Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front. Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Global Priority List of Antibiotic-Resistant Batceria to Guide Research, Discovery, and Development of New Antibiotics. 2017. Available online: http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf (accessed on 1 January 2020).
- Ewers, C.; Stamm, I.; Pfeifer, Y.; Wieler, L.H.; Kopp, P.A.; Schønning, K.; Prenger-Berninghoff, E.; Scheufen, S.; Stolle, I.; Günther, S.; et al. Clonal Spread of Highly Successful ST15-CTX-M-15 Klebsiella pneumoniae in Companion Animals and Horses. J. Antimicrob. Chemother. 2014, 69, 2676–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: A Major Worldwide Source and Shuttle for Antibiotic Resistance. FEMS Microbiol. Rev. 2017, 41, 252–275. [Google Scholar] [CrossRef]
- Vo, A.T.T.; van Duijkeren, E.; Fluit, A.C.; Gaastra, W. Characteristics of Extended-Spectrum Cephalosporin-Resistant Escherichia coli and Klebsiella pneumoniae Isolates from Horses. Vet. Microbiol. 2007, 124, 248–255. [Google Scholar] [CrossRef]
- Börjesson, S.; Greko, C.; Myrenås, M.; Landén, A.; Nilsson, O.; Pedersen, K. A Link between the Newly Described Colistin Resistance Gene Mcr-9 and Clinical Enterobacteriaceae Isolates Carrying BlaSHV-12 from Horses in Sweden. J. Glob. Antimicrob. Resist. 2019. [Google Scholar] [CrossRef]
- Da Roza, F.T.; Couto, N.; Carneiro, C.; Cunha, E.; Rosa, T.; Magalhães, M.; Tavares, L.; Novais, Â.; Peixe, L.; Rossen, J.W.; et al. Commonality of Multidrug-Resistant Klebsiella pneumoniae ST348 Isolates in Horses and Humans in Portugal. Front. Microbiol. 2019, 10, 1657. [Google Scholar] [CrossRef] [Green Version]
- Schmiedel, J.; Falgenhauer, L.; Domann, E.; Bauerfeind, R.; Prenger-Berninghoff, E.; Imirzalioglu, C.; Chakraborty, T. Multiresistant Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae from Humans, Companion Animals and Horses in Central Hesse, Germany. BMC Microbiol. 2014, 14, 187. [Google Scholar] [CrossRef] [Green Version]
- Shnaiderman-Torban, A.; Paitan, Y.; Arielly, H.; Kondratyeva, K.; Tirosh-Levy, S.; Abells-Sutton, G.; Navon-Venezia, S.; Steinman, A. Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae in Hospitalized Neonatal Foals: Prevalence, Risk Factors for Shedding and Association with Infection. Animals 2019, 9, 600. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing, 26th ed.; CLSI supplement M100S; CLSI: Wayne, PA, USA, 2016; pp. 74–80. [Google Scholar]
- Lepuschitz, S.; Huhulescu, S.; Hyden, P.; Springer, B.; Rattei, T.; Allerberger, F.; Mach, R.L.; Ruppitsch, W. Characterization of a Community-Acquired-MRSA USA300 Isolate from a River Sample in Austria and Whole Genome Sequence Based Comparison to a Diverse Collection of USA300 Isolates. Sci. Rep. 2018, 8, 9467. [Google Scholar] [CrossRef]
- Bankevich, A.; Nurk, S.; Antipov, D.; Gurevich, A.A.; Dvorkin, M.; Kulikov, A.S.; Lesin, V.M.; Nikolenko, S.I.; Pham, S.; Prjibelski, A.D.; et al. SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. J. Comput. Biol. 2012, 19, 455–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lepuschitz, S.; Schill, S.; Stoeger, A.; Pekard-Amenitsch, S.; Huhulescu, S.; Inreiter, N.; Hartl, R.; Kerschner, H.; Sorschag, S.; Springer, B.; et al. Whole Genome Sequencing Reveals Resemblance between ESBL-Producing and Carbapenem Resistant Klebsiella pneumoniae Isolates from Austrian Rivers and Clinical Isolates from Hospitals. Sci. Total Environ. 2019, 662, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic Resistome Surveillance with the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2019, 48, D517–D525. [Google Scholar] [CrossRef] [PubMed]
- Zankari, E.; Hasman, H.; Cosentino, S.; Vestergaard, M.; Rasmussen, S.; Lund, O.; Aarestrup, F.M.; Larsen, M.V. Identification of Acquired Antimicrobial Resistance Genes. J. Antimicrob. Chemother. 2012, 67, 2640–2644. [Google Scholar] [CrossRef]
- Carattoli, A.; Zankari, E.; Garcìa-Fernandez, A.; Larsen, M.; Lund, O.; Villa, L.; Aarestrup, F.; Hasman, H. PlasmidFinder and PMLST: In Silico Detection and Typing of Plasmids. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef] [Green Version]
- Arredondo-Alonso, S.; Rogers, M.R.C.; Braat, J.C.; Verschuuren, T.D.; Top, J.; Corander, J.; Willems, R.J.L.; Schürch, A.C. Mlplasmids: A User-Friendly Tool to Predict Plasmid- and Chromosome-Derived Sequences for Single Species. Microb. Genom. 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Desvars-Larrive, A.; Ruppitsch, W.; Lepuschitz, S.; Szostak, M.P.; Spergser, J.; Feßler, A.T.; Schwarz, S.; Monecke, S.; Ehricht, R.; Walzer, C.; et al. Urban Brown Rats (Rattus Norvegicus) as Possible Source of Multidrug-Resistant Enterobacteriaceae and Meticillin-Resistant Staphylococcus Spp., Vienna, Austria, 2016 and 2017. Eurosurveillance 2019, 24. [Google Scholar] [CrossRef] [Green Version]
- Loncaric, I.; Beiglböck, C.; Feßler, A.T.; Posautz, A.; Rosengarten, R.; Walzer, C.; Ehricht, R.; Monecke, S.; Schwarz, S.; Spergser, J.; et al. Characterization of ESBL- and AmpC-Producing and Fluoroquinolone-Resistant Enterobacteriaceae Isolated from Mouflons (Ovis orientalis musimon) in Austria and Germany. PLoS ONE 2016, 11, e0155786. [Google Scholar] [CrossRef]
- Sweeney, M.T.; Lubbers, B.V.; Schwarz, S.; Watts, J.L. Applying Definitions for Multidrug Resistance, Extensive Drug Resistance and Pandrug Resistance to Clinically Significant Livestock and Companion Animal Bacterial Pathogens. J. Antimicrob. Chemother. 2018, 73, 1460–1463. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Surveillance of Antimicrobial Resistance in Europe Annual Report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2018; European Centre for Disease Prevention and Control: Solna kommun, Sweden, 2019. [CrossRef]
- Ewers, C.; Bethe, A.; Semmler, T.; Guenther, S.; Wieler, L.H. Extended-Spectrum β-Lactamase-Producing and AmpC-Producing Escherichia coli from Livestock and Companion Animals, and Their Putative Impact on Public Health: A Global Perspective. Clin. Microbiol. Infect. 2012, 18, 646–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: A threat for humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holt, K.E.; Wertheim, H.; Zadoks, R.N.; Baker, S.; Whitehouse, C.A.; Dance, D.; Jenney, A.; Connor, T.R.; Hsu, L.Y.; Severin, J.; et al. Genomic Analysis of Diversity, Population Structure, Virulence, and Antimicrobial Resistance in Klebsiella pneumoniae, an Urgent Threat to Public Health. Proc. Natl. Acad. Sci. USA 2015, 112, E3574–E3581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clegg, S.; Murphy, C.N. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Ovejero, C.M.; Escudero, J.A.; Thomas-Lopez, D.; Hoefer, A.; Moyano, G.; Montero, N.; Martin-Espada, C.; Gonzalez-Zorn, B. Highly Tigecycline-Resistant Klebsiella pneumoniae Sequence TYPE 11 (ST11) & ST147 Isolates from Companion Animals. Antimicrob. Agents Chemother. 2017, 61, e02640–e02716. [Google Scholar] [CrossRef] [Green Version]
- Taniguchi, Y.; Maeyama, Y.; Ohsaki, Y.; Hayashi, W.; Osaka, S.; Koide, S.; Tamai, K.; Nagano, Y.; Arakawa, Y.; Nagano, N. Co-Resistance to Colistin and Tigecycline by Disrupting MgrB and RamR with IS Insertions in a Canine Klebsiella pneumoniae ST37 Isolate Producing SHV-12, DHA-1 and FosA3. Int. J. Antimicrob. Agents 2017, 50, 697–698. [Google Scholar] [CrossRef]
- Wyres, K.L.; Hawkey, J.; Hetland, M.A.K.; Fostervold, A.; Wick, R.R.; Judd, L.M.; Hamidian, M.; Howden, B.P.; Löhr, I.H.; Holt, K.E. Emergence and Rapid Global Dissemination of CTX-M-15-Associated Klebsiella pneumoniae Strain ST307. J. Antimicrob. Chemother. 2019, 74, 577–581. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Shimizu, T.; Mukai, Y.; Kuwajima, K.; Sato, T.; Usui, M.; Tamura, Y.; Kimura, Y.; Miyamoto, T.; Tsuyuki, Y.; et al. Phenotypic and Molecular Characterization of Antimicrobial Resistance in Klebsiella Spp. Isolates from Companion Animals in Japan: Clonal Dissemination of Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae. Front. Microbiol. 2016, 7, 1021. [Google Scholar] [CrossRef] [Green Version]
- Carattoli, A. Plasmids and the Spread of Resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef]
1505 | 1635 | 2341b | 2668 | 2742 | 2826 | 4545 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
K. michiganensis | K. oxytoca | K. pneumoniae | K. pneumoniae | K. pneumoniae | K. michiganensis | K. pneumoniae | |||||||||
ST 1 | n.a. 2 | n.a. | ST4848 | ST1228 | ST147 | n.a. | ST307 | ||||||||
CT 3 | n.a. | n.a. | CT4643 | CT4644 | ST1202 | n.a. | CT4645 | ||||||||
Origin | Lavage | Fistula | Trachea | Wound | Wound | Lavage | Feces | ||||||||
PPP 4 | PPP | PPP | PPP | PPP | PPP | PPP | |||||||||
β-lactamas | P 5 | CTX | CTX | CTX, CAZ, FOX | CTX, CAZ | CTX, CAZ, ATM | CTX | CTX, CAZ | |||||||
G 6 | blaCTX-M-17 | 0.745 | blaCTX-M-1 | 0.710 | blaCMY2 | no ppp | blaCTX-M-1 | 0.760 | blaCTX-M-15 | 0.973 | blaCTX-M-1 | 0.753 | blaCTX-M-15 | 0.976 | |
blaOXY-4-1 | 0.009 | blaOXY-2-7 | 0.003 | blaSHV | 0.003 | blaSHV-11 | 0.001 | blaOXA-1 | 0.961 | blaOXY-4-1 | 0.004 | blaOXA-1 | 0.961 | ||
blaTEM-1B | 0.891 | blaTEM-1B | 0.965 | blaTEM-1B | no ppp | blaSHV-11 | 0.001 | blaSHV-28 | 0.002 | ||||||
blaTEM-1B | 0.973 | blaTEM-1B | 0.776 | ||||||||||||
Aminoglycosides | P | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | GEN, TOB | |||||||
G | aac(3)-IId | 0.854 | aac(3)-IId | 0.909 | aac(3)-IIa | 0.956 | aac(3)-IId | 0.92 | aac(3)-IIa | 0.963 | aac(3)-IId | 0.921 | aac(3)-IIa | 0.992 | |
aadA58 | 0.993 | aadA5 | 0.955 | aph(3″)-Ib | 0.956 | aac(6′)-Ib-cr | 0.961 | aadA5 | 0.986 | aac(6′)-Ib-cr | 0.961 | ||||
aph(3″)-Ib | 0.896 | aph(3″)-Ib | 0.895 | aph(3″)-Ib | 0.973 | aph(3″)-Ib | 0.895 | aph(3″)-Ib | 0.976 | ||||||
aph(3′)-Ia | no ppp | aph(6)-Id | 0.895 | aph(6)-Id | 0.973 | aph(3′)-Ia | no ppp | aph(6)-Id | 0.976 | ||||||
aph(6)-Id | 0.896 | aph(6)-Id | 0.895 | ||||||||||||
Tetracyclines | P | TET, DOX | TET, DOX | TET, DOX | TET, DOX | TET, DOX | |||||||||
G | tet(B) | 0.690 | tet(B) | 0.545 | tet(A) | 0.029 | tet(B) | 0.709 | tet(A) | 0.946 | |||||
Chloramphenicol | P | CHL | CHL | CHL | CHL | CHL | |||||||||
G | catA1 | 0.993 | catA1 | 0.945 | catB3 | 0.961 | catA1 | 0.986 | catB3 | 0.961 | |||||
Trimethoprim/sulfamethoxazole | P | SXT | SXT | SXT | SXT | SXT | SXT | ||||||||
G | sul1 | 0.993 | sul1 | 0.955 | sul1 | 0.986 | |||||||||
sul2 | 0.896 | sul2 | 0.895 | sul2 | 0.956 | sul2 | 0.973 | sul2 | 0.895 | sul2 | 0.976 | ||||
dfrA17 | 0.993 | dfrA17 | 0.955 | dfrA14 | 0.876 | dfrA14 | 0.968 | dfrA17 | 0.986 | dfrA14 | 0.957 | ||||
Fosfomycin | P | FOS | FOS | FOS | |||||||||||
G | fosA | 0.001 | fosA | 0.003 | fosA | 0.001 | |||||||||
Fluoroquinolones | P | CIP | CIP | CIP | CIP | ||||||||||
G | oqxA | 0.002 | oqxA | 0.001 | oqxA | 0.001 | oqxA | 0.052 | oqxA | 0.001 | |||||
oqxB | 0.002 | oqxB | 0.001 | oqxB | 0.001 | oqxB | 0.001 | ||||||||
qrnS1 | 0.631 | qnrS1 | 0.760 | qnrB1 | 0.029 | qnrB1 | 0.946 | ||||||||
aac(6′)-Ib-cr | 0.961 | aac(6′)-Ib-cr | 0.961 | ||||||||||||
QRDR 9 | wild type | wild type | gyrA (Ser83-Ile) | gyrA (Ser83-Ile) | |||||||||||
QRDR | Wild type | wild type | parC (Ser80-Ile) | parC (Ser80-Ile) |
ID | Plasmid | Identity | Accession Number |
---|---|---|---|
1505 | IncFIA(HI1) | 100.0 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100.0 | AF250878 | |
IncQ1 | 100.0 | M28829.1 | |
1635 | IncFIA(HI1) | 100 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100 | AF250878 | |
IncQ1 | 100 | M28829.1 | |
2341b | IncI1 | 100 | AP005147 |
IncN | 99.61 | AY046276 | |
2668 | IncN | 100 | AY046276 |
IncR | 100 | DQ449578 | |
2742 | Col440I | 92.11 | CP023920.1 |
2826 | IncFIA(HI1) | 100 | AF250878 |
IncFIB(pHCM2) | 96.49 | AL513384 | |
IncHI1A | 99.52 | AF250878 | |
IncHI1B(R27) | 100 | AF250878 | |
IncQ1 | 100 | M28829 | |
4545 | IncFIB(K) | 98.93 | JN233704 |
Col440I | 94.74 | CP023920.1 |
Virulence Gene | 2341b | 2668 | 2742 | 4545 | |
---|---|---|---|---|---|
iutA | new allele | new allele | new allele | new allele | aerobactin transport |
mrkA | 2 | 2 | 6 | 12 | type 3 fimbrial gene cluster |
mrkB | 33 | 2 | 3 | 2 | |
mrkC | new allele | 2 | 2 | new allele | |
mrkD | 1 | 12 | 12 | 8 | |
mrkF | new allele | 8 | 8 | 4 | |
mrkH | 10 | 7 | 7 | 2 | |
mrkI | 7 | 15 | 15 | 4 | |
mrkJ | 19 | 12 | 12 | 2 | |
ybtA | 1 | yersiniabactin | |||
ybtE | 4 | ||||
ybtP | 4 | ||||
ybtQ | 22 | ||||
ybtS | 6 | ||||
ybtT | 1 | ||||
ybtU | 14 | ||||
ybtX | 15 | ||||
fyuA | 17 | ||||
irp1 | 44 | ||||
irp2 | 37 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loncaric, I.; Cabal Rosel, A.; Szostak, M.P.; Licka, T.; Allerberger, F.; Ruppitsch, W.; Spergser, J. Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals 2020, 10, 332. https://doi.org/10.3390/ani10020332
Loncaric I, Cabal Rosel A, Szostak MP, Licka T, Allerberger F, Ruppitsch W, Spergser J. Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals. 2020; 10(2):332. https://doi.org/10.3390/ani10020332
Chicago/Turabian StyleLoncaric, Igor, Adriana Cabal Rosel, Michael P. Szostak, Theresia Licka, Franz Allerberger, Werner Ruppitsch, and Joachim Spergser. 2020. "Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria" Animals 10, no. 2: 332. https://doi.org/10.3390/ani10020332
APA StyleLoncaric, I., Cabal Rosel, A., Szostak, M. P., Licka, T., Allerberger, F., Ruppitsch, W., & Spergser, J. (2020). Broad-Spectrum Cephalosporin-Resistant Klebsiella spp. Isolated from Diseased Horses in Austria. Animals, 10(2), 332. https://doi.org/10.3390/ani10020332