0.087 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.Z.; Johnston, L.J.; Dawkins, M.S. Utilization of Optical Flow Algorithms to Monitor Development of Tail Biting Outbreaks in Pigs. Animals 2020, 10, 323. https://doi.org/10.3390/ani10020323
Li YZ, Johnston LJ, Dawkins MS. Utilization of Optical Flow Algorithms to Monitor Development of Tail Biting Outbreaks in Pigs. Animals. 2020; 10(2):323. https://doi.org/10.3390/ani10020323
Chicago/Turabian StyleLi, Yuzhi Z., Lee J. Johnston, and Marian S. Dawkins. 2020. "Utilization of Optical Flow Algorithms to Monitor Development of Tail Biting Outbreaks in Pigs" Animals 10, no. 2: 323. https://doi.org/10.3390/ani10020323
APA StyleLi, Y. Z., Johnston, L. J., & Dawkins, M. S. (2020). Utilization of Optical Flow Algorithms to Monitor Development of Tail Biting Outbreaks in Pigs. Animals, 10(2), 323. https://doi.org/10.3390/ani10020323