Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Diets
2.2. Sampling and Analyses
2.2.1. Feed Sampling and Analysis
2.2.2. Rumen Sample Collection and Analysis of Fatty Acid Profile
2.2.3. Milk Sampling and Analyses
2.3. Statistical Analysis
3. Results
3.1. Feed Composition
3.2. Milk Yield and Composition
3.3. Fatty Acid Composition of Rumen Content
3.4. Milk Fatty Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kasapidou, E.; Sossidou, R.; Mitlianga, P. Fruit and vegetable co-products as functional feed ingredients in farm animal nutrition for improved product quality. Agriculture 2015, 5, 1020–1034. [Google Scholar] [CrossRef] [Green Version]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Natalello, A.; Luciano, G.; Morbidini, L.; Valenti, B.; Pauselli, M.; Frutos, P.; Biondi, L.; Rufino-Moya, P.J.; Lanza, M.; Priolo, A. Effect of feeding pomegranate by-product on fatty acid composition of ruminal digesta, liver and muscle in lambs. J. Agric. Food Chem. 2019, 67, 4472–4482. [Google Scholar] [CrossRef] [PubMed]
- Valenti, B.; Luciano, G.; Morbidini, L.; Rossetti, U.; Bella, M.; Priolo, A.; Avondo, M.; Codini, M.; Natalello, A.; Pauselli, M. Dietary pomegranate pulp: Effect on ewe milk quality during late lactation. Animals 2019, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Di Matteo, M.; Albanese, D.; Liguori, L. Alternative method for hazelnuts peeling. Food Bioprocess Technol. 2012, 5, 1416–1421. [Google Scholar] [CrossRef]
- Özdemir, K.S.; Yılmaz, C.; Durmaz, G.; Gökmena, V. Hazelnut skin powder: A new brown colored functional ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Joris, J.; Mensink, R.P. Role of cis-monounsaturated fatty acids in the prevention of coronary hearth disease. Curr. Atheroscler Rep. 2016, 18, 38. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef]
- Valenti, B.; Natalello, A.; Vasta, V.; Campidonico, L.; Roscini, V.; Mattioli, S.; Pauselli, M.; Priolo, A.; Lanza, M.; Luciano, G. Effect of different dietary tannin extracts on lamb growth performances and meat oxidative stability: Comparison between mimosa, chestnut and tara. Animals 2019, 13, 435–443. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plant secondary compounds on small ruminants’ products quality. Small Rum. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Caccamo, M.; Valenti, B.; Luciano, G.; Priolo, A.; Rapisarda, T.; Belvedere, G.; Marino, V.M.; Esposto, S.; Taticchi, A.; Servili, M.; et al. Hazelnut as ingredient in dairy sheep diet: Effect on sensory and volatile profile of cheese. Front. Nutr. 2019, 6, 125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inserra, L.; Priolo, A.; Biondi, L.; Lanza, M.; Bognanno, M.; Gravador, R.; Luciano, G. Dietary citrus pulp reduces lipid oxidation in lamb meat. Meat Sci. 2013, 96, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Biondi, L.; Luciano, G.; Cutello, D.; Natalello, A.; Mattioli, S.; Priolo, A.; Lanza, M.; Morbidini, L.; Gallo, A.; Valenti, B. Meat quality from pigs fed tomato processing waste. Meat Sci. 2020, 159. [Google Scholar] [CrossRef]
- Mujumdar, A.S. Handbook of Industrial Drying, 4th ed.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Cannas, A.; Tedeschi, L.O.; Fox, D.G.; Pell, A.N.; Van Soest, P.J. A mechanistic model for predicting the nutrient requirements and feed biological values for sheep. J. Anim. Sci. 2004, 82, 149–169. [Google Scholar] [CrossRef] [Green Version]
- Licitra, G.; Harnandez, T.M.; Van Soest, P.J. Standardizations of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- AOAC International. Official Methods of Analysis, 19th ed.; AOAC International: Washington, DC, USA, 1995. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of lipids from animal tissue. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Christie, W.W. A simple procedure for rapid transmethylation of glycerolipids and cholesteryl esters. J. Lipid Res. 1982, 23, 1072–1075. [Google Scholar]
- Makkar, H.P.S.; Bluemmel, M.; Borowy, N.K.; Becker, K. Gravimetric determination of tannins and their correlations with chemical and protein precipitation methods. J. Sci. Food Agr. 1993, 61, 161–165. [Google Scholar] [CrossRef]
- Luna, P.; Juàrez, M.; De La Fuenta, M.A. Validation of a rapid milk fat separation method to determine the fatty acid profile by gas chromatography. J. Dairy Sci. 2005, 88, 3377–3381. [Google Scholar] [CrossRef] [Green Version]
- Valenti, B.; Pagano, R.I.; Avondo, M. Effect of diet at different energy levels on milk casein composition of Girgentana goats differing in CSN1S1 genotype. Small Rum. Res. 2012, 105, 135–139. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Chaves, A.V.; Deighton, M.H.; Jacobs, J.L.; Hannah, M.C.; Ribaux, B.E.; Morris, G.L.; Wales, W.J.; Moate, P.J. Influence of feeding supplements of almond hulls and ensiled citrus pulp on the milk production, milk composition, and methane emissions of dairy cows. J. Dairy Sci. 2018, 101, 2072–2083. [Google Scholar] [CrossRef] [PubMed]
- Alibés, X.; Maestre, M.R.; Muñoz, F.; Combellas, J.; Rodriguez, J. Nutritive value of almond hulls for sheep. Anim. Feed Sci. Technol. 1983, 8, 63–67. [Google Scholar] [CrossRef]
- Reed, B.A.; Brown, D.L. Almond hulls in diets for lactating goats: Effects on yield and composition of milk, feed intake, and digestibility. J. Dairy Sci. 1988, 71, 530–533. [Google Scholar] [CrossRef]
- Aguilar, A.A.; Smith, N.E.; Baldwin, R.L. Nutritional value of almond hulls for dairy cows. J. Dairy Sci. 1984, 67, 97–103. [Google Scholar] [CrossRef]
- Avondo, M.; Bonanno, A.; Pagano, R.I.; Valenti, B.; Grigoli, A.D.; Alicata, L.M.; Galofaro, V.; Pennisi, P. Milk quality as affected by grazing time of day in Mediterranean goats. J. Dairy Res. 2008, 75, 48–54. [Google Scholar] [CrossRef]
- Yapo, B.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M. Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem. 2007, 100, 1356–1364. [Google Scholar] [CrossRef]
- Miller, L.A.; Moorby, J.M.; Davies, D.R.; Humphreys, M.O.; Scollan, N.D.; MacRae, J.C.; Theodorou, M.K. Increased concentration of watersoluble carbohydrate in perennial ryegrass (Lolium perenne L.): Milk production from late-lactation dairy cows. Grass Forage Sci. 2001, 56, 383–394. [Google Scholar] [CrossRef] [Green Version]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Technol. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Orlandi, T.; Kozloski, G.V.; Alves, T.P.; Mesquita, F.R.; Ávila, S.C. Digestibility, ruminal fermentation and duodenal flux of amino acids in steers fed grass forage plus concentrate containing increasing levels of Acacia mearnsii tannin extract. Anim. Feed Sci. Technol. 2015, 210, 37–45. [Google Scholar] [CrossRef]
- Niderkorn, V.; Barbier, E.; Macheboeuf, D.; Torrent, A.; Mueller-Harvey, I.; Hoste, H. In vitro rumen fermentation of diets with different types of condensed tannins derived from sainfoin (Onobrychis viciifolia Scop.) pellets and hazelnut (Corylus avellana L.) pericarps. Anim. Feed Sci. Technol. 2020, 259, 114357. [Google Scholar] [CrossRef]
- Shabtay, A.; Nikbachat, M.; Zenou, A.; Yosef, E.; Arkin, O.; Sneer, O.; Shwimmer, A.; Yaari, A.; Budman, E.; Agmon, G.; et al. Effects of adding a concentrated pomegranate extract to the ration of lactating cows on performance and udder health parameters. Anim. Feed Sci. Technol. 2012, 175, 24–32. [Google Scholar] [CrossRef]
- Liu, H.; Li, k.; Mingbin, L.; Zhao, J.; Xiong, B. Effects of chestnut tannins on the meat quality, welfare, and antioxidant status of heat-stressed lambs. Meat Sci. 2016, 116, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Alasavar, C.; Bolling, B.W. Review of nut phytochemicals, fat-soluble bioactives, antioxidant components and health effects. Br. J. Nutr. 2015, 113, S68–S78. [Google Scholar] [CrossRef] [PubMed]
- Buccioni, A.; Decandia, M.; Minieri, S.; Molle, G.; Cabiddu, A. Lipid metabolism in the rumen: New insights on lipolysis and biohydrogenation with an emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 2012, 174, 1–25. [Google Scholar] [CrossRef]
- Maia, M.R.; Chaudhary, L.C.; Bestwick, C.S.; Richardson, A.J.; McKain, N.; Larson, T.R.; Graham, I.A.; Wallace, R.J. Toxicity of unsaturated fatty acids to the biohydrogenating ruminal bacterium, Butyrivibrio fibrisolvens. BMC Microbiol. 2010, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Ahvenjarvi, S.; Toivonen, V.; Arola, A.; Nurmela, K.V.V.; Huhtanen, P.; Griinari, J.M. Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim. Sci. 2003, 77, 165–179. [Google Scholar] [CrossRef]
- Beam, T.M.; Jenkins, T.C.; Moate, P.J.; Kohn, R.A.; Palmquist, D.L. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J. Dairy Sci. 2000, 83, 2564–2573. [Google Scholar] [CrossRef]
- Abu Ghazaleh, A.A.; Riley, M.A.; Thies, E.E.; Jenkins, T.C. Dilution rate and ph effects on the conversion of oleic acid to trans c18:1 positional isomers in continuous culture. J. Dairy Sci. 2005, 88, 4334–4341. [Google Scholar] [CrossRef] [Green Version]
- Mosley, E.E.; Powell, G.L.; Riley, M.B.; Jenkins, T.C. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J. Lipid Res. 2002, 43, 290–296. [Google Scholar]
- Van de Vossenberg, J.L.C.M.; Joblin, K.N. Biohydrogenation of C18 unsaturated fatty acids to stearic acid by a strain of Butyrivibrio hungatei from the bovine rumen. Lett. Appl. Microbiol. 2003, 37, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Bernard, L.; Rouel, J.; Leroux, C.; Ferlay, A.; Faulconnier, Y.; Legrand, P.; Chilliard, Y. Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids. J. Dairy Sci. 2005, 88, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Keweloh, H.; Heipieper, H. Trans unsaturated fatty acids in bacteria. Lipids 1996, 31, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Shingfield, K.J.; Chilliard, Y.; Toivonen, P.; Kairenius, P.; Givens, D.I. Trans fatty acids and bioactive lipids in ruminant milk. Adv. Exp. Med. Biol. 2008, 606, 3–65. [Google Scholar] [CrossRef] [PubMed]
- Mosley, E.E.; Shafii, B.; Moate, P.J.; McGuire, M.A. Cis-9, trans-11 conjugated linoleic acid is synthesized directly from vaccenic acid in lactating dairy cattle. J. Nutr. 2006, 136, 570–575. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Juárez, M.; De La Fuenta, M.A. Milk fatty acids and potential health benefits: An updated vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Moate, P.J.; Chalupa, W.; Boston, R.C.; Lean, I.J. Milk fatty acids. I. Variation in the concentration of individual fatty acids in bovine milk. J. Dairy Sci. 2007, 90, 4730–4739. [Google Scholar] [CrossRef] [Green Version]
- Chilliard, Y.; Ferlay, A.; Mansbridge, R.M.; Doreau, M. Ruminant milk fat plasticity: Nutritional control of saturated, polyunsaturated, trans and conjugated fatty acids. Ann. Zootech. 2000, 49, 181–205. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Bonnet, M.; Scollan, N.D. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal 2013, 7, 132–162. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Marventano, S.; Kolacz, P.; Castellano, S.; Galvano, F.; Buscemi, S.; Mistretta, A.; Grosso, G. A review of recent evidence in human studies of n-3 and n-6 PUFA intake on cardiovascular disease, cancer, and depressive disorders: Does the ratio really matter? Int. J. Food Sci. Nutr. 2015, 66, 611–622. [Google Scholar] [CrossRef] [PubMed]
Item | Hay | Hazelnut Skin | Experimental Concentrates 1 | |
---|---|---|---|---|
CTRL | HS | |||
Ingredients (g/kg dry matter) | ||||
Hazelnut skin | - | 360 | ||
Barley | 355 | 330 | ||
Wheat bran | 99 | 97 | ||
Soybean meal (44% CP) | 141 | 168 | ||
Dried beet pulp | 360 | - | ||
Molasses | 25 | 25 | ||
Calcium carbonate | 5 | 5 | ||
Sodium bicarbonate | 5 | 5 | ||
Dicalcium phosphate | 5 | 5 | ||
Sodium chloride | 5 | 5 | ||
Chemical composition (g/kg dry matter) | ||||
Crude protein (CP) | 150 | 78.6 | 158 | 163 |
Ether extract | 15.8 | 226 | 16.3 | 91.5 |
Neutral detergent fiber (NDF) | 528 | 511 | 302 | 358 |
Acid detergent fiber (ADF) | 429 | 388 | 135 | 226 |
Acid detergent lignin (ADL) | 95.7 | 203 | 15 | 75.6 |
NFC 2 | 284 | 214 | 490 | 398 |
Ash | 75.6 | 24.8 | 63.9 | 51.8 |
NEL 3 | 1.31 | 1.48 | 1.49 | 1.55 |
Protein fractions 4 (g/kg dry matter) | ||||
A | 39.1 | 1.80 | 21.5 | 8.20 |
B1 | 6.90 | 3.70 | 5.90 | 19 |
B2 | 71 | 18.1 | 100 | 73.1 |
B3 | 19.3 | 1.60 | 24.1 | 32.7 |
C | 13.7 | 53.3 | 6.10 | 29.7 |
Fatty acids (g/100 g fatty acids) | ||||
14:0 | 0.86 | 0.10 | 0.23 | 0.09 |
16:0 | 24.6 | 7.04 | 22.2 | 9.39 |
18:0 | 4.94 | 2.59 | 1.97 | 2.40 |
18:1 c9 | 5.58 | 74.9 | 15.9 | 63.5 |
18:2 c9 c12 | 18.4 | 13.7 | 52.4 | 21.2 |
18:3 c9 c12 c15 | 31.3 | 0.21 | 5.17 | 1.11 |
Extractable phenolic compounds (g/kg dry matter) | ||||
Total extractable phenols | 7.02 | 132 | 2.41 | 48.2 |
Total extractable tannins | 1.32 | 76.7 | 0.56 | 24.6 |
Item | Concentrate 1 (Diet) | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
CTRL | HS | D | T | D × T | ||
Dry matter intake (g/d) | 2508 | 2558 | 19.5 | 0.214 | <0.001 | 0.986 |
Milk yield (g) | 756 | 669 | 40.4 | 0.525 | 0.041 | 0.902 |
Milk Composition | ||||||
Fat (%) | 5.69 | 6.46 | 0.132 | 0.082 | <0.001 | 0.344 |
Fat (g/d) | 42.8 | 41.5 | 1.950 | 0.866 | 0.232 | 0.525 |
Protein (%) | 5.92 | 5.52 | 0.055 | 0.045 | 0.219 | 0.002 |
Protein (g/d) | 44.5 | 36.5 | 1.867 | 0.280 | 0.055 | 0.673 |
Lactose (%) | 4.60 | 4.51 | 0.026 | 0.297 | <0.001 | 0.722 |
Lactose (g/d) | 34.5 | 29.6 | 1.891 | 0.468 | 0.069 | 0.865 |
Urea (mg/dL) | 58.8 | 57.0 | 1.210 | 0.684 | 0.647 | 0.007 |
Urea (g/d) | 447 | 373 | 16.09 | 0.322 | 0.018 | 0.627 |
LS (log10 SCC 4 × 1000) | 3.54 | 2.81 | 0.135 | 0.024 | 0.003 | 0.289 |
Protein Fractions (% total protein) | ||||||
α-lactalbumin | 3.20 | 2.55 | 0.076 | 0.007 | 0.357 | 0.798 |
β-lactoglobulin | 12.2 | 12.6 | 0.140 | 0.321 | 0.525 | 0.698 |
αs2-casein | 7.50 | 7.61 | 0.317 | 0.897 | 0.030 | 0.949 |
αs1-casein | 33.5 | 32.8 | 0.451 | 0.358 | <0.001 | 0.111 |
κ-casein | 5.96 | 5.60 | 0.167 | 0.319 | 0.058 | 0.694 |
β-casein | 34.1 | 34.9 | 0.488 | 0.438 | 0.006 | 0.043 |
Item | Dietary Treatment 1 | SEM 2 | p-Value 3 | |
---|---|---|---|---|
CTRL | HS | |||
Fatty acids (g/100 g of total fatty acids) | ||||
12:0 | 0.36 | 0.23 | 0.036 | 0.070 |
13:0 iso | 0.06 | 0.04 | 0.004 | <0.001 |
13:0 | 0.13 | 0.06 | 0.017 | 0.029 |
14:0 iso | 0.32 | 0.17 | 0.024 | <0.001 |
14:0 | 0.92 | 0.53 | 0.084 | 0.013 |
14:1t9 | 0.15 | 0.06 | 0.013 | <0.001 |
15:0 iso | 0.67 | 0.35 | 0.043 | <0.001 |
15:0 anteiso | 1.62 | 0.77 | 0.113 | <0.001 |
15:0 | 1.65 | 1.00 | 0.095 | <0.001 |
16:0 iso | 1.10 | 0.47 | 0.090 | <0.000 |
C16:0 | 28.1 | 19.2 | 1.260 | <0.001 |
C16:1 cis7 | 0.41 | 0.44 | 0.074 | 0.817 |
C16:1 cis9 | 0.18 | 0.09 | 0.013 | <0.001 |
17:0 iso | 0.76 | 0.32 | 0.060 | <0.001 |
17:0 anteiso | 1.47 | 0.87 | 0.096 | <0.001 |
C17:0 | 0.75 | 0.43 | 0.045 | <0.001 |
18:0 | 23.2 | 43.2 | 2.670 | <0.001 |
18:1t5 | 0.05 | 0.13 | 0.012 | <0.001 |
18:1t6+7+8 | 0.12 | 0.84 | 0.098 | <0.001 |
18:1t9 | 0.10 | 0.40 | 0.051 | <0.001 |
18:1t10 | 0.14 | 0.54 | 0.057 | <0.001 |
18:1t11 | 5.59 | 6.01 | 0.164 | 0.210 |
18:1c6 | 0.98 | 1.57 | 0.082 | <0.001 |
18:1c9 | 7.50 | 9.13 | 0.369 | 0.021 |
18:1c11 | 0.61 | 0.61 | 0.017 | 1.000 |
18:1c12 | 0.37 | 0.33 | 0.006 | <0.001 |
18:1c13 | 0.04 | 0.04 | 0.003 | 0.325 |
18:2c9t11 | 2.31 | 0.80 | 0.220 | <0.001 |
18:2t9t12 | 0.06 | 0.04 | 0.008 | 0.172 |
18:2t8c13 | 0.03 | 0.02 | 0.004 | 0.062 |
18:2 t9c13 | 0.55 | 0.51 | 0.044 | 0.698 |
18:2 n-6 | 4.86 | 2.03 | 0.382 | <0.001 |
18:3 n-6 | 0.12 | 0.04 | 0.031 | 0.178 |
18:2 n-3 | 1.73 | 0.97 | 0.131 | <0.001 |
20:0 | 0.43 | 0.38 | 0.016 | 0.155 |
20:t11 | 0.21 | 0.11 | 0.035 | 0.152 |
20:c11 | 0.10 | 0.05 | 0.013 | 0.040 |
20:2 n-6 | 0.67 | 0.35 | 0.057 | 0.002 |
20:4 n-6 | 0.07 | 0.04 | 0.007 | 0.006 |
21:0 | 0.06 | 0.02 | 0.011 | 0.034 |
22:0 | 0.70 | 0.50 | 0.077 | 0.187 |
22:1t13 | 0.05 | 0.02 | 0.009 | 0.242 |
22:1c13 | 0.01 | 0.01 | 0.004 | 0.973 |
22:4 n-6 | 0.07 | 0.06 | 0.003 | 0.588 |
22:5 n-6 | 0.03 | 0.01 | 0.008 | 0.163 |
22:6 n-3 | 0.03 | 0.04 | 0.008 | 0.519 |
23:0 | 0.43 | 0.33 | 0.030 | 0.364 |
24:0 | 0.37 | 0.31 | 0.030 | 0.364 |
∑ SFA 4 | 54.1 | 64.4 | 1.380 | <0.001 |
∑ MUFA 5 | 16.6 | 20.4 | 0.634 | <0.001 |
∑ PUFA 6 | 10.5 | 4.91 | 0.780 | <0.001 |
∑ OBCFA 7 | 9.02 | 4.83 | 0.546 | <0.001 |
∑ t18:1 | 6.00 | 7.92 | 0.380 | <0.001 |
∑ PUFA n-6 | 5.82 | 2.53 | 0.442 | <0.001 |
∑ PUFA n-3 | 1.76 | 1.01 | 0.130 | <0.001 |
Items | Dietary Treatment 1 | SEM 2 | p-Value 3 | |||
---|---|---|---|---|---|---|
CON | HS | D | T | D × T | ||
Fatty acids (g/100 g of total fatty acids) | ||||||
4:0 | 2.12 | 2.18 | 0.051 | 0.658 | 0.046 | 0.390 |
6:0 | 2.14 | 1.59 | 0.057 | <0.001 | 0.022 | 0.115 |
8:0 | 2.32 | 1.46 | 0.082 | <0.001 | 0.006 | 0.111 |
10:0 | 8.38 | 4.09 | 0.291 | <0.001 | 0.022 | 0.057 |
12:0 | 5.15 | 2.33 | 0.205 | <0.001 | 0.053 | 0.061 |
12:1c9 | 0.20 | 0.09 | 0.008 | <0.001 | 0.350 | 0.065 |
14:0 | 11.5 | 7.97 | 0.293 | <0.001 | 0.405 | 0.002 |
14:1c9 | 0.24 | 0.15 | 0.025 | <0.001 | 0.332 | 0.012 |
15:0 iso | 0.26 | 0.19 | 0.006 | <0.001 | 0.023 | 0.359 |
15:0 anteiso | 0.55 | 0.37 | 0.015 | <0.001 | 0.402 | 0.026 |
15:0 | 1.38 | 0.94 | 0.037 | <0.001 | 0.002 | 0.511 |
16:0 | 29.9 | 20.8 | 0.689 | <0.001 | 0.148 | <0.001 |
16:1c9 | 1.06 | 0.63 | 0.033 | <0.001 | 0.051 | 0.043 |
17:0 iso | 0.43 | 0.35 | 0.012 | 0.003 | <0.001 | 0.039 |
17:0 anteiso | 0.52 | 0.37 | 0.014 | <0.001 | 0.089 | 0.462 |
17:0 | 0.88 | 0.65 | 0.006 | <0.001 | 0.528 | 0.303 |
17:1c9 | 0.30 | 0.21 | 0.009 | 0.002 | 0.033 | 0.020 |
18:0 | 5.43 | 10.9 | 0.416 | <0.001 | 0.009 | 0.001 |
18:1t5 | 0.01 | 0.07 | 0.087 | <0.001 | 0.720 | 0.372 |
18:1t6+t7+t8 | 0.16 | 0.84 | 0.045 | <0.001 | 0.126 | 0.230 |
18:1t9 | 0.22 | 0.67 | 0.030 | <0.001 | 0.291 | 0.426 |
18:1t10 | 0.28 | 0.64 | 0.025 | <0.001 | 0.053 | 0.498 |
18:1t11 | 0.74 | 1.74 | 0.070 | <0.001 | 0.444 | 0.768 |
18:1c6 | 0.16 | 0.84 | 0.024 | <0.001 | 0.126 | 0.230 |
18:1c9 | 14.1 | 28.6 | 0.990 | <0.001 | 0.028 | 0.001 |
18:1c11 | 0.35 | 0.48 | 0.183 | <0.001 | 0.046 | 0.277 |
18:1c12 | 0.23 | 0.23 | 0.006 | 0.949 | 0.064 | 0.524 |
18:1c13 | 0.05 | 0.10 | 0.004 | <0.001 | 0.780 | 0.872 |
18:1c14 | 0.23 | 0.33 | 0.008 | <0.001 | 0.040 | 0.081 |
18:2c9t11 | 0.49 | 0.90 | 0.028 | <0.001 | 0.034 | 0.581 |
18:2 n-6 | 3.34 | 3.39 | 0.062 | 0.767 | <0.001 | 0.002 |
18:3 n-6 | 0.02 | 0.02 | 0.005 | 0.151 | 0.571 | 0.816 |
18:3 n-3 | 1.67 | 1.16 | 0.057 | <0.001 | <0.001 | 0.173 |
20:0 | 0.23 | 0.24 | 0.004 | 0.106 | 0.006 | 0.363 |
20:1t11 | 0.03 | 0.01 | 0.001 | <0.001 | 0.137 | 0.345 |
20:1c11 | 0.06 | 0.08 | 0.057 | <0.001 | 0.069 | 0.220 |
20:2 n-6 | 0.03 | 0.01 | 0.003 | <0.001 | 0.395 | 0.018 |
20:3 n-6 | 0.03 | 0.02 | 0.001 | 0.128 | 0.705 | 0.177 |
20:3 n-3 | 0.02 | 0.01 | 0.004 | 0.007 | 0.088 | 0.838 |
20:4 n-3 | 0.18 | 0.14 | 0.005 | <0.001 | 0.001 | 0.738 |
20:5 n-3 | 0.09 | 0.05 | 0.003 | <0.001 | 0.001 | 0.685 |
22:0 | 0.18 | 0.15 | 0.005 | 0.009 | 0.371 | 0.025 |
22:1c13 | 0.02 | 0.02 | 0.002 | 0.475 | <0.001 | 0.006 |
22:2 n-6 | 0.02 | 0.01 | 0.002 | <0.001 | 0.360 | 0.031 |
22:4 n-6 | 0.04 | 0.04 | 0.001 | 0.783 | 0.799 | 0.058 |
22:5 n-3 | 0.13 | 0.09 | 0.004 | 0.001 | 0.001 | 0.307 |
22:6-n-3 | 0.05 | 0.05 | 0.002 | 0.422 | 0.093 | 0.704 |
24:0 | 0.08 | 0.08 | 0.002 | 0.562 | 0.852 | 0.060 |
24:1c9 | 0.02 | 0.01 | 0.001 | 0.120 | 0.579 | 0.037 |
∑ SFA 4 | 67.37 | 51.83 | 7.260 | <0.001 | 0.164 | 0.008 |
∑ MUFA 5 | 18.42 | 35.76 | 8.560 | <0.001 | 0.093 | 0.012 |
∑ PUFA 6 | 6.13 | 5.88 | 0.640 | 0.607 | 0.363 | 0.317 |
∑ OBCFA 7 | 4.02 | 2.87 | 0.611 | <0.001 | 0.008 | 0.889 |
∑ t18:1 | 1.42 | 3.97 | 1.270 | <0.001 | 0.382 | 0.573 |
∑ PUFA n-6 | 3.48 | 3.49 | 0.013 | 0.872 | <0.001 | 0.001 |
∑ PUFA n-3 | 2.16 | 1.49 | 0.340 | <0.001 | <0.001 | 0.323 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campione, A.; Natalello, A.; Valenti, B.; Luciano, G.; Rufino-Moya, P.J.; Avondo, M.; Morbidini, L.; Pomente, C.; Krol, B.; Wilk, M.; et al. Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes. Animals 2020, 10, 588. https://doi.org/10.3390/ani10040588
Campione A, Natalello A, Valenti B, Luciano G, Rufino-Moya PJ, Avondo M, Morbidini L, Pomente C, Krol B, Wilk M, et al. Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes. Animals. 2020; 10(4):588. https://doi.org/10.3390/ani10040588
Chicago/Turabian StyleCampione, Adriana, Antonio Natalello, Bernardo Valenti, Giuseppe Luciano, Pablo J. Rufino-Moya, Marcella Avondo, Luciano Morbidini, Camilla Pomente, Barbara Krol, Martyna Wilk, and et al. 2020. "Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes" Animals 10, no. 4: 588. https://doi.org/10.3390/ani10040588
APA StyleCampione, A., Natalello, A., Valenti, B., Luciano, G., Rufino-Moya, P. J., Avondo, M., Morbidini, L., Pomente, C., Krol, B., Wilk, M., Migdal, P., & Pauselli, M. (2020). Effect of Feeding Hazelnut Skin on Animal Performance, Milk Quality, and Rumen Fatty Acids in Lactating Ewes. Animals, 10(4), 588. https://doi.org/10.3390/ani10040588