Effect of Feeding Adaptation of Italian Simmental Cows before Summer Grazing on Animal Behavior and Milk Characteristics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Measurements
2.3. Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Body Conditions Score and Milk Yield, Composition, and Coagulation Properties
3.3. Milk Volatiles Organic Compounds
3.4. Feeding and Locomotion Behavior
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Streifeneder, T.; Tappeiner, U.; Ruffini, F.V.; Tappeiner, G.; Hoffmann, C. Selected Aspects of Agro-structural Change within the Alps. Rev. Geogr. Alp. 2007, 95, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Battaglini, L.; Bovolenta, S.; Gusmeroli, F.; Sturaro, E. Environmental sustainability of Alpine livestock farms. Ital. J. Anim. Sci. 2014, 13, 431–443. [Google Scholar] [CrossRef]
- Sturaro, E.; Marchiori, E.; Cocca, G.; Penasa, M.; Ramanzin, M.; Bittante, G. Dietary systems in mountains areas: Farm animal biodiversity, milk production and destination, and land use. Livest. Sci. 2013, 158, 157–168. [Google Scholar] [CrossRef]
- Bovolenta, S.; Romanzin, A.; Corazzin, M.; Spanghero, M.; Aprea, E.; Gasperi, F.; Piasentier, E. Volatile compounds and sensory properties of montasio cheese made from the milk of simmental cows grazing on alpine pastures. J. Dairy Sci. 2014, 97, 7373–7385. [Google Scholar] [CrossRef]
- Aprea, E.; Romanzin, A.; Corazzin, M.; Favotto, S.; Betta, E.; Gasperi, F.; Bovolenta, S. Effects of grazing cow diet on volatile compounds as well as physiochemical and sensory characteristics of 12-month-ripened Montasio cheese. J. Dairy Sci. 2016, 99, 6180–6190. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Romanzin, A.; Bovolenta, S. Greenhouse gas balance of mountain dairy farm sas affected by grassland carbon sequestration. J. Environ. Manage. 2017, 196, 644–650. [Google Scholar] [CrossRef]
- Salvador, S.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Environmental assessment of small-scale dairy farms with multifunctionality in mountain areas. J. Clean. Prod. 2016, 124, 94–102. [Google Scholar] [CrossRef]
- Guiomar, G.; Godinho, S.; Pinto-Correia, T.; Almeida, M.; Bartolini, F.; Bezák, P.; Biró, M.; Bjørkhaug, H.; Bojnec, Š.; Brunori, G.; et al. Typology and distribution of small farms in Europe: Towards a better pictures. Land Use Policy 2018, 75, 784–798. [Google Scholar] [CrossRef]
- Gorlier, A.; Lonati, M.; Renna, M.; Lussiana, C.; Lombardi, G.; Battaglini, L.M. Changes in pasture and cow milk compositions during a summer transhumance in the western Italian Alps. J. Appl. Bot. Food Qual. 2012, 85, 216–223. [Google Scholar]
- Mattiello, S.; Carugati, C.; Verga, M.; Carenzi, C. Il benessere della bovina da latte in alpeggio. EM Linea Ecologica 2004, 2, 25–35. [Google Scholar]
- Peric, T.; Corazzin, M.; Romanzin, A.; Bovolenta, S.; Prandi, A.; Montillo, M.; Comin, A. Cortisol and DHEA concentrations in the hair of dairy cows managed indoor or on pasture. Livest. Sci. 2017, 202, 39–43. [Google Scholar] [CrossRef]
- Leiber, F.; Kreuzer, M.; Jörg, B.; Leuenberger, H. Contribution of altitude and Alpine origin of forage to the influence of Alpine sojourn of cows on intake, nitrogen conversion, metabolic stress and milk synthesis. Anim. Sci. 2004, 78, 451–466. [Google Scholar] [CrossRef]
- Zendri, F.; Ramanzin, M.; Bittante, G.; Sturaro, E. Transhumance of dairy cows to highland summer pastures interacts with breed to influence body condition, milk yield and quality. Ital. J. Anim. Sci. 2016, 15, 481–491. [Google Scholar] [CrossRef] [Green Version]
- Coppa, M.; Gorlier, A.; Lonati, M.; Martin, B.; Russo, E.M.; Lombardi, G. The management of the transition from hay- to pasture-based diets affects milk fatty acid kinetics. Dairy Sci. Technol. 2012, 92, 279–295. [Google Scholar] [CrossRef] [Green Version]
- Renna, M.; Lussiana, C.; Cornale, P.; Fortina, R.; Mimosi, A. Changes in goat milk fatty acids during abrupt transition from indoor to pasture diet. Small Rumin. Res. 2012, 108, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Astessiano, A.L.; Meikle, A.; Chilibroste, P.; Mattiauda, D.A.; Fajardo, M.; Carriquiry, M. Metabolic adaptations due to the inclusion of pasture in the diet of dairy cows fed total mixed ration during early lactation. Open J. Anim. Sci. 2017, 7, 127–140. [Google Scholar] [CrossRef] [Green Version]
- Schӓren, M.; Jostmeier, S.; Ruesink, S.; Hüther, L.; Frahm, J.; Bulang, M.; Meyer, U.; Rehage, J.; Isselstein, J.; Breves, G.; et al. The effects of a ration change from a total mixed ration to pasture on health and production of dairy cows. J. Dairy Sci. 2016, 99, 1183–1200. [Google Scholar] [CrossRef] [Green Version]
- Agenäs, S.; Holtenius, K.; Griinari, M.; Burstedt, E. Effects of turnout to pasture and dietary fat supplementation on milk fat composition and conjugated linoleic acid in dairy cows. Acta Agric. Scand. A. Anim. Sci. 2002, 52, 25–33. [Google Scholar] [CrossRef]
- Ventura, W.; Ruatti, T. Survey about the body condition of the cows kept on alpages (malghe) of the Paneveggio Pale di San Martino Natural Park (TN). In Quaderno SoZooAlp; Bovolenta, S., Ed.; Nuove Arti Grafiche: Trento, Italy, 2008; Volume 5, pp. 126–134. [Google Scholar]
- Hartwiger, J.; Schären, M.; Gerhards, U.; Hüther, L.; Frahm, J.; van Soosten, D.; Klüß, J.; Bachmann, M.; Zeyner, A.; Meyer, U. Effects of change from an indoor-based total mixed ration to a rotational pasture system combinated with a moderate concentrate feed supply on the health and performance of dairy cows. Animals 2018, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Schӓren, M.; Seyfang, G.M.; Steingass, H.; Dieho, K.; Dijkstra, J.; Hüther, L.; Frahm, J.; Beineke, A.; von Soosten, D.; Meyer, U.; et al. The effect of a ration change from a total mixed ration to pasture on rumen fermentation, volatile fatty acid absorption characteristics, and morphology of dairy cows. J. Dairy Sci. 2016, 99, 3549–3565. [Google Scholar] [CrossRef] [Green Version]
- Kilcawley, K.N.; Faulkner, H.; Clarke, H.J.; O’Sallivan, M.G.; Kerry, J.P. Factors influencing the flavor of bovine milk and cheese from grass based versus non-grass based milk production systems. Foods 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Corazzin, M.; Romanzin, A.; Sepulcri, A.; Pinosa, M.; Piasentier, E.; Bovolenta, S. Fatty acid profiles of cow’s milk and cheese as affected by mountain pasture type and concentrate supplementation. Animals 2019, 9, 68. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Amalfitano, N.; Sturaro, E.; Schiavon, S.; Tagliapietra, F.; Bittante, G.; Carafa, I.; Franciosi, E.; Gallo, L. Effects of summer transhumance of dairy cows to alpine pastures on body condition, milk yield and composition, and cheese making efficiency. Animals 2019, 9, 192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coppa, M.; Martin, B.; Pradel, P.; Leotta, B.; Priolo, A.; Vasta, V. Effect of hay-based diet or different upland grazing systems on milk volatile compounds. J. Agric. Food Chem. 2011, 59, 4947–4954. [Google Scholar] [CrossRef] [PubMed]
- Villeneuve, M.P.; Lebeuf, Y.; Gervais, R.; Tremblay, G.F.; Vuillemard, J.C.; Fortin, J.; Chouinard, P.Y. Milk organic compounds and fatty acid profile in cows fed timothy as hay, pasture, or silage. J. Dairy Sci. 2013, 96, 7181–7194. [Google Scholar] [CrossRef] [PubMed]
- Association of Official Agricultural Chemists. Official Methods of Analysis; AOAC International: Arlington, VA, USA, 2000. [Google Scholar]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). In Agricultural Handbook No.379; USDA Agricultural Research Service: Washington, DC, USA, 1970; pp. 387–598. [Google Scholar]
- Baumont, R.; Dulphy, J.P.; Sauvant, D.; Meschy, F.; Aufrere, J.; Peyraud, J.L. Valeur alimentaire des fourrages et des matières premières: Table et prévision. In Alimentation des Bovins, Ovins et Caprins; INRA; Quae: Versailles, France, 2010; pp. 153–183. [Google Scholar]
- Edmonson, A.J.; Lean, I.J.; Weaver, L.D.; Farver, T.; Webster, G. A body condition scoring chart for Holstein dairy cows. J. Dairy Sci. 1989, 72, 68–78. [Google Scholar] [CrossRef]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Concentrate supplement modifies the feeding behaviour of simmental cows grazing in two high mountain pasture. Animals 2018, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- ISO. Milk and Liquid Milk Products. Guidelines for the Application of Mid-Infrared Spectroscopy (ISO 9622:2013); International Organization for Standardization: Geneve, Switzerland, 2013. [Google Scholar]
- ISO. Milk- Enumeration of Somatic Cells—Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Counters (ISO 1366-2:2008); International Organization for Standardization: Geneve, Switzerland, 2008. [Google Scholar]
- Cipolat-Gotet, C.; Cecchinato, A.; Stocco, G.; Bittante, G. 9-MilCA method as a rapid, partly automated protocolfor simultaneously recording milk coagulation, curd firming, syneresis, cheese yield, and curd nutrients recovery or whey loss. J. Dairy Sci. 2016, 99, 1065–1082. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Vellinga, T.; Opio, C.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from the Dairy Sector, A Life Cycle Assessment; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010; pp. 1–94. [Google Scholar]
- Bottiroli, R.; Aprea, E.; Betta, E.; Fogliano, V.; Gasperi, F. Application of headspace solid-phase micro-extraction gas chromatography for the assessment of the volatiles profiles of ultra-high temperature hydrolyzed-lactose milk during production and storage. Int. Dairy J. 2020, 107, 104715. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria. Available online: https://www.R-project.org (accessed on 24 May 2017).
- Wang, Z.; Goonewardene, L.A. The use of mixed models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 2004, 84, 1–11. [Google Scholar] [CrossRef]
- Park, E.; Cho, M.; Ki, C.S. Correct use of repeated-measures analysis of variance. Korean J. Lab. Med. 2009, 29, 1–9. [Google Scholar] [CrossRef]
- Avendaño Reyes, A. Heat stress management for milk production in arid zone. In Milk Production—An Up-To-Date Overview of Animal Nutrition, Management and Health; Chaiyabutr, N., Ed.; IntechOpen: London, UK, 2012; pp. 165–184. [Google Scholar]
- Bovolenta, S.; Saccà, E.; Corazzin, M.; Gasperi, F.; Biasioli, F.; Ventura, W. Effects of stocking density and supplement level on milk production and cheese characteristics in Brown cows grazing on mountain pasture. J. Dairy Res. 2008, 75, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Bovolenta, S.; Ventura, W.; Malossini, F. Dairy cows grazing an alpine pasture: Effect of pattern of supplement allocation on herbage intake, body condition, milk yield and coagulation properties. Anim. Res. 2002, 51, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Berry, N.R.; Jewell, P.L.; Sutter, F.; Edwards, P.J.; Kreuzer, M. Selection, intake and excretion of nutrients by Scottish Highland suckler beef cows and calves, and Brown Swiss dairy cows in contrasting Alpine grazing systems. J. Agric. Sci. 2002, 139, 437–453. [Google Scholar] [CrossRef]
- Gianelle, D.; Romanzin, A.; Clementel, F.; Vescovo, L.; Bovolenta, S. Feeding management of dairy cattle affect grassland dynamics in an alpine pasture. Int. J. Agr. Sustain. 2018, 16, 64–73. [Google Scholar] [CrossRef]
- Bendelja, D.; Prpić, Z.; Mikulec, N.; Ivkić, Z.; Havranek, J.; Antunac, N. Milk urea concentration in Holstein and Simmental cows. Mljekarstvo 2011, 61, 45–55. [Google Scholar]
- Santschi, D.E.; Lacroix, R.; Durocher, J.; Duplessis, M.; Moore, R.K.; Lefebvre, D.M. Prevalence of elevated milk β-hydroxybutyrate concentrations in Holstein cows measured by Fourier-transform infrared analysis in Dairy Herd improvement milk samples and association with milk yield and components. J. Dairy Sci. 2016, 99, 9263–9270. [Google Scholar] [CrossRef]
- Gustafsson, A.H.; Emanuelson, U. Milk acetone concentration as an indicator of hyperketonaemia in dairy cows: The critical value revised. Anim. Sci. 1996, 63, 183–188. [Google Scholar] [CrossRef]
- Cecchinato, A.; Cipolat-Gotet, C.; Casellas, J.; Penasa, M.; Rossoni, A.; Bittante, G. Genetic analysis of rennet coagulation time, curd-firming rate, and curd firmness assessed over an extended testing period using mechanical and near-infrared instruments. J. Dairy Sci. 2013, 96, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Niero, G.; Koczura, M.; De Marchi, M.; Currò, S.; Kreuzer, M.; Turille, G.; Berard, J. Are cheese-making properties of dual purpose cattle impaired by highland grazing? A case study using Aosta Red Pied cows. Ital. J. Anim. Sci. 2018, 17, 827–834. [Google Scholar] [CrossRef] [Green Version]
- Leiber, F.; Nigg, D.; Kunz, C.; Scheeder, M.R.L.; Wettstein, H.R.; Kreuzer, M. Protein composition, plasmin activity and cheese-making properties of cow’s milk produced at two altitudes from hay of lowland and high-alpine origin. J. Dairy Res. 2005, 72, 65–74. [Google Scholar] [CrossRef]
- Bovolenta, S.; Corazzin, M.; Saccà, E.; Gasperi, F.; Biasioli, F.; Ventura, W. Performance and cheese quality of Brown cows grazing on mountain pasture fed two different levels of supplementation. Livest. Sci. 2009, 124, 58–65. [Google Scholar] [CrossRef]
- Sartori, C.; Tiezzi, F.; Battagin, M.; Guzzo, N.; Mantovani, R. Genotype by environment interactions in productive traits in a local cattle breed due to breeding area, farming systems and feeding strategies. In Proceedings of the World Congress on Genetics Applied to Livestock Production, Auckland, New Zealand, 11–16 February; Massey University: Auckland, New Zealand, 2018; p. 918. [Google Scholar]
- Luttmann, T. The Italian Simmental. In Proceedings of the 29th Simmental Federation Congress, Udine, Italy, 3–7 May 2011; ANAPRI, Ed.; Litostil: Fagagna, Udine, 2011. [Google Scholar]
- Toso, B.; Procida, G.; Stefanon, B. Determination of volatile compounds in cows’ milk using headspace GC-MS. J. Dairy Res. 2002, 69, 569–577. [Google Scholar] [CrossRef]
- Bergamaschi, M.; Bittante, G. From milk to cheese: Evolution of flavor fingerprint of milk, cream, curd, whey, ricotta, scotta, and ripened cheese obtained during summer Alpine pasture. J. Dairy Sci. 2018, 101, 3918–3934. [Google Scholar] [CrossRef] [Green Version]
- Romanzin, A.; Corazzin, M.; Piasentier, E.; Bovolenta, S. Effect of rearing system (mountain pasture vs. indoor) of Simmental cows on milk composition and Montasio cheese characteristics. J. Dairy Res. 2013, 80, 390–399. [Google Scholar] [CrossRef]
- Vlaeminck, B.; Fievez, V.; Cabrita, A.R.J.; Fonseca, A.J.M.; Dewhurst, R.J. Factors affecting odd- and branched-chain fatty acids in milk: A review. Anim. Feed Sci. Tech. 2006, 131, 389–417. [Google Scholar] [CrossRef]
- Lee, B.H.; Corazzin, M.; Piasentier, E.; Huh, C.S.; Sung, K.I.; Park, S.Y. Milk and Montasio-type cheese fatty acid composition from cows grazing on timothy and reed canarygrass pasture or fed indoor. Grassl. Sci. 2019, 65, 226–232. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [Green Version]
- Ocak, N. Rumen degradability of dry matter and crude protein of fresh or dry lucerne and grass forages. J. Anim. Vet. Adv. 2005, 4, 324–328. [Google Scholar]
- DeVries, T.J.; Beauchemin, K.A.; Dohme, F.; Schwartzkopf Genswein, K.S. Repeated ruminal acidosis challenges in lactating dairy cows at high and low risk for developing acidosis: Feeding, ruminating, and lying behavior. J. Dairy Sci. 2009, 92, 5067–5078. [Google Scholar] [CrossRef] [Green Version]
- Braun, U.; Zürcher, S.; Hässig, M. Evaluation of eating and rumination behaviour in 300 cows of three different breeds using a noseband pressure sensor. BMC Vet. Res. 2015, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Keppel, G. Design and Analysis, A Researcher’s Handbook; Prentice Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
Item | Adaptation Method | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
GT | AT | IND | AM | D | AM × D | ||
BCS (points) | 3.15 | 3.31 | 3.23 | 0.058 | 0.52 | 0.41 | 0.02 |
FPCM (kg) | 18.9 | 22.2 | 22.9 | 1.23 | 0.78 | 0.39 | 0.16 |
Fat (%) | 4.00 | 4.07 | 3.77 | 0.084 | 0.36 | 0.01 | 0.01 |
Protein (%) | 3.54 | 3.52 | 3.52 | 0.032 | 0.94 | <0.01 | 0.05 |
Lactose (%) | 4.70 | 4.69 | 4.70 | 0.052 | 0.14 | 0.49 | 0.36 |
Urea (mg/dL) | 16.98 | 19.23 | 17.79 | 0.714 | 0.43 | <0.01 | <0.01 |
SCC (×1000 cells/mL) | 90.4 | 109.8 | 206.6 | 57.06 | 0.79 | 0.05 | 0.49 |
Casein (%) | 2.82 | 2.80 | 2.73 | 0.027 | 0.39 | <0.01 | <0.01 |
Acetone (mmol/L) | 0.021 b | 0.033 ab | 0.057 a | 0.006 | 0.04 | <0.01 | <0.01 |
BHB (mmol/L) | 0.039 b | 0.051 b | 0.092 a | 0.006 | <0.01 | <0.01 | 0.02 |
RCT (min) | 31.95 | 24.03 | 24.15 | 1.857 | 0.17 | 0.80 | 0.01 |
k20 (min) | 8.36 | 5.94 | 7.02 | 0.612 | 0.30 | 0.05 | 0.21 |
a45 (mm) | 26.01 | 34.59 | 30.60 | 2.770 | 0.47 | <0.01 | 0.38 |
a60 (mm) | 30.26 | 35.11 | 32.89 | 1.510 | 0.44 | <0.01 | 0.76 |
Volatile Organic Compound | Adaptation Method | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
GT | AT | IND | AM | D | AM × D | ||
Alcohols | |||||||
3-methyl-1-butanol | 1.55 | 2.06 | 2.73 | 0.580 | 0.80 | 0.04 | 0.23 |
1-pentanol | 4.84 a | 5.37 a | 0.81 b | 0.352 | <0.01 | 0.16 | 0.23 |
2,3-octanediol | 0.45 a | 0.91 a | 0.07 b | 0.089 | <0.01 | 0.12 | 0.18 |
1-hexanol | 7.21 a | 8.80 a | 0.91 b | 1.322 | <0.01 | 0.31 | 0.62 |
1-octen-3-ol | 0.47 a | 0.62 a | 0.09 b | 0.046 | <0.01 | 0.18 | 0.25 |
1-heptanol | 0.85 a | 1.14 a | 0.04 b | 0.152 | <0.01 | 0.21 | 0.44 |
2-ethyl-1-hexanol | 0.86 ab | 1.07 a | 0.68 b | 0.042 | 0.01 | <0.01 | <0.01 |
1-octanol | 0.25 a | 0.39 a | 0.03 b | 0.037 | <0.01 | 0.01 | 0.19 |
Sum, alcohols | 16.48 a | 20.36 a | 5.36 b | 1.798 | <0.01 | 0.13 | 0.52 |
Aldehydes | |||||||
3-methylbutanal | 1.07 b | 0.42 b | 4.73 a | 0.348 | <0.01 | 0.34 | 0.26 |
hexanal | 17.47 ab | 35.14 a | 5.81 b | 3.354 | 0.02 | 0.48 | 0.34 |
heptanal | 2.74 a | 6.68 a | 0.21 b | 0.712 | <0.01 | 0.34 | 0.13 |
(E)-2-heptenal | 0.15 a | 0.27 a | 0.01 b | 0.026 | <0.01 | 0.29 | 0.58 |
nonanal | 0.67 ab | 1.01 a | 0.34 b | 0.077 | 0.01 | <0.01 | 0.54 |
benzaldehyde | 0.37 ab | 0.53 a | 0.24 b | 0.029 | 0.01 | 0.06 | 0.26 |
4-ethylbenzaldehyde | 0.02 ab | 0.03 a | <0.01 b | 0.004 | 0.03 | 0.38 | 0.44 |
2,4-dimethylbenzaldehyde | 0.01 | 0.02 | <0.01 | 0.004 | 0.07 | 0.45 | 0.22 |
Sum, aldehydes | 22.50 ab | 44.10 a | 11.38 b | 4.038 | 0.04 | 0.25 | 0.66 |
Hydrocarbons | |||||||
decane | 1.95 | 2.09 | 2.47 | 0.451 | 0.16 | <0.01 | <0.01 |
toluene | 26.30 a | 29.40 a | 0.55 b | 1.808 | <0.01 | <0.01 | 0.07 |
ethyl benzene | 0.19 b | 0.85 a | 0.33 b | 0.133 | 0.01 | 0.59 | 0.18 |
p-xilene | 0.08 | 0.26 | 0.13 | 0.042 | 0.07 | 0.81 | 0.11 |
m-xilene | 0.15 b | 0.38 a | 0.17 b | 0.054 | 0.01 | 0.45 | 0.08 |
o-xilene | 0.15 b | 0.30 a | 0.20 a | 0.035 | 0.03 | <0.01 | <0.01 |
1,3-di-tert-butylbenzene | 0.98 b | 1.01 ab | 1.63 a | 0.064 | <0.01 | <0.01 | <0.01 |
pentadecane | 0.06 | 0.09 | 0.02 | 0.021 | 0.42 | 0.14 | 0.26 |
hexadecane | 0.05 | 0.10 | 0.05 | 0.008 | 0.44 | 0.36 | 0.69 |
heptadecane | 0.04 | 0.06 | 0.03 | 0.008 | 0.60 | 0.62 | 0.22 |
Sum, hydrocarbons | 29.95 a | 34.53 a | 5.61 b | 5.174 | <0.01 | <0.01 | <0.01 |
Ketones | |||||||
2-butanone | 2.11 | 2.13 | 1.68 | 0.131 | 0.29 | 0.38 | 0.62 |
2-pentanone | 1.51 a | 1.79 a | 1.02 b | 0.111 | 0.01 | 0.71 | 0.08 |
2-heptanone | 4.48 | 6.27 | 1.04 | 1.412 | 0.49 | 0.75 | 0.95 |
2-nonanone | 3.17 | 4.90 | 0.26 | 1.214 | 0.35 | 0.67 | 0.88 |
2-undecanone | 0.03 | 0.04 | 0.02 | 0.009 | 0.52 | 0.95 | 0.56 |
acetophenone | 0.10 | 0.13 | 0.06 | 0.011 | 0.30 | 0.76 | 0.92 |
Sum, ketones | 11.40 a | 15.26 a | 4.08 b | 2.660 | 0.05 | 0.74 | 0.70 |
Organic acids | |||||||
acetic acid | 0.24 | 0.19 | 0.15 | 0.020 | 0.22 | 0.62 | 0.20 |
butanoic acid | 2.54 b | 2.95 b | 6.35 a | 0.460 | 0.01 | 0.73 | 0.97 |
pentanoic acid | 0.05 | 0.05 | 0.05 | 0.008 | 0.67 | 0.09 | 0.13 |
hexanoic acid | 5.44 b | 6.75 b | 14.80 a | 1.179 | 0.01 | 0.66 | 0.76 |
4-methyl hexanoic acid | 0.01 | <0.01 | <0.01 | 0.005 | 0.43 | 0.37 | 0.43 |
heptanoic acid | 0.13 b | 0.15 b | 0.26 a | 0.014 | 0.01 | 0.47 | 0.46 |
octanoic acid | 4.47 b | 5.14 b | 13.18 a | 0.828 | <0.01 | 0.39 | 0.94 |
nonanoic acid | 0.65 b | 0.62 b | 1.12 a | 0.077 | 0.05 | 0.68 | 0.69 |
decanoic acid | 2.45 b | 2.53 b | 6.11 a | 1.230 | <0.01 | 0.14 | 0.41 |
9-decenoic acid | 0.10 b | 0.12 b | 0.30 a | 0.019 | <0.01 | 0.41 | 0.73 |
dodecanoic acid | 0.34 b | 0.32 b | 0.63 a | 0.037 | 0.01 | 0.75 | 0.28 |
Sum, organic acids | 16.41 b | 18.82 b | 42.94 a | 9.102 | <0.01 | 0.15 | 0.51 |
Phenolic compounds | |||||||
phenol | 0.37 b | 0.37 b | 0.42 a | 0.008 | <0.01 | 1.00 | 0.92 |
p-cresol | 0.23 | 0.21 | 0.25 | 0.008 | 0.14 | 0.67 | 0.99 |
m-cresol | 0.69 b | 0.63 b | 0.83 a | 0.023 | <0.01 | 0.70 | 0.98 |
Sum, phenolic compounds | 1.28 b | 1.20 b | 1.49 a | 0.036 | 0.01 | 0.80 | 0.97 |
Terpene | |||||||
limonene | 0.41 a | 0.41 a | 0.01 b | 0.051 | 0.01 | <0.01 | 0.01 |
Sulphur compound | |||||||
dimethyl sulfone | 3.41 a | 4.83 a | 1.91 b | 0.230 | <0.01 | 0.23 | 0.12 |
Lactones | |||||||
γ-butyrolactone | 0.36 | 0.46 | 0.25 | 0.033 | 0.24 | 0.59 | 0.80 |
δ-decalactone | 0.09 | 0.10 | 0.13 | 0.009 | 0.10 | 0.16 | 0.67 |
Sum, lactones | 0.45 | 0.55 | 0.38 | 0.033 | 0.56 | 0.22 | 0.42 |
Item | Adaptation Method | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
GT | AT | IND | AM | D | AM × D | ||
Eating time (min/d) | 444.8 | 503.4 | 421.1 | 17.20 | 0.14 | 0.03 | 0.67 |
Eating chews (n/d) | 31,188 | 34,876 | 30,919 | 1392.5 | 0.47 | 0.01 | 0.44 |
Rumination time (min/d) | 370.1 b | 334.9 b | 520.6 a | 9.39 | <0.01 | <0.01 | 0.21 |
Rumination chews (n/d) | 23,089 b | 21,001 b | 30,017 a | 1104.2 | 0.01 | <0.01 | 0.34 |
Boluses (n/d) | 402.3 b | 394.0 b | 494.1 a | 14.41 | 0.01 | <0.01 | 0.74 |
Lying time (min/d) | 588.7 | 582.4 | 670.5 | 18.73 | 0.13 | <0.01 | 0.08 |
Walking time (min/d) | 135.0 a | 143.7 a | 48.6 b | 3.62 | <0.01 | <0.01 | <0.01 |
Standing time (min/d) | 716.7 | 714.3 | 721.3 | 17.41 | 0.93 | <0.01 | 0.34 |
Steps (n/d) | 3894 a | 4047 a | 1104 b | 105.5 | <0.01 | <0.01 | <0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corazzin, M.; Berlese, M.; Sturaro, E.; Ramanzin, M.; Gallo, L.; Aprea, E.; Gasperi, F.; Gianelle, D.; Bovolenta, S. Effect of Feeding Adaptation of Italian Simmental Cows before Summer Grazing on Animal Behavior and Milk Characteristics. Animals 2020, 10, 829. https://doi.org/10.3390/ani10050829
Corazzin M, Berlese M, Sturaro E, Ramanzin M, Gallo L, Aprea E, Gasperi F, Gianelle D, Bovolenta S. Effect of Feeding Adaptation of Italian Simmental Cows before Summer Grazing on Animal Behavior and Milk Characteristics. Animals. 2020; 10(5):829. https://doi.org/10.3390/ani10050829
Chicago/Turabian StyleCorazzin, Mirco, Monica Berlese, Enrico Sturaro, Maurizio Ramanzin, Luigi Gallo, Eugenio Aprea, Flavia Gasperi, Damiano Gianelle, and Stefano Bovolenta. 2020. "Effect of Feeding Adaptation of Italian Simmental Cows before Summer Grazing on Animal Behavior and Milk Characteristics" Animals 10, no. 5: 829. https://doi.org/10.3390/ani10050829
APA StyleCorazzin, M., Berlese, M., Sturaro, E., Ramanzin, M., Gallo, L., Aprea, E., Gasperi, F., Gianelle, D., & Bovolenta, S. (2020). Effect of Feeding Adaptation of Italian Simmental Cows before Summer Grazing on Animal Behavior and Milk Characteristics. Animals, 10(5), 829. https://doi.org/10.3390/ani10050829