In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Substrates and Inocula
2.2. Experimental Procedures
2.3. Chemical and Physical Analyses
2.4. Calculations and Statistical Analyses
3. Results
4. Discussion
4.1. Effect of Particle Size
4.2. Effect of the Type of Substrate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Devant, M.; Ferret, A.; Gasa, J.; Calsamiglia, S.; Casals, R. Effects of protein concentration and degradability on performance, ruminal fermentation and nitrogen metabolism in rapidly growing heifers fed high-concentrate diets from 100 to 230 kg body weight. J. Anim. Sci. 2000, 78, 1667–1676. [Google Scholar] [CrossRef]
- Faleiro, A.G.; González, L.A.; Blanch, M.; Cavini, S.; Castells, L.; Ruiz de la Torre, J.L.; Manteca, X.; Calsamiglia, S.; Ferret, A. Performance, ruminal change, behaviour and welfare of growing heifers fed a concentrate diet with or without barley straw. Animal 2011, 5, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Gimeno, A.; Al-Alami, A.; Abecia, L.; de Vega, A.; Fondevila, M.; Castrillo, C. Effect of type (barley vs. maize) and processing (grinding vs. dry rolling) of cereal on ruminal fermentation and microbiota of beef calves during the early fattening period. Anim. Feed Sci. Technol. 2015, 199, 113–126. [Google Scholar] [CrossRef]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef] [PubMed]
- Armentano, L.; Pereira, M. Measuring the effectiveness of fiber by animal response trials. J. Dairy Sci. 1997, 80, 1416–1425. [Google Scholar] [CrossRef]
- Grant, R.J. Interactions among forages and nonforage fiber sources. J. Dairy Sci. 1997, 80, 1438–1446. [Google Scholar] [CrossRef]
- DePeeters, E.J.; Fadel, J.G.; Arosemena, A. Digestion kinetics of neutral detergent fiber and chemical composition within some selected by-product feedstuffs. Anim. Feed Sci. Technol. 1997, 67, 127–140. [Google Scholar] [CrossRef]
- Hsu, J.T.; Faulkner, D.B.; Garleb, K.A.; Barclay, G.C.; Fahey, G.C., Jr.; Berger, L.L. Evaluation of corn fiber, cottonseed hulls, oat hulls and soybean hulls as roughage sources for ruminants. J. Anim. Sci. 1987, 65, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A. Altering physically effective fiber intake through forage proportion and particle length: Chewing and ruminal pH. J. Dairy Sci. 2007, 90, 2826–2838. [Google Scholar] [CrossRef]
- Bradford, B.J.; Mullins, C.R. Strategies for promoting productivity and health of dairy cattle by feeding nonforage fiber sources. J. Dairy Sci. 2012, 95, 4735–4746. [Google Scholar] [CrossRef]
- Iraia, S.P.; Ruiz de la Torre, J.L.; Rodríguez-Prado, M.; Calsamiglia, S.; Manteca, X.; Ferret, A. Feed intake, ruminal fermentation and animal behaviour of beef heifers fed forage free diets containing nonforage fiber sources. J. Anim. Sci. 2013, 91, 3827–3835. [Google Scholar] [CrossRef]
- Tafaj, M.; Zebeli, Q.; Baes, C.; Steingass, H.; Drochner, W. A meta-analysis examining effects of particle size of total mixed rations on intake, rumen digestion and milk production in high yielding dairy cows in early lactation. Anim. Feed Sci. Technol. 2007, 138, 137–161. [Google Scholar] [CrossRef]
- Zebeli, Q.; Tafaj, M.; Junck, B.; Olschlager, V.; Ametaj, B.N.; Drochner, W. Evaluation of the response of ruminal fermentation and activities of non-starch polysaccharide-degrading enzymes to particle length of corn silage in dairy cows. J. Dairy Sci. 2008, 91, 2388–2398. [Google Scholar] [CrossRef] [PubMed]
- Shain, D.H.; Stock, R.A.; Klopfenstein, T.J.; Herold, D.W. The effect of forage source and particle size on finishing yearling steer performance and ruminal metabolism. J. Anim. Sci. 1999, 77, 1082–1092. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energy feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Develop. 1988, 28, 7–55. [Google Scholar]
- Salami, S.A.; Luciano, G.; O’Grady, M.N.; Biondi, L.; Newbold, C.J.; Kerry, J.P.; Priolo, A. Sustainability of feeding plant by-products: A review of the implications for ruminant meat production. Anim. Feed Sci. Technol. 2019, 251, 37–55. [Google Scholar] [CrossRef]
- Knapp, J.R.; Laur, G.L.; Vadas, P.A.; Weis, W.P.; Tricarico, J.M. Invited review: Enteric methane in dairy cattle production: Quantifying the opportunities and impact of reducing emissions. J. Dairy Sci. 2014, 97, 3231–3261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firkins, J.F. Effects of feeding nonforage fiber sources on site of fiber digestion. J. Dairy Sci. 1997, 80, 1426–1437. [Google Scholar] [CrossRef]
- Mould, F.L.; Kliem, K.E.; Morgan, R.; Mauricio, R.M. In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol. 2005, 123–124, 31–50. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Amanzougarene, Z.; Fondevila, M. Fitting of pH conditions for the study of concentrate feeds fermentation by the in vitro gas production technique. Anim. Prod. Sci. 2018, 58, 1751–1757. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 18th ed.; Horwitz, W., Latimer, G.W., Eds.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2005. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [PubMed]
- Robertson, J.B.; Van Soest, P.J. The detergent system of analysis and its application to human foods. In The Analysis of Dietary Fiber in Foods; James, W.P.T., Theander, O., Eds.; Marcel Dekker: New York, NY, USA, 1981; pp. 123–158. [Google Scholar]
- Analytical Software. Statistix 10 for Windows; Analytical Software: Tallahasee, FL, USA, 2010. [Google Scholar]
- National Academy of Sciences, Engineering and Medicine. Nutrient Requirements of Beef Cattle, 9th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Fox, D.G.; Tedeschi, L.O. Application of physically effective fiber in diets for feedlot cattle. In Proceedings of the Plains Nutrition Council Spring Conference, San Antonio, TX, USA, 25–26 April 2002; pp. 67–81. [Google Scholar]
- Zebeli, Q.; Aschenbach, J.R.; Tafaj, M.; Boguhn, J.; Ametaj, B.N.; Drochner, W. Invited review: Role of physically effective fiber and estimation of dietary fiber adequacy in high producing dairy cattle. J. Dairy Sci. 2012, 95, 1041–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fondevila, M.; Barrios-Urdaneta, A.; Balcells, J.; Castrillo, C. Gas production from straw incubated in vitro with different levels of purified carbohydrates. Anim. Feed Sci. Technol. 2002, 101, 1–15. [Google Scholar] [CrossRef]
- Belyea, R.L.; Foster, M.B.; Zinn, G.M. Effect of delignification on in vitro digestion of alfalfa cellulose. J. Dairy Sci. 1983, 66, 1277–1281. [Google Scholar] [CrossRef]
- Udén, P. The influence of leaf and stem particle size in vitro and of sample size in sacco on neutral detergent fibre fermentation kinetics. J. Anim. Feed Technol. 1992, 37, 85–97. [Google Scholar] [CrossRef]
- Hironaka, R.; Mathison, G.W.; Kerrigan, B.K.; Vlach, I. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Sci. Total Environ. 1996, 180, 221–227. [Google Scholar] [CrossRef]
- Benchaar, C.; Pomar, C.; Chiquette, J. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Can. J. Anim. Sci. 2001, 81, 563–574. [Google Scholar] [CrossRef]
- Okine, E.K.; Mathison, G.W.; Hardin, R.T. Effects of changes in frequency of reticular contractions on fluid and particulate passage rate in cattle. J. Anim. Sci. 1989, 67, 3388–3396. [Google Scholar] [CrossRef]
- Yang, W.Z.; Beauchemin, K.A. Effects of physically effective fiber on digestion and milk production by dairy cows fed diets based on corn silage. J. Dairy Sci. 2005, 88, 1090–1098. [Google Scholar] [CrossRef]
- Hatfield, R.D.; Weimer, P.J. Degradation characteristics of isolated and in situ cell wall lucerne pectic polysaccharides by mixed ruminal microbes. J. Sci. Food Agric. 1995, 69, 185–196. [Google Scholar] [CrossRef]
- Hall, M.B.; Lewis, B.A.; Van Soest, P.J.; Chase, L.E. A simple method for estimation of neutral detergent-soluble fibre. J. Sci. Food Agric. 1997, 74, 441–449. [Google Scholar] [CrossRef]
- González Ronquillo, M.; Fondevila, M.; Barrios Urdaneta, A.; Newman, Y. In vitro gas production from buffel grass (Cenchrus ciliaris L.) fermentation in relation to the cutting interval, the level of nitrogen fertilisation and the season of growth. Anim. Feed Sci. Technol. 1998, 72, 19–32. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Cone, J.W.; van Gelder, A.H. Influence of protein fermentation on gas production profiles. Anim. Feed Sci. Technol. 1999, 76, 251–264. [Google Scholar] [CrossRef]
- Khan, M.A.; Bach, A.; Weary, D.M.; von Keyserlink, M.A.G. Invited review: Transitioning from milk to solid feed in dairy heifers. J. Dairy Sci. 2016, 99, 885–902. [Google Scholar] [CrossRef] [Green Version]
- Fondevila, M.; Cufré, G.; Nogueira, J.C.M.; Godio, L.; Alcantú, G. Digestion and microbial fermentation of Eragrostis curvula supplemented with tallow. Anim. Sci. 1999, 69, 447–455. [Google Scholar] [CrossRef]
- El-Nor, S.A.; AbuGhazaleh, A.A.; Portu, R.B.; Hastings, D.; Khattab, M.S.A. Effect of different levels of glycerol on rumen fermentation and bacteria. Anim. Feed Sci. Technol. 2010, 162, 99–105. [Google Scholar] [CrossRef]
- Ribeiro, G.O.; Badhan, A.; Huang, J.; Beauchemin, K.A.; Yang, W.; Wang, Y.; Tsang, A.; McAllister, T.A. New recombinant fibrolytic enzymes for improved in vitro ruminal fiber degradability of barley straw. J. Anim. Sci. 2018, 96, 3928–3942. [Google Scholar] [CrossRef] [Green Version]
- Moss, A.; Jouany, J.P.; Newbold, J. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef] [Green Version]
- Beauchemin, K.A.; Kreuzer, D.M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
Component | SH | BP | PK | OH | DA | BS |
---|---|---|---|---|---|---|
Chemical composition | ||||||
OM | 946 | 920 | 962 | 953 | 886 | 872 |
CP | 179 | 85 | 157 | 48 | 133 | 61 |
EE | 18 | 3 | 88 | 11 | 18 | 13 |
aNDFom | 592 | 442 | 555 | 771 | 513 | 760 |
ADF | 417 | 234 | 352 | 376 | 343 | 434 |
ADL | 16 | 23 | 87 | 56 | 66 | 40 |
Particle size | ||||||
<0.15 mm | 0.03 | 0.02 | 0.05 | 0.05 | 0.12 | - |
0.15–0.30 mm | 0.02 | 0.01 | 0.06 | 0.02 | 0.19 | - |
0.30–0.60 mm | 0.08 | 0.05 | 0.25 | 0.03 | 0.32 | - |
0.60–1.20 mm | 0.27 | 0.15 | 0.18 | 0.09 | 0.27 | - |
1.20–2.00 mm | 0.36 | 0.77 | 0.46 | 0.11 | 0.10 | - |
>2.00 mm | 0.24 | 0.00 | 0.00 | 0.68 | 0.00 | - |
average size | 1.89 | 1.77 | 1.32 | 5.83 | 0.83 |
Substrate | 0–12 h | 12–24 h | 24–36 h | 36–48 h | OMd |
---|---|---|---|---|---|
Non-processed (NP) SH | 0.075 | 0.187 | 0.218 | 0.179 ab | 0.827 |
BP | 0.074 | 0.194 | 0.187 | 0.177 ab | 0.884 |
PK | 0.076 | 0.188 | 0.172 | 0.162 b | 0.573 |
OH | 0.062 | 0.198 | 0.207 | 0.192 a | 0.237 |
DA | 0.072 | 0.198 | 0.208 | 0.198 a | 0.622 |
BS | 0.060 | 0.186 | 0.188 | 0.182 ab | 0.486 |
Ground (GR) SH | 0.081 | 0.212 w | 0.211 | 0.203 w | 0.849 |
BP | 0.078 | 0.206 wx | 0.209 | 0.187 wx | 0.883 |
PK | 0.079 | 0.180 xy | 0.167 | 0.151 y | 0.645 |
OH | 0.060 | 0.195 wxy | 0.203 | 0.204 w | 0.283 |
DA | 0.077 | 0.209 w | 0.202 | 0.199 wx | 0.626 |
BS | 0.052 | 0.174 y | 0.189 | 0.177 xy | 0.481 |
SEM | 0.0040 | 0.0053 | 0.0058 | 0.0060 | 0.0174 |
p-value Presentation | 0.52 | 0.18 | 0.90 | 0.060 | 0.029 |
Substrate | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
P × S interaction | 0.51 | 0.013 | 0.15 | 0.025 | 0.20 |
Effect | VFA | Acetate | Propionate | Butyrate | Valerate | BCVFA |
---|---|---|---|---|---|---|
Presentation NP | 44.8 | 0.596 | 0.190 | 0.164 | 0.010 | 0.039 |
GR | 46.5 | 0.606 | 0.188 | 0.159 | 0.010 | 0.037 |
SEM | 2.54 | 0.0132 | 0.0050 | 0.0067 | 0.0006 | 0.0020 |
Substrate SH | 44.5 b | 0.586 ab | 0.210 ab | 0.147 bc | 0.013 a | 0.044 abc |
BP | 68.5 a | 0.619 ab | 0.238 a | 0.123 c | 0.007 b | 0.014 d |
PK | 47.4 b | 0.531 b | 0.169 c | 0.254 a | 0.011 a | 0.035 bc |
OH | 30.5 b | 0.595 ab | 0.161 c | 0.185 b | 0.010 ab | 0.050 ab |
DA | 49.0 ab | 0.657 a | 0.177 bc | 0.126 c | 0.009 ab | 0.031 c |
BS | 29.0 b | 0.626 ab | 0.167 c | 0.137 bc | 0.012 a | 0.059 a |
SEM | 4.40 | 0.0164 | 0.0087 | 0.0119 | 0.0010 | 0.0035 |
p-value | ||||||
Presentation | 0.40 | 0.70 | 0.70 | 0.49 | 0.87 | 0.25 |
Substrate | <0.001 | 0.015 | <0.001 | <0.001 | 0.002 | <0.001 |
P × S interaction | 0.57 | 0.93 | 0.86 | 0.92 | 0.82 | 0.54 |
Effect | VFA | Acetate | Propionate | Butyrate | Valerate | BCVFA |
---|---|---|---|---|---|---|
Presentation NP | 61.0 | 0.606 | 0.178 | 0.159 | 0.014 | 0.044 |
GR | 68.1 | 0.613 | 0.177 | 0.157 | 0.014 | 0.040 |
SEM | 5.24 | 0.0142 | 0.0054 | 0.0066 | 0.0008 | 0.0025 |
Substrate SH | 92.9 a | 0.663 a | 0.173 abc | 0.112 c | 0.014 ab | 0.038 ab |
BP | 100.7 a | 0.632 a | 0.208 a | 0.125 c | 0.010 b | 0.025 b |
PK | 49.4 b | 0.505 b | 0.157 c | 0.278 a | 0.017 a | 0.042 ab |
OH | 34.9 b | 0.583 ab | 0.162 bc | 0.184 b | 0.015 ab | 0.056 a |
DA | 50.5 b | 0.587 ab | 0.198 ab | 0.149 bc | 0.017 a | 0.049 a |
BS | 51.4 b | 0.678 a | 0.163 bc | 0.105 c | 0.011 b | 0.043 ab |
SEM | 8.89 | 0.0240 | 0.0092 | 0.0112 | 0.0014 | 0.0043 |
p-value | ||||||
Presentation | 0.42 | 0.81 | 0.95 | 0.83 | 0.95 | 0.32 |
Substrate | 0.003 | <0.001 | 0.001 | <0.001 | 0.005 | 0.001 |
P × S interaction | 0.46 | 0.54 | 0.60 | 0.83 | 0.19 | 0.63 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortolani, I.R.; Amanzougarene, Z.; Fondevila, M. In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds. Animals 2020, 10, 732. https://doi.org/10.3390/ani10040732
Ortolani IR, Amanzougarene Z, Fondevila M. In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds. Animals. 2020; 10(4):732. https://doi.org/10.3390/ani10040732
Chicago/Turabian StyleOrtolani, Ignacio Rubén, Zahia Amanzougarene, and Manuel Fondevila. 2020. "In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds" Animals 10, no. 4: 732. https://doi.org/10.3390/ani10040732
APA StyleOrtolani, I. R., Amanzougarene, Z., & Fondevila, M. (2020). In Vitro Estimation of the Effect of Grinding on Rumen Fermentation of Fibrous Feeds. Animals, 10(4), 732. https://doi.org/10.3390/ani10040732