Association Between BMP2 Functional Polymorphisms and Sheep Tail Type
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Measurement of the Tail Type Phenotype
2.2. PCR Amplification and MassARRAY Genotyping
2.3. Cell Culture and Transfection
2.4. RNA Extraction and Quantitative Real-Time PCR
2.5. Oil Red O Staining
2.6. Statistical Analysis and Bioinformatics
3. Results
3.1. Population Genetic Analysis of BMP2 Polymorphism
3.2. Association of BMP2 Gene Polymorphism with Tail Phenotypes in Sheep
3.3. Lentiviral Overexpression Efficiency Assay
3.4. The Relative Expression of PPARγ and LPL when Overexpressing the BMP2 Gene During Sheep Preadipocyte Differentiation
3.5. Oil Red O Staining
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACTB | β-actin; |
BMP2 | bone morphogenetic protein 2; |
He | heterozygosity; |
LPL | lipoproteinlipase; |
MALDI-TOF-MS | matrix-assisted laser desorption/ionization time-of-flight mass spectrometer; |
Ne | effective allele number; |
PIC | polymorphic information content; |
PPARγ | peroxisome proliferator-activated receptor gamma; |
qRT-PCR | quantitative real-time PCR; |
SNP | single nucleotide polymorphism; |
TGF-β | transforming growth factor β; |
VRTN | vertnin. |
References
- Moradi, M.H.; Nejati-Javaremi, A.; Moradi-Shahrbabak, M.; Dodds, K.G.; McEwan, J.C. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012, 13, 10. [Google Scholar] [CrossRef] [Green Version]
- Gan, S.Q.; Zhang, W.; Song, T.Z.; Shen, M.; Liang, Y.W.; Yang, J.Q.; Gao, L.; Liu, S.R.; Wang, X.H. Polymoriphism detection and analysis of novel SNP on X chromosome between fat-tailed and thin-tailed sheep breeds. Southwest China J. Agric. Sci. 2013, 26, 2066–2070. [Google Scholar]
- Ermias, E.; Yami, A.; Rege, J.E.O. Fat deposition in tropical sheep as adaptive attribute to periodic feed fluctuation. J. Anim. Breed. Genet. 2002, 119, 235–246. [Google Scholar] [CrossRef]
- Kashan, N.E.J.; Azar, G.H.M.; Afzalzadeh, A.; Salehi, A. Growth performance and carcass quality of fattening lambs from fat-tailed and tailed sheep breeds. Small Rumin. Res. 2005, 60, 267–271. [Google Scholar] [CrossRef]
- Wood, J.D.; Enser, M.; Fisher, A.V.; Nute, G.R.; Sheard, P.R.; Richardson, R.I.; Hughes, S.I.; Whittington, F.M. Fat deposition, fatty acid composition and meat quality: A review. Meat Sci. 2008, 78, 343–358. [Google Scholar] [CrossRef]
- Zhao, Y.Z. Sheep Production; Agriculture Press: Beijing, China, 2013; pp. 86–87. [Google Scholar]
- Yuan, Z.H.; Liu, E.M.; Liu, Z.; Kijas, J.W.; Zhu, C.Y.; Hu, S.J.; Ma, X.M.; Zhang, L.; Du, L.X.; Wang, H.H.; et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 2017, 48, 55–66. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Fan, H.Y.; Yuan, Z.H.; Hu, S.J.; Ma, X.M.; Xuan, J.L.; Wang, H.H.; Zhang, L.; Wei, C.H.; Zhang, Q.; et al. Genome-wide detection of CNVs in Chinese indigenous sheep with different types of tails using ovine high-density 600K SNP arrays. Sci. Rep. 2016, 6, 27822. [Google Scholar] [CrossRef] [Green Version]
- Pan, Z.Y.; Li, S.D.; Liu, Q.Y.; Wang, Z.; Zhou, Z.K.; Di, R.; An, X.J.; Miao, B.P.; Wang, X.Y.; Hu, W.P.; et al. Rapid evolution of a retro-transposable hotspot of ovine genome underlies the alteration of BMP2 expression and development of fat tails. BMC Genom. 2019, 20, 261. [Google Scholar] [CrossRef]
- Kim, E.S.; Elbeltagy, A.R.; Aboul-Naga, A.M.; Rischkowsky, B.; Sayre, B.; Mwacharo, J.M.; Rothschild, M.F. Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity 2016, 116, 255–264. [Google Scholar] [CrossRef]
- Moioli, B.; Pilla, F.; Ciani, E. Signatures of selection identify loci associated with fat tail in sheep. J. Anim. Sci. 2015, 93, 4660–4669. [Google Scholar] [CrossRef]
- Mastrangelo, S.; Bahbahani, H.; Moioli, B.; Ahbara, A.; Al Abri, M.; Almathen, F.; da Silva, A.; Belabdi, I.; Portolano, B.; Mwacharo, J.M.; et al. Novel and known signals of selection for fat deposition in domestic sheep breeds from Africa and Eurasia. PLoS ONE 2019, 14, e0209632. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.K.; Du, L.X.; Liu, R.Z.; Di, R.; Zhang, L.P.; Ma, Y.J.; Li, Q.; Liu, E.M.; Chu, M.X.; Wei, C.H. MiR-378 and BMP-Smad can influence the proliferation of sheep myoblast. Gene 2018, 674, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Blazquez-Medela, A.M.; Jumabay, M.; Bostrom, K.I. Beyond the bone: Bone morphogenetic protein signaling in adipose tissue. Obes. Rev. 2019, 20, 648–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.H.; Fan, C.; Wang, Y.J.; Du, Y.G.; Zhu, Y.; Liu, H.; Lv, L.W.; Liu, Y.S.; Zhou, Y.S. MiR-137 knockdown promotes the osteogenic differentiation of human adipose-derived stem cells via the LSD1/BMP2/SMAD4 signaling network. J. Cell. Physiol. 2019, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Guiu-Jurado, E.; Unthan, M.; Bohler, N.; Kern, M.; Landgraf, K.; Dietrich, A.; Schleinitz, D.; Ruschke, K.; Kloting, N.; Fasshauer, M.; et al. Bone morphogenetic protein 2 (BMP2) may contribute to partition of energy storage into visceral and subcutaneous fat depots. Obesity 2016, 24, 2092–2100. [Google Scholar] [CrossRef] [Green Version]
- Hata, K.; Nishimura, R.; Ikeda, F.; Yamashita, K.; Matsubara, T.; Nokubi, T.; Yoneda, T. Differential roles of Smad1 and p38 kinase in regulation of peroxisome proliferator-activating receptor gamma during bone morphogenetic protein 2-induced adipogenesis. Mol. Biol. Cell. 2003, 14, 545–555. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Yang, J.T.; Ma, Z.R.; Lu, J.X.; Zang, R.X.; Wu, J.P. Primary culture and differentiation of ovine preadipocytes. Chin. J. Anim. Nutr. 2010, 22, 1768–1774. [Google Scholar]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1001–1008. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Maudetr, C.; Miller, C.; Bassano, B.; Breitenmoser-Wursten, C.; Gauthier, D.; Obexer-Ruff, G.; Michallet, J.; Taberlet, P.; Luikart, G. Microsatellite DNA and recent statistical methods in wildlife conservation management: Applications in Alpine ibex [Capra ibex(ibex)]. Mol. Ecol. 2002, 11, 421–436. [Google Scholar] [CrossRef]
- Devaney, J.M.; Tosi, L.L.; Fritz, D.T.; Gordish-Dressman, H.A.; Jiang, S.; Orkunoglu-Suer, F.E.; Gordon, A.H.; Harmon, B.T.; Thompson, P.D.; Clarkson, P.M.; et al. Differences in fat and muscle mass associated with a functional human polymorphism in a post-transcriptional BMP2 gene regulatory element. J. Cell. Biochem. 2009, 107, 1073–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vejnar, C.E.; Abdel Messih, M.; Takacs, C.M.; Yartseva, V.; Oikonomou, P.; Christiano, R.; Stoeckius, M.; Lau, S.; Lee, M.T.; Beaudoin, J.D.; et al. Genome wide analysis of 3’ UTR sequence elements and proteins regulating mRNA stability during maternal-to-zygotic transition in zebrafish. Genome Res. 2019, 29, 1100–1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayr, C. Evolution and biological roles of alternative 3’UTRs. Trends Cell Boil. 2016, 26, 227–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geissler, R.; Grimson, A. A position-specific 3’UTR sequence that accelerates mRNA decay. RNA Biol. 2016, 13, 1075–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orozco, G.; Hinks, A.; Eyre, S.; Ke, X.; Gibbons, L.J.; Bowes, J.; Flynn, E.; Martin, P.; Wilson, A.G.; Bax, D.E.; et al. Combined effects of three independent SNPs greatly increase the risk estimate for RA at 6q23. Hum. Mol. Genet. 2009, 18, 2693–2699. [Google Scholar] [CrossRef] [Green Version]
- Horne, B.D.; Camp, N.J. Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genet. Epidemiol. 2004, 26, 11–21. [Google Scholar] [CrossRef]
- McNeel, R.L.; Ding, S.T.; Smith, E.O.; Mersmann, H.J. Expression of porcine adipocyte transcripts during differentiation in vitro and in vivo. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2000, 126, 291–302. [Google Scholar] [CrossRef]
- Bugge, A.; Mandrup, S. Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation. PPAR Res. 2010, 2010, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Q.; Yang, L.Y. Progress on lipoprotein lipase. Prog. Vet. Med. 2010, 3, 86–89. [Google Scholar]
- Xu, X.C.; Wei, X.; Yang, Y.X.; Niu, W.Z.; Kou, Q.F.; Wang, X.L.; Chen, Y.L. mRNA transcription and protein expression of PPARγ, FAS, and HSL in different parts of the carcass between fat-tailed and thin-tailed sheep. Electron. J. Biotechnol. 2015, 18, 215–220. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.C.; Chen, Q.Y.; Yang, S.H.; Sun, F.Y.; Yu, Y.C. BMP2 induces adipogenic differentiation of C3H10T1/2 cells. Chin. J. Biochem. Mol. Biol. 2008, 24, 142–147. [Google Scholar]
- Bonnet, M.; Leroux, C.; Faulconnier, Y.; Hocquette, J.F.; Bocquier, F.; Martin, P.; Chilliard, Y. Lipoprotein lipase activity and mRNA are up-regulated by refeeding in adipose tissue and cardiac muscle of sheep. J. Nutr. 2000, 130, 749–756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, C.W.; Christen, B.; Barker, D.; Slack, J.M. Temporal requirement for bone morphogenetic proteins in regeneration of the tail and limb of Xenopus tadpoles. Mech. Dev. 2006, 123, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.Y.; Zhang, H.; Zhang, Z.; Gao, J.; Yang, J.; Wu, Z.P.; Fan, Y.; Xing, Y.Y.; Li, L.; Xiao, S.J.; et al. VRTN is required for the development of thoracic vertebrae in mammals. Int. J. Biol. Sci. 2018, 14, 667–681. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Sun, Y.W.; Du, W.; He, S.G.; Liu, M.J.; Tian, C.Y. Effects of vertebral number variations on carcass traits and genotyping of Vertnin candidate gene in Kazakh sheep. Asian-Australas. J. Anim. Sci. 2017, 30, 1234–1238. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Huang, L.S.; Yang, M.; Fan, Y.; Li, L.; Fang, S.M.; Deng, W.J.; Cui, L.L.; Zhang, Z.; Ai, H.S.; et al. Possible introgression of the VRTN mutation increasing vertebral number, carcass length and teat number from Chinese pigs into European pigs. Sci. Rep. 2016, 6, 19240. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Wang, M.; Liu, Y.Y.; Ge, Y.W.; Zhang, Y.J.; Shi, D.L. Vegetally localised Vrtn functions as a novel repressor to modulate bmp2b transcription during dorsoventral patterning in zebrafish. Development 2017, 144, 3361–3374. [Google Scholar] [CrossRef] [Green Version]
- Salazar, V.S.; Gamer, L.W.; Rosen, V. BMP signalling in skeletal development, disease and repair. Nat. Rev. Endocrinol. 2016, 12, 203–221. [Google Scholar] [CrossRef]
Locus | Breed | Genotype | Genotype Frequency | Allele Frequency | He | Ne | PIC | HW Test (p-Value) |
---|---|---|---|---|---|---|---|---|
g.48401619 T > A | Hu sheep | TT (7) | 0.03 | T (0.19) A (0.81) | 0.31 | 1.45 | 0.26 | 0.76 |
TA (66) | 0.32 | |||||||
AA (135) | 0.65 | |||||||
Tibetan sheep | TT (9) | 0.05 | T (0.23) A (0.77) | 0.35 | 1.54 | 0.29 | 0.88 | |
TA (59) | 0.35 | |||||||
AA (103) | 0.60 | |||||||
Hybrid sheep | TT (12) | 0.08 | T (0.33) A (0.67) | 0.44 | 1.80 | 0.34 | 0.08 | |
TA (78) | 0.50 | |||||||
AA (64) | 0.42 | |||||||
g.48401272 C > A | Hu sheep | AA (14) | 0.07 | A (0.25) C (0.75) | 0.37 | 1.59 | 0.30 | 0.64 |
CA (75) | 0.36 | |||||||
CC (119) | 0.57 | |||||||
Tibetan sheep | AA (24) | 0.14 | A (0.34) C (0.66) | 0.45 | 1.81 | 0.35 | 0.11 | |
CA (67) | 0.39 | |||||||
CC (80) | 0.47 | |||||||
Hybrid sheep | AA (16) | 0.10 | A (0.35) C (0.65) | 0.45 | 1.83 | 0.35 | 0.36 | |
CA (75) | 0.49 | |||||||
CC (63) | 0.41 | |||||||
g.48401136 C > T | Hu sheep | CC (58) | 0.28 | C (0.52) T (0.48) | 0.50 | 2.00 | 0.37 | 0.70 |
CT (101) | 0.48 | |||||||
TT (49) | 0.24 | |||||||
Tibetan sheep | CC (63) | 0.37 | C (0.59) T (0.41) | 0.48 | 1.93 | 0.37 | 0.38 | |
CT (77) | 0.45 | |||||||
TT (31) | 0.18 | |||||||
Hybrid sheep | CC (47) | 0.31 | C (0.58) T (0.42) | 0.49 | 1.95 | 0.37 | 0.10 | |
CT (85) | 0.55 | |||||||
TT (22) | 0.14 |
Locus | Genotype | Tail Length (cm) | Tail Width (cm) | Tail Circumference (cm) |
---|---|---|---|---|
g.48401619 T > A | TT | 19.39 ± 0.51 ab | 9.85 ± 0.12 a | 20.26 ± 0.24 a |
TA | 19.24 ± 0.19 b | 9.46 ± 0.14 a | 19.78 ± 0.28 a | |
AA | 19.85 ± 0.16 a | 9.71 ± 0.37 a | 20.06 ± 0.76 a | |
g.48401272 C > A | AA | 19.71 ± 0.36 ab | 9.71 ± 0.27 a | 20.04 ± 0.55 a |
CA | 19.22 ± 0.18 b | 9.62 ± 0.13 a | 20.09 ± 0.27 a | |
CC | 19.87 ± 0.178 a | 9.75 ± 0.12 a | 20.04 ± 0.25 a | |
g.48401136 C > T | CC | 20.02 ± 0.21 a | 9.80 ± 0.15 a | 20.26 ± 0.31 a |
CT | 19.41 ± 0.17 ab | 9.54 ± 0.12 a | 19.83 ± 0.25 a | |
TT | 19.33 ± 0.27 b | 9.90 ± 0.20 a | 20.37 ± 0.40 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Z.; Liu, J.; Han, J.; Yang, B. Association Between BMP2 Functional Polymorphisms and Sheep Tail Type. Animals 2020, 10, 739. https://doi.org/10.3390/ani10040739
Lu Z, Liu J, Han J, Yang B. Association Between BMP2 Functional Polymorphisms and Sheep Tail Type. Animals. 2020; 10(4):739. https://doi.org/10.3390/ani10040739
Chicago/Turabian StyleLu, Zengkui, Jianbin Liu, Jilong Han, and Bohui Yang. 2020. "Association Between BMP2 Functional Polymorphisms and Sheep Tail Type" Animals 10, no. 4: 739. https://doi.org/10.3390/ani10040739
APA StyleLu, Z., Liu, J., Han, J., & Yang, B. (2020). Association Between BMP2 Functional Polymorphisms and Sheep Tail Type. Animals, 10(4), 739. https://doi.org/10.3390/ani10040739