Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of the Rumen Microbial Mixture
2.2. Anaerobic Medium Preparation
2.3. In Vitro Batch Fermentation and Sampling
2.4. Inhibition of Urease Activity
2.5. 16S rRNA Gene Sequencing
2.6. Sequencing Data Analysis
2.7. Microbial Fermentation Analysis
2.8. Statistical Analysis
3. Results
3.1. Changes in Levels of Amino Acids and Ammonia
3.2. Gas Production and VFA Levels
3.3. Change in Abundance of Ruminal Bacteria
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yang, C.M.; Russell, J.B. Effect of monensin on the specific activity of ammonia production by ruminal bacteria and disappearance of amino nitrogen from the rumen. Appl. Environ. Microbiol. 1993, 59, 3250–3254. [Google Scholar] [CrossRef] [Green Version]
- Gutierrez-Banuelos, H.; Anderson, R.C.; Carstens, G.E.; Tedeschi, L.O.; Pinchak, W.E.; Cabrera-Diaz, E.; Krueger, N.A.; Callaway, T.R.; Nisbet, D.J. Effects of nitroethane and monensin on ruminal fluid fermentation characteristics and nitrocompound-metabolizing bacterial populations. J. Agric. Food. Chem. 2008, 56, 4650–4658. [Google Scholar] [CrossRef]
- Russell, J.B.; Mantovani, H.C. The bacteriocins of ruminal bacteria and their potential as an alternative to antibiotics. J. Mol. Microbiol. Biotechnol. 2002, 4, 347. [Google Scholar]
- Zhan, J.; Liu, M.; Su, X.; Zhan, K.; Zhang, C.; Zhao, G. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. Asian-Australas. J. Anim. Sci. 2017, 30, 1416–1424. [Google Scholar] [CrossRef]
- de Paula, E.M.; Samensari, R.B.; Machado, E.; Pereira, L.M.; Maia, F.J.; Yoshimura, E.H.; Franzolin, R.; Faciola, A.P.; Zeoula, L.M. Effects of phenolic compounds on ruminal protozoa population, ruminal fermentation, and digestion in water buffaloes. Livest. Sci. 2016, 185, 136–141. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Aiken, G.E. Biochanin A improves fibre fermentation by cellulolytic bacteria. J. Appl. Microbiol. 2018, 124, 58–66. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Kagan, I.A.; Aiken, G.E. Biochanin A (an Isoflavone Produced by Red Clover) Promotes Weight Gain of Steers Grazed in Mixed Grass Pastures and Fed Dried-Distillers’ Grains. Crop. Sci. 2017, 57, 506–514. [Google Scholar] [CrossRef]
- Harlow, B. Biochanin a Mitigates Rumen Microbial Changes Associated with a Sub-Acute Ruminal Acidosis Challenge. Curr. Microbiol. 2017, 95 (Suppl. 4), 263. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.T.; Toushik, S.H.; Baek, J.Y.; Kim, J.E.; Lee, J.S.; Kim, K.S. Metagenomic Mining and Functional Characterization of a Novel KG51 Bifunctional Cellulase/Hemicellulase from Black Goat Rumen. J. Agric. Food. Chem. 2018, 66, 9034–9041. [Google Scholar] [CrossRef]
- Ahvenjarvi, S.; Vaga, M.; Vanhatalo, A.; Huhtanen, P. Ruminal metabolism of grass silage soluble nitrogen fractions. J. Dairy Sci. 2018, 101, 279–294. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhao, S.; Nan, X.; Jin, D.; Wang, J. Influence of hydrolysis rate of urea on ruminal bacterial diversity level and cellulolytic bacteria abundance in vitro. PeerJ 2018, 6, e5475. [Google Scholar] [CrossRef] [Green Version]
- Patra, A.K.; Aschenbach, J.R. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res. 2018, 13, 39–50. [Google Scholar] [CrossRef]
- Recktenwald, E.B.; Ross, D.A.; Fessenden, S.W.; Wall, C.J.; Amburgh, M.E.V. Urea-N recycling in lactating dairy cows fed diets with 2 different levels of dietary crude protein and starch with or without monensin. J. Dairy Sci. 2014, 97, 1611–1622. [Google Scholar] [CrossRef] [Green Version]
- Flythe, M.; Kagan, I. Antimicrobial Effect of Red Clover (Trifolium pratense) Phenolic Extract on the Ruminal Hyper Ammonia-Producing Bacterium, Clostridium sticklandii. Curr. Microbiol. 2010, 61, 125–131. [Google Scholar] [CrossRef]
- Flythe, M.D.; Harrison, B.; Kagan, I.A.; Klotz, J.L.; Gellin, G.L.; Goff, B.M.; Aiken, G.E. Antimicrobial Activity of Red Clover (Trifolium Pratense L.) Extract on Caprine Hyper Ammonia-Producing Bacteria. Agric. Food Anal. Bacteriol. 2013, 3, 176–185. [Google Scholar]
- Sklenickova, O.; Flesar, J.; Kokoska, L.; Vlkova, E.; Halamova, K.; Malik, J. Selective Growth Inhibitory Effect of Biochanin A Against Intestinal Tract Colonizing Bacteria. Molecules 2010, 15, 1270–1279. [Google Scholar] [CrossRef]
- Harlow, B.E.; Flythe, M.D.; Aiken, G.E. Effect of biochanin A on corn grain (Zea mays) fermentation by bovine rumen amylolytic bacteria. J. Appl. Microbiol. 2017, 122, 870–880. [Google Scholar] [CrossRef]
- Konstantinos, M.; Mcewan, N.R.; Charles Jamie, N.; Scott, K.P. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol. Lett. 2011, 325, 162–169. [Google Scholar]
- Bolger, A.M.; Marc, L.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Magoc, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27, 2957–2963. [Google Scholar] [CrossRef]
- Qiong, W.; Garrity, G.M.; Tiedje, J.M.; Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 2007, 73, 5261–5267. [Google Scholar]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, R.; Wang, M.; Ungerfeld, E.M.; Zhang, X.M.; Long, D.L.; Mao, H.X.; Deng, J.P.; Bannink, A.; Tan, Z.L. Nitrate improves ammonia incorporation into rumen microbial protein in lactating dairy cows fed a low-protein diet. J. Dairy Sci. 2018, 101, 9789–9799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Getachew, G.; DePeters, E.J.; Robinson, P.H.; Fadel, J.G. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim. Feed Sci. Technol. 2005, 123, 547–559. [Google Scholar] [CrossRef]
- Murillo, M.; Herrera, E.; Carrete, F.O.; Ruiz, O.; Serrato, J.S. Chemical Composition, In vitro Gas Production, Ruminal Fermentation and Degradation Patterns of Diets by Grazing Steers in Native Range of North Mexico. Asian-Australas J. Anim. Sci. 2012, 25, 1395–1403. [Google Scholar] [CrossRef] [Green Version]
- Seglen, P.O.; Grinde, B.; Solheim, A.E. Inhibition of the Lysosomal Pathway of Protein Degradation in Isolated Rat Hepatocytes by Ammonia, Methylamine, Chloroquine and Leupeptin. Eur. J. Biochem. 1979, 95, 215–225. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.N.; Zhao, S.G.; Zheng, N.; Zhang, Y.D.; Wang, S.S.; Zhou, X.Q.; Wang, J.Q. Combination of histidine, lysine, methionine, and leucine promotes beta-casein synthesis via the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2017, 100, 7696–7709. [Google Scholar] [CrossRef]
- Gao, H.N.; Hu, H.; Zheng, N.; Wang, J.Q. Leucine and histidine independently regulate milk protein synthesis in bovine mammary epithelial cells via mTOR signaling pathway. J. Zhejiang Univ. Sci. B 2015, 16, 560–572. [Google Scholar] [CrossRef]
- Pereira, A.B.D.; Whitehouse, N.L.; Aragona, K.M.; Schwab, C.S.; Reis, S.F.; Brito, A.F. Production and nitrogen utilization in lactating dairy cows fed ground field peas with or without ruminally protected lysine and methionine. J. Dairy. Sci. 2017, 100, 6239–6255. [Google Scholar] [CrossRef]
- Jin, D.; Zhao, S.; Zheng, N.; Beckers, Y.; Wang, J. Urea metabolism and regulation by rumen bacterial urease in ruminants—A review. Ann. Anim. Sci. 2018, 18, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.A. Influence of acetohydroxamic acid on some activities in vitro of the rumen microbiota. Can. J. Microbiol. 1968, 14, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Z.; Moraes, L.E.; Shen, J.; Yu, Z.; Zhu, W. Effects of Incremental Urea Supplementation on Rumen Fermentation, Nutrient Digestion, Plasma Metabolites, and Growth Performance in Fattening Lambs. Animals 2019, 9, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bento, C.B.; de Azevedo, A.C.; Detmann, E.; Mantovani, H.C. Biochemical and genetic diversity of carbohydrate-fermenting and obligate amino acid-fermenting hyper-ammonia-producing bacteria from Nellore steers fed tropical forages and supplemented with casein. BMC Microbiol. 2015, 15, 28. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Yu, Z.; Zhu, W. Insights into the Populations of Proteolytic and Amino Acid-Fermenting Bacteria from Microbiota Analysis Using In Vitro Enrichment Cultures. Curr. Microbiol. 2018, 75, 1543–1550. [Google Scholar] [CrossRef]
- Ogunade, I.; Pech-Cervantes, A.; Schweickart, H. Metatranscriptomic Analysis of Sub-Acute Ruminal Acidosis in Beef Cattle. Animals 2019, 9, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Zhang, Z.; Hailemariam, S.; Zheng, N.; Wang, M.; Zhao, S.; Wang, J. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals 2020, 10, 368. https://doi.org/10.3390/ani10030368
Liu S, Zhang Z, Hailemariam S, Zheng N, Wang M, Zhao S, Wang J. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals. 2020; 10(3):368. https://doi.org/10.3390/ani10030368
Chicago/Turabian StyleLiu, Sijia, Zhenyu Zhang, Samson Hailemariam, Nan Zheng, Min Wang, Shengguo Zhao, and Jiaqi Wang. 2020. "Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro" Animals 10, no. 3: 368. https://doi.org/10.3390/ani10030368
APA StyleLiu, S., Zhang, Z., Hailemariam, S., Zheng, N., Wang, M., Zhao, S., & Wang, J. (2020). Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals, 10(3), 368. https://doi.org/10.3390/ani10030368