Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Delgado, C.; Rosegrant, M.; Steinfeld, H.; Ehui, S.; Courbois, C. Livestock to 2020: The Next Food Revolution; Food, Agriculture, and the Environment Discussion Paper 28; IFPRI/FAO/ILRI: Washington, DC, USA, 1999. [Google Scholar]
- Thornton, P.K.; van de Steeg, J.; Notenbaert, A.; Herrero, M. The impacts of climate change on livestock and livestock systems in developing countries: A review of what we know and what we need to know. Agric. Syst. 2009, 101, 113–127. [Google Scholar] [CrossRef]
- FAO. The Second State of the World Report on Animal Genetic Resources for Food and Agriculture; Food and Agriculture Organisation of the United Nations (FAO): Rome, Italy, 2015. [Google Scholar]
- Shikuku, K.M.; Valdivia, R.O.; Paul, B.K.; Mwongera, C.; Winowiecki, L.; Läderach, P.; Herrero, M.; Silvestri, S. Prioritizing climate-smart livestock technologies in rural Tanzania: A minimum data approach. Agric. Syst. 2016, 151, 204–216. [Google Scholar] [CrossRef]
- Salio, L.; Gupta, I.D.; Archana, V.; Das, R.; Chaudhari, M.V. Association of single nucleotide polymorphism of Hsp90ab1 gene with thermotolerance and milk yield in Sahiwal cows. Afr. J. Biochem. Res. 2015, 9, 99–103. [Google Scholar]
- Kadzere, C.T.; Murphy, M.R.; Silanikove, N.; Maltz, E. Heat stress in lactating dairy cows: A review. Livest. Prod. Sci. 2002, 77, 59–91. [Google Scholar] [CrossRef]
- Bernabucci, U.; Lacetera, N.; Baumgard, L.H.; Rhoads, R.P.; Ronchi, B.; Nardone, A. Metabolic and hormonal acclimation to heat stress in domesticated ruminants. Animal 2010, 4, 1167–1183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, J.B.; Douglas, M.L.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; Nguyen, T.T.T.; Reich, C.M.; Hayes, B.J. Genomic Selection Improves Heat Tolerance in Dairy Cattle. Sci. Rep. 2017, 6, 34114. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, A.A.M.; Gad, A.E.; EL-Tarabany, A.A.; Atta, M.A.A. Negative Effects of Heat Stress on Growth and Milk Production of Farm Animals. J. Anim. Husb. Dairy Sci. 2018, 2, 1–12. [Google Scholar]
- West, J.W. Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
- Renaudeau, D.; Collin, A.; Yahav, S.; de Basilio, V.; Gourdine, J.L.; Collier, R.J. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 2012, 6, 707–728. [Google Scholar] [CrossRef] [Green Version]
- Silanikove, N. Effects of heat stress on the welfare of extensively managed domestic ruminants. Livest. Prod. Sci. 2000, 67, 1–18. [Google Scholar] [CrossRef]
- Lacetera, N.; Bernabucci, U.; Scalia, D.; Basirico, L.; Morera, P.; Nardone, A. Heat stress elicits different responses in peripheral blood mononuclear cells from Brown Swiss and Holstein cows. J. Dairy Sci. 2006, 89, 4606–4612. [Google Scholar] [CrossRef] [Green Version]
- Lacerda, T.F.; Loureiro, B. Selecting Thermotolerant Animals as a Strategy to Improve Fertility in Holstein Cows. Glob. J. Anim. Sci. Res. 2015, 3, 119–127. [Google Scholar]
- St-Pierre, N.R.; Cobanov, B.; Schnitkey, G. Economic Losses from Heat Stress by US Livestock Industries. J. Dairy Sci. 2003, 86, E52–E77. [Google Scholar] [CrossRef] [Green Version]
- Dunshea, F.R.; Leury, B.J.; Fahri, F.; DiGiacomo, K.; Hung, A.; Chauhan, S.; Clarke, I.J.; Collier, R.; Little, S.; Baumgard, L.; et al. Amelioration of thermal stress impacts in dairy cows. Anim. Prod. Sci. 2013, 53, 965–975. [Google Scholar] [CrossRef]
- Biffani, S.; Bernabucci, U.; Vitali, A.; Lacetera, N.; Nardone, A. Effect of heat stress on nonreturn rate of Italian Holstein cows. J. Dairy Sci. 2016, 99, 5837–5843. [Google Scholar] [CrossRef] [Green Version]
- Polsky, L.; von Keyserlingk, M.A.G. Invited review: Effects of heat stress on dairy cattle welfare. J. Dairy Sci. 2017, 100, 8645–8657. [Google Scholar] [CrossRef] [Green Version]
- Garner, J.B.; Douglas, M.; Williams, S.R.O.; Wales, W.J.; Marett, L.C.; DiGiacomo, K.; Leury, B.J.; Hayes, B.J. Responses of dairy cows to short-term heat stress in controlled-climate chambers. Anim. Prod. Sci. 2017, 57, 1233. [Google Scholar] [CrossRef]
- Baumgard, L.H.; Rhoads, R.P. Ruminant Nutrition symposium: Ruminant Production and Metabolic Responses to Heat Stress. J. Anim. Sci. 2012, 90, 1855–1865. [Google Scholar] [CrossRef] [Green Version]
- Carabaño, M.J.; Ramón, M.; Menéndez-Buxadera, A.; Molina, A.; Díaz, C. Selecting for heat tolerance. Anim. Front. 2019, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Rolf, M.M. Heat Tolerance in Cattle; Oklahoma State University: Stillwater, OK, USA, 2015. [Google Scholar]
- Osei-Amponsah, R.; Chauhan, S.S.; Leury, B.J.; Cheng, L.; Cullen, B.; Clarke, I.J.; Dunshea, F.R. Genetic Selection for Thermotolerance in Ruminants. Animals 2019, 9, 948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowe, G.; Sutherland, M.; Waas, J.; Schaefer, A.; Cox, N.; Stewart, M. Infrared Thermography—A Non-Invasive Method of Measuring Respiration Rate in Calves. Animals 2019, 9, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaughan, J.B.; Mader, T.L.; Holt, S.M.; Lisle, A. A new heat load index for feedlot cattle. J. Anim. Sci. 2008, 86, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathiyabarathi, M.; Jeyakumar, S.; Manimaran, A.; Jayaprakash, G.; Pushpadass, H.A.; Sivaram, M.; Ramesha, K.P.; Das, D.N.; Kataktalware, M.A.; Prakash, M.A.; et al. Infrared thermography: A potential non-invasive tool to monitor udder health status in dairy cows. Vet. World 2016, 10, 1075–1081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorquera-Chavez, M.; Fuentes, S.; Dunshea, F.R.; Warner, R.D.; Poblete, T.; Jongman, E.C. Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear base temperature and respiration rate in cattle. Animals (Basel) 2019, 9, 1089. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, G.; Schmidt, M.; Ammon, C.; Rose-Meierhöfer, S.; Burfeind, O.; Huewiser, W.; Berg, W. Monitoring the body temperature of cows and calves using video recordings from an informed thermography camera. Vet. Res. Commun. 2013, 37, 91–99. [Google Scholar] [CrossRef]
- Koltes, J.E.; Koltes, D.A.; Mote, B.E.; Tucker, J.; Hubbell, D.S. Automated collection of heat stress data in livestock: New technologies and opportunities. Transl. Anim. Sci. 2018, 2, 319–323. [Google Scholar] [CrossRef] [Green Version]
- FLIR Systems, Inc. Corporate Headquarters 27700 SW Parkway Ave. Wilsonville, OR 97070 USA. 2015. Available online: www.flir.com/T1050sc (accessed on 5 May 2020).
- Daltro, D.S.; Fischer, V.; Alfonzo, E.P.M.; Dalcin, V.C.; Stumpf, M.T.; Kolling, G.J.; Silva, M.V.G.B.; McManus, C. Infrared thermography as a method for evaluating the heat tolerance in dairy cows. Rev. Bras. Zootec. 2017, 46, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Švejdová, K.; Šoch, M.; Šimková, A.; Zábranský, L.; Novák, P.; Brouček, J.; Čermák, B.; Pálka, V.; Šimák-Líbalová, K. Measuring the body surface temperature of animals using a thermographic camera. Acta Univ. Cibiniensis Ser. E Food Technol. 2013, 17. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.D.; Saxton, A.M.; Ríus, A.G. Relationships among temperature-humidity index with rectal, udder surface, and vaginal temperatures in lactating dairy cows experiencing heat stress. J. Dairy Sci. 2018, 101, 6424–6429. [Google Scholar] [CrossRef] [Green Version]
- NRC (National Research Council). A Guide to Environmental Research on Animals; National Academy of Sciences: Washington, DC, USA, 1971. [Google Scholar]
- Ravagnolo, O.; Misztal, I. Genetic component of heat stress in dairy cattle, parameter estimation. J. Dairy Sci. 2000, 83, 2126–2130. [Google Scholar] [CrossRef]
- Brügemann, K.; Gernand, E.; von Borstel, U.K.; König, S. Defining and evaluating heat stress thresholds in different dairy cow production systems. Arch. Anim. Breed. 2012, 255, 13–24. [Google Scholar] [CrossRef]
- Barde, M.P.; Barde, P.J. What to use to express the variability of data: Standard deviation or standard error of mean. Persp. Clin. Res. 2012, 9, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Bunce, H.; Hokanson, J.A.; Weiss, G.B. Avoiding ambiguity when reporting variability in biomedical data. Am. J. Med. 1980, 68, 8–9. [Google Scholar] [CrossRef]
- SPSS, IBM Corp. IBM Corp. Released. IBM SPSS Statistics for Windows; Version 26.0; IBM Corp.: Armonk, NY, USA, 2019. [Google Scholar]
- Berman, A. Invited review: Are adaptations present to support dairy cattle productivity in warm climates? J. Dairy Sci. 2011, 94, 2147–2158. [Google Scholar] [CrossRef]
- Bernabucci, U.; Biffani, S.; Buggiotti, L.; Vitali, A.; Lacetera, N.; Nardone, A. The effects of heat stress in Italian Holstein dairy cattle. J. Dairy Sci. 2014, 97, 471–486. [Google Scholar] [CrossRef]
- Könyves, T.; Zlatković, N.; Memiši, N.; Lukač, D.; Puvača, N.; Stojšin, M.; Halász, A.; Miščević, B. Relationship of temperature-humidity index with milk production and feed intake of Holstein-Friesian cows in different year seasons. Thai J. Vet Med. 2017, 47, 15–23. [Google Scholar]
- Bohmanova, J.; Misztal, I.; Cole, J.B. Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J. Dairy Sci. 2007, 90, 1947–1956. [Google Scholar] [CrossRef]
- Wildridge, A.M.; Thomson, P.C.; Garcia, S.C.; John, A.J.; Jongman, E.C.; Clark, C.E.F.; Kerrisk, K.L. Short communication: The effect of temperature-humidity index on milk yield and milking frequency of dairy cows in pasture-based automatic milking systems. J. Dairy Sci. 2018, 101, 4479–4482. [Google Scholar] [CrossRef]
- Gonzalez-Rivas, P.A.; Sullivan, M.; Cottrell, J.J.; Leury, B.J.; Gaughan, J.B.; Dunshea, F.R. Effect of feeding slowly fermentable grains on productive variables and amelioration of heat stress in lactating dairy cows in a sub-tropical summer. Trop. Anim. Health Prod. 2018. [Google Scholar] [CrossRef]
- Godyń, D.; Herbut, P.; Angrecka, S. Measurements of peripheral and deep body temperature in cattle—A review. J. Therm. Biol. 2019, 79, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Dikmen, S.; Hansen, P.J. Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? J. Dairy Sci. 2009, 92, 109–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garner, J.; Douglas, M.; Williams, S.; Wales, W.; Marett, C.; Nguyen, T.; Reich, C.; Hayes, B. Genomic selection improves heat tolerance in dairy cattle. Sci. Rep. 2016, 6, 739896. [Google Scholar] [CrossRef] [PubMed]
- Herbut, P.; Angrecka, S.; Godyń, D.; Hoffmann, G. The physiological and productivity effects of heat stress in cattle—A review. Ann. Anim. Sci. 2019, 19, 579–594. [Google Scholar] [CrossRef] [Green Version]
- Dalcin, V.C.; Fischer, V.; dos Santos Daltro, D.; Alfonzo, E.P.M.; Stumpf, M.T.; Kolling, G.J.; da Silva, M.V.G.B.; McManus, C. Physiological parameters for thermal stress in dairy cattle Revista Brasileira de Zootecnia. Revista Brasileira de Zootecnia 2016, 45, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, B.; Huewiser, W.; Halachmi, I.; Banhazi, T.; Amon, T. Influence of barn climate, body postures and milk yield on the respiration rate of dairy cows. Ann. Anim. Sci. 2019, 2, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Pinto, S.; Hoffmann, G.; Ammon, C.; Amon, T. Critical THI thresholds on the physiological parameters of lactating dairy cows. J. Therm. Biol. 2020, 88, 102523. [Google Scholar] [CrossRef]
- Conte, G.; Ciampolini, R.; Cassandro, M.; Lasagna, E.; Calamari, L.; Bernabucci, U.; Abeni, F. Feeding and nutrition management of heat-stressed dairy ruminants. Ital. J. Anim. Sci. 2018, 17, 604–620. [Google Scholar] [CrossRef] [Green Version]
- Kabuga, J.D. The influence of thermal conditions on rectal temperature, respiration rate and pulse rate of lactating Holstein-Friesian cows in the humid tropics. Int. J. Biometeorol. 1992, 36, 146–150. [Google Scholar] [CrossRef]
- Müschner-Siemens, T.; Hoffmann, G.; Ammon, C.; Amon, T. Daily rumination time of lactating dairy cows under heat stress conditions. J. Therm. Biol. 2020, 88, 102484. [Google Scholar] [CrossRef]
- Gantner, V.; Bobic, T.; Gantner, R.; Gregic, M.; Kuterovac, K.; Novakovic, J.; Potocnik, K. Differences in response to heat stress due to production level and breed of dairy cows. Int. J. Biometeorol. 2017, 61, 1675–1685. [Google Scholar] [CrossRef] [PubMed]
- Legates, J.E.; Farthing, B.R.; Casady, R.B.; Barrada, M.S. Body temperature and respiratory rate of lactating dairy cattle under field and chamber conditions. J. Dairy Sci. 1991, 74, 2491–2500. [Google Scholar] [CrossRef]
- Gaughan, J.B.; Holt, S.M.; Hahn, G.L.; Mader, T.L.; Eigenberg, R. Respiration Rate – Is It a Good Measure of Heat Stress in Cattle? Asian-Aus. J. Anim. Sci. 2000, 13, 329–332. [Google Scholar]
- Tao, S.; Orellana, R.M.; Weng, X.; Marins, T.N.; Dahl, G.E.; Bernard, J.K. Symposium review: The influences of heat stress on bovine mammary gland function. J. Dairy Sci. 2018, 101, 5642–5654. [Google Scholar] [CrossRef] [Green Version]
- Bouraoui, R.; Lahmr, M.; Majdou, A.; Djemali, M.; Belyea, R. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 2002, 51, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Zare-Tamami, F.; Hafezian, H.; Rahimi-Mianji, G.; Abdullahpour, R.; Gholizadeh, M. Effect of the temperature-humidity index and lactation stage on milk production traits and somatic cell score of dairy cows in Iran. Songklanakarin J. Sci. Technol. 2018, 40, 379–383. [Google Scholar]
- Herbut, P.; Angrecka, S.; Godyń, D. Effect of the duration of high air temperature on cow’s milking performance in moderate climate conditions. Ann. Anim. Sci. 2018, 18, 195–207. [Google Scholar] [CrossRef] [Green Version]
- Byrant, J.R.; López-Villalobos, N.; Pryce, J.E.; Holmes, C.W.; Johnson, D.L.; Garrick, D.J. Environmental Sensitivity in New Zealand Dairy Cattle. J. Dairy Sci. 2007, 90, 1538–1547. [Google Scholar] [CrossRef]
- Nasr, M.A.F.; El-Tarabany, M.S. Impact of three THI levels on somatic cell count, milk yield and composition of multiparous Holstein cows in a subtropical region. J. Therm. Biol. 2017, 64, 73–77. [Google Scholar] [CrossRef]
- Hoffmann, G.; Herbut, P.; Pinto, S.; Heinicke, J.; Kuhla, B.; Amon, T. Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biol. Syst. Eng. 2019. [Google Scholar] [CrossRef]
- Baena, M.; Tizioto, P.; Meirelles, S.; Regitano, L. HSF1 and HSPA6 as functional candidate genes associated with heat tolerance in Angus cattle. Revis. Bras. Zootec. 2018, 47, 360–363. [Google Scholar] [CrossRef] [Green Version]
- Vieira, F.M.C.; Deniz, M.; Vismara, E.S.; Herbut, P.; Pilatti, J.A.; Zotti Sponchiado, M.; de Oliveira Puretz, B. Thermoregulatory and behaviour responses of dairy heifers raised on a silvopastoral system in a subtropical climate. Ann. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- Veissier, I.; Van Laer, E.; Palme, R.; Moons, C.P.H.; Ampe, B.; Sonck, B.; Andanson, S.; Tuyttens, F.A.M. Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int. J. Biometeorol. 2018, 62, 585–595. [Google Scholar] [CrossRef]
- Angrecka, S.; Herbut, P.; Nawalany, G.; Sokolowski, P. The impact of localization and barn type on insolation of sidewall stalls during summer. J. Ecol. Eng. 2017, 18, 60–66. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Hayes, B.J.; Pryce, J.E. A practical future-scenarios selection tool to breed for heat tolerance in Australian dairy cattle. Anim. Prod. Sci. 2017, 57, 1488–1493. [Google Scholar] [CrossRef]
- Lee, S.H.; Do, C.H.; Choy, Y.H.; Dang, C.G.; Mahboob, A.; Cho, K. Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea. Asian-Australas J. Anim. Sci. 2019, 32, 334–340. [Google Scholar] [CrossRef]
- Nguyen, T.T.T.; Bowman, P.J.; Haile-Mariam, M.; Pryce, J.E.; Hayes, B.J. Genomic selection for tolerance to heat stress in Australian dairy cattle. J. Dairy Sci. 2016, 99, 2849–2862. [Google Scholar] [CrossRef] [Green Version]
Breathing Condition | Panting Score (PS) | Respiratory Rate (RR) (Breaths/Minute) |
---|---|---|
Normal panting—normal (difficult to see chest movement) | 0 | ≤40 |
Slight panting—mouth closed; no drool or foam, easy to see chest movement | 1 | 40–70 |
Fast panting—drool or foam present; no open mouth panting | 2 | 70–120 |
Like panting score 2 but with occasional open mouth, tongue not extended | 2.5 | 70–120 |
Open mouth with some drooling; neck extended and head usually up | 3 | 120–160 |
Like panting score 3 but with tongue protruded slightly, occasionally fully extended for short periods with excessive drooling | 3.5 | 120–160 |
Open mouth with tongue fully extended for prolonged periods and excessive drooling; neck extended and head up. | 4 | >160 |
As for 4 but head held down; cattle ‘breath’ from flank; drooling may cease | 4.5 | Variable—RR may decrease |
Parameter | THI | ||
---|---|---|---|
≤72 | 73–82 | ≥83 | |
Sample size (n) | 518 | 1175 | 666 |
Respiratory (rate/min) | 66.0 c ± 18.8 | 81.8 b ± 21.4 | 113.1 a ± 31.5 |
Panting score | 1.38 c ± 0.63 | 1.87 b ± 0.61 | 2.42 a ± 0.64 |
Surface body temperature (°C) | 37.8 c ± 1.86 | 39.5 b ± 2.07 | 41.7 a ± 1.08 |
Daily milk production (kg) | 23.1 ± 7.59 ab | 23.5 ± 6.11 a | 22.2 ± 5.4 b |
Milk temperature (°C) | 38.7 ± 0.75 c | 39.7 ± 0.74 b | 40.0 ± 1.03 a |
Milk fat (%) | 4.25 ± 0.59 | 4.21 ± 0.74 | 4.34 ± 0.78 |
Milk protein (%) | 3.05 ± 0.27 b | 3.10 ± 0.22 ab | 3.14 ± 0.23 a |
Daily concentrate intake (kg) | 5.68 ± 1.69 b | 5.06 ± 1.78 a | 5.13 ± 1.79 a |
Parameter | Lactation Stage of Cow | ||
---|---|---|---|
Early (≤120 days) | Mid (121–240 days) | Late (≥240 days) | |
Sample size (n) | 637 | 1080 | 642 |
Respiratory rate/min | 101.1 ± 32.6 | 97.8 ± 33.8 | 104.6 ± 32.8 |
Panting score | 2.19 ± 0.69 | 2.12 ± 0.75 | 2.26 ± 0.71 |
Surface body temperature (°C) | 40.8 ± 1.88 | 40.5 ± 2.21 | 41.0 ± 1.77 |
Daily milk production (kg) | 28.5 a ± 6.15 | 22.3 b ± 5.67 | 19.9 c ± 3.70 |
Milk temperature (°C) | 39.8 ± 0.96 | 39.7 ± 1.08 | 39.9 ± 0.9 |
Milk fat % | 3.67 c ± 0.41 | 4.20 b ± 0.69 | 4.82 a ± 0.67 |
Milk protein % | 3.03 b ± 0.17 | 3.10 ab ± 0.22 | 3.21 a ± 0.26 |
Daily concentrate intake (kg) | 5.44 a ± 1.74 | 5.34 a ± 1.70 | 4.72 b ± 1.89 |
Somatic cell count (SCC) | 189.2 ± 24.1 | 151.2 ± 14.6 | 213.7 ± 29.2 |
THI # | RR | PS | SBT | ADMY | MT | Fat % | Protein% | SCC | |
---|---|---|---|---|---|---|---|---|---|
RR | 0.54 ** | ||||||||
PS | 0.50 ** | 0.90 ** | |||||||
SBT | 0.66 ** | 0.50 ** | 0.46 ** | ||||||
DMP | −0.08 | 0.01 | 0.05 | −0.07 | |||||
MT | 0.39 ** | 0.30 ** | 0.29 ** | 0.23 ** | 0.09 * | ||||
Fat% | 0.08 | 0.09 * | 0.09 * | 0.03 | −0.40 ** | 0.07 | |||
Protein% | 0.15 ** | 0.10 * | 0.09 * | 0.001 | −0.29 ** | 0.05 | 0.53 ** | ||
SCC | 0.01 | −0.02 | −0.02 | −0.07 | −0.15 ** | 0.05 | 0.20 ** | 0.19 ** | |
CI | −0.04 | −0.02 | −0.05 | −0.16 ** | 0.38 ** | 0.003 | −0.27 ** | −0.13 ** | −0.10 * |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osei-Amponsah, R.; Dunshea, F.R.; Leury, B.J.; Cheng, L.; Cullen, B.; Joy, A.; Abhijith, A.; Zhang, M.H.; Chauhan, S.S. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals 2020, 10, 869. https://doi.org/10.3390/ani10050869
Osei-Amponsah R, Dunshea FR, Leury BJ, Cheng L, Cullen B, Joy A, Abhijith A, Zhang MH, Chauhan SS. Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals. 2020; 10(5):869. https://doi.org/10.3390/ani10050869
Chicago/Turabian StyleOsei-Amponsah, Richard, Frank R. Dunshea, Brian J. Leury, Long Cheng, Brendan Cullen, Aleena Joy, Archana Abhijith, Michael H. Zhang, and Surinder S. Chauhan. 2020. "Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy" Animals 10, no. 5: 869. https://doi.org/10.3390/ani10050869
APA StyleOsei-Amponsah, R., Dunshea, F. R., Leury, B. J., Cheng, L., Cullen, B., Joy, A., Abhijith, A., Zhang, M. H., & Chauhan, S. S. (2020). Heat Stress Impacts on Lactating Cows Grazing Australian Summer Pastures on an Automatic Robotic Dairy. Animals, 10(5), 869. https://doi.org/10.3390/ani10050869