Resilience Effects of SGK1 and TAP1 DNA Markers during PRRSV Outbreaks in Reproductive Sows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. DNA Samples
2.3. cDNA Samples
2.4. Characterisation of SGK1 and TAP1 Genetic Variability
2.5. Genotyping of Selected Mutations
2.6. Statistical Analysis
3. Results
3.1. SGK1 and TAP1 Genetic Variability
3.2. Association of SGK1 and TAP1 Markers with Reproductive Traits and Resilience
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Colditz, I.G.; Hine, B.C. Resilience in farm animals: Biology, management, breeding and implications for animal welfare. Anim. Prod. Sci. 2016, 56, 1961. [Google Scholar] [CrossRef]
- Nieuwenhuis, N.; Duinhof, T.F.; van Nes, A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet. Rec. 2012, 170, 225. [Google Scholar] [CrossRef]
- Holtkamp, D.J.; Kliebenstein, J.B.; Neumann, E.J.; Zimmerman, J.J.; Rotto, H.F.; Yoder, T.K.; Wang, C.; Yeske, P.E.; Mowrer, C.L.; Haley, C.A. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J. Swine Health Prod. 2013, 21, 72–84. [Google Scholar]
- Nathues, H.; Alarcon, P.; Rushton, J.; Jolie, R.; Fiebig, K.; Jimenez, M.; Geurts, V.; Nathues, C. Cost of porcine reproductive and respiratory syndrome virus at individual farm level – An economic disease model. Prev. Vet. Med. 2017, 142, 16–29. [Google Scholar] [CrossRef]
- Pileri, E.; Mateu, E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet. Res. 2016, 47, 108. [Google Scholar] [CrossRef] [Green Version]
- Lunney, J.K.; Benfield, D.A.; Rowland, R.R.R. Porcine reproductive and respiratory syndrome virus: An update on an emerging and re-emerging viral disease of swine. Virus Res. 2010, 154, 1–6. [Google Scholar] [CrossRef]
- Chand, R.J.; Trible, B.R.; Rowland, R.R.R. Pathogenesis of porcine reproductive and respiratory syndrome virus. Curr. Opin. Virol. 2012, 2, 256–263. [Google Scholar] [CrossRef]
- Karniychuk, U.U.; Saha, D.; Geldhof, M.; Vanhee, M.; Cornillie, P.; Van den Broeck, W.; Nauwynck, H.J. Porcine reproductive and respiratory syndrome virus (PRRSV) causes apoptosis during its replication in fetal implantation sites. Microb. Pathog. 2011, 51, 194–202. [Google Scholar] [CrossRef]
- Karniychuk, U.U.; Nauwynck, H.J. Pathogenesis and prevention of placental and transplacental porcine reproductive and respiratory syndrome virus infection. Vet. Res. 2013, 44, 95. [Google Scholar] [CrossRef] [Green Version]
- Nan, Y.; Wu, C.; Gu, G.; Sun, W.; Zhang, Y.-J.; Zhou, E.-M. Improved Vaccine against PRRSV: Current Progress and Future Perspective. Front. Microbiol. 2017, 8, 1635. [Google Scholar] [CrossRef]
- Samorè, A.B.; Fontanesi, L. Genomic selection in pigs: State of the art and perspectives. Ital. J. Anim. Sci. 2016, 15, 211–232. [Google Scholar] [CrossRef] [Green Version]
- Petry, D.B.; Holl, J.W.; Weber, J.S.; Doster, A.R.; Osorio, F.A.; Johnson, R.K. Biological responses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations. J. Anim. Sci. 2005, 83, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Reiner, G.; Willems, H.; Pesch, S.; Ohlinger, V.F. Variation in resistance to the porcine reproductive and respiratory syndrome virus (PRRSV) in Pietrain and Miniature pigs. J. Anim. Breed. Genet. 2010, 127, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Boddicker, N.; Waide, E.H.; Rowland, R.R.R.; Lunney, J.K.; Garrick, D.J.; Reecy, J.M.; Dekkers, J.C.M. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J. Anim. Sci. 2012, 90, 1733–1746. [Google Scholar] [CrossRef] [PubMed]
- Boddicker, N.J.; Garrick, D.J.; Rowland, R.R.R.; Lunney, J.K.; Reecy, J.M.; Dekkers, J.C.M. Validation and further characterization of a major quantitative trait locus associated with host response to experimental infection with porcine reproductive and respiratory syndrome virus. Anim. Genet. 2014, 45, 48–58. [Google Scholar] [CrossRef] [Green Version]
- Boddicker, N.J.; Bjorkquist, A.; Rowland, R.R.R.; Lunney, J.K.; Reecy, J.M.; Dekkers, J.C.M. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet. Sel. Evol. 2014, 46, 18. [Google Scholar] [CrossRef] [Green Version]
- Hess, A.S.; Islam, Z.; Hess, M.K.; Rowland, R.R.R.; Lunney, J.K.; Doeschl-Wilson, A.; Plastow, G.S.; Dekkers, J.C.M. Comparison of host genetic factors influencing pig response to infection with two North American isolates of porcine reproductive and respiratory syndrome virus. Genet. Sel Evol 2016, 48, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reiner, G. Genetic resistance—An alternative for controlling PRRS? Porc. Health Manag. 2016, 2, 27. [Google Scholar] [CrossRef] [Green Version]
- Abella, G.; Novell, E.; Tarancon, V.; Varona, L.; Pena, R.N.; Estany, J.; Fraile, L. Identification of resilient sows in porcine reproductive and respiratory syndrome virus-infected farms1. J. Anim. Sci. 2019. [Google Scholar] [CrossRef]
- Pena, R.N.; Fernández, C.; Blasco-Felip, M.; Fraile, L.J.; Estany, J. Genetic Markers Associated with Field PRRSV-Induced Abortion Rates. Viruses 2019, 11, 706. [Google Scholar] [CrossRef] [Green Version]
- Serão, N.V.L.; Matika, O.; Kemp, R.A.; Harding, J.C.S.; Bishop, S.C.; Plastow, G.S.; Dekkers, J.C.M. Genetic analysis of reproductive traits and antibody response in a PRRS outbreak herd. J. Anim. Sci. 2014, 92, 2905–2921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endo, T.; Kusakabe, M.; Sunadome, K.; Yamamoto, T.; Nishida, E. The kinase SGK1 in the endoderm and mesoderm promotes ectodermal survival by down-regulating components of the death-inducing signaling complex. Sci. Signal. 2011, 4, ra2. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, Z.; Xiao, S.; Thalhamer, T.; Madi, A.; Han, T.; Kuchroo, V. SGK1 Governs the Reciprocal Development of Th17 and Regulatory T Cells. Cell Rep. 2018, 22, 653–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Liu, D.; Chen, H.; Liu, X.; Meng, F.; Zhang, X.; Chen, H.; Xie, S.; Li, X.; Wu, Z. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. Int. J. Biol. Sci. 2012, 8, 49–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wysocki, M.; Chen, H.; Steibel, J.P.; Kuhar, D.; Petry, D.; Bates, J.; Johnson, R.; Ernst, C.W.; Lunney, J.K. Identifying putative candidate genes and pathways involved in immune responses to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Anim. Genet. 2012, 43, 328–332. [Google Scholar] [CrossRef]
- Holtkamp, D.J.; Polson, D.D.; Torremorell, M.; Morrison, B.; Classen, D.M.; Becton, L.; Henry, S.; Rodibaugh, M.T.; Rowland, R.R.; Snelson, H.; et al. Terminology for classifying swine herds by porcine reproductive and respiratory syndrome virus status. J. Swine Health Prod. 2011, 19, 44–56. [Google Scholar]
- Fraile, L.; Fernández, N.; Pena, R.N.; Balasch, S.; Castellà, G.; Puig, P.; Estany, J.; Valls, J. A probabilistic Poisson-based model to detect PRRSV recirculation using sow production records. Prev. Vet. Med. 2020, 177, 104948. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Preparation of Genomic DNA from Mouse Tails and Other Small Samples. Cold Spring Harb. Protoc. 2017, 2017, pdb.prot093518. [Google Scholar] [CrossRef]
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and visualization of LD and haplotype maps. Bioinformatics 2005, 21, 263–265. [Google Scholar] [CrossRef] [Green Version]
- Canario, L.; Bidanel, J.-P.; Rydhmer, L. Genetic trends in maternal and neonatal behaviors and their association with perinatal survival in French Large White swine. Front. Genet. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Grandin, T.; Deesing, M.J. Genetics and Behavior During Handling, Restraint, and Herding. In Genetics and the Behavior of Domestic Animals; Elsevier: Amsterdam, The Netherlands, 2014; pp. 115–158. ISBN 978-0-12-394586-0. [Google Scholar]
- Rauw, W.M. Editorial: Improving Animal Welfare through Genetic Selection. Front. Genet. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lou, Y.; Hu, M.; Mao, L.; Zheng, Y.; Jin, F. Involvement of serum glucocorticoid-regulated kinase 1 in reproductive success. FASEB J. 2017, 31, 447–456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salker, M.S.; Steel, J.H.; Hosseinzadeh, Z.; Nautiyal, J.; Webster, Z.; Singh, Y.; Brucker, S.; Lang, F.; Brosens, J.J. Activation of SGK1 in Endometrial Epithelial Cells in Response to PI3K/AKT Inhibition Impairs Embryo Implantation. Cell. Physiol. Biochem. 2016, 39, 2077–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salker, M.S.; Christian, M.; Steel, J.H.; Nautiyal, J.; Lavery, S.; Trew, G.; Webster, Z.; Al-Sabbagh, M.; Puchchakayala, G.; Föller, M.; et al. Deregulation of the serum- and glucocorticoid-inducible kinase SGK1 in the endometrium causes reproductive failure. Nat. Med. 2011, 17, 1509–1513. [Google Scholar] [CrossRef] [Green Version]
Locus | Marker | Genomic Location (Sscrofa11.1) | Alleles | Gene Region | Protein Effect | MAF1 (allele) |
---|---|---|---|---|---|---|
SGK1 | rs338508371 | 1:29753070 | C/A | 3’UTR | noncoding | 0.49 (A) |
TAP1 | rs1109026889 | 7:25071346 | G/A | exon 1 | synonymous | 0.34 (A) |
TAP1 | rs80928141 | 7:25068055 | G/A | exon 5 | synonymous | 0.33 (G) |
PRRSV Health Status | Descriptors | SGK1_rs338508371 | TAP1_rs1109026889 | TAP1_rs80928141 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
AA | CA | CC | AA | GA | GG | AA | GA | GG | ||
Nonoutbreak | sows | 95 | 97 | 97 | 31 | 134 | 118 | 139 | 111 | 41 |
farrowings | 352 | 332 | 402 | 94 | 485 | 481 | 543 | 401 | 146 | |
Outbreak | sows | 55 | 59 | 55 | 23 | 79 | 65 | 78 | 62 | 30 |
farrowings | 55 | 59 | 55 | 23 | 79 | 65 | 78 | 62 | 30 |
n. Farrowings | Nonoutbreak | Outbreak | SGK1*Status | |||||
---|---|---|---|---|---|---|---|---|
AA | CA | CC | AA | CA | CC | |||
352 | 332 | 402 | 55 | 59 | 55 | p-Value | FDR | |
TNB | 13.12 ± 0.26 | 13.81 ± 0.26 | 13.92 ± 0.26 | 13.12 ± 0.49 | 14.59 ± 0.48 | 14.50 ± 0.49 | n.s. | n.s. |
NBA | 11.55 ± 0.22 a | 12.20 ± 0.22 a | 12.08 ± 0.22 a | 9.91 ± 0.45 b | 12.10 ± 0.44 a | 11.37 ± 0.45 a,b | <0.01 | 0.02 |
NSB | 1.71 ± 0.11 b | 1.55 ± 0.11 b | 1.70 ± 0.11 b | 2.29 ± 0.26 a | 1.56 ± 0.25 b | 1.88 ± 0.26 a,b | n.s. | n.s. |
NMU | 0.11 ± 0.04 c | 0.09 ± 0.04 c | 0.11 ± 0.04 c | 1.12 ± 0.10 a | 0.70 ± 0.10 b | 1.01 ± 0.10 a,b | 0.02 | 0.03 |
NLP | 1.82 ± 0.12 c | 1.64 ± 0.12 c | 1.81 ± 0.12 c | 3.42 ± 0.28 a | 2.27 ± 0.27 b,c | 2.90 ± 0.28 a,b | 0.03 | 0.06 |
n. Farrowings | Nonoutbreak | Outbreak | TAP1*Status | |||||
---|---|---|---|---|---|---|---|---|
AA | GA | GG | AA | GA | GG | |||
94 | 485 | 481 | 23 | 79 | 65 | p-Value | FDR | |
TNB | 13.37 ± 0.47 a,b | 14.09 ± 0.21 a | 13.10 ± 0.23 b | 13.39 ± 0.75 a,b | 14.75 ± 0.41 a | 13.48 ± 0.45 a,b | n.s. | n.s. |
NBA | 12.02 ± 0.22 a,b | 12.05 ± 0.10 ª | 12.23 ± 0.11 a,b | 10.64 ± 0.42 a,b | 11.09 ± 0.24 a,b | 11.00 ± 0.26 b | n.s. | n.s. |
NSB | 1.69 ± 0.21 | 1.73 ± 0.10 | 1.54 ± 0.10 | 2.29 ± 0.40 | 2.02 ± 0.22 | 1.71 ± 0.24 | n.s. | n.s. |
NMU | 0.17 ± 0.08 c | 0.08 ± 0.04 c | 0.11 ± 0.04 c | 0.93 ± 0.16 a,b | 0.76 ± 0.09 b | 1.16 ± 0.10 a | 0.02 | 0.03 |
NLP | 1.85 ± 0.22 a | 1.82 ± 0.10 a | 1.64 ± 0.11 a | 3.23 ± 0.42 b | 2.79 ± 0.24 b | 2.88 ± 0.26 b | n.s. | n.s. |
n. Farrowings | Nonoutbreak | Outbreak | TAP1*Status | |||||
---|---|---|---|---|---|---|---|---|
AA | GA | GG | AA | GA | GG | |||
543 | 401 | 146 | 78 | 62 | 30 | p-Value | FDR | |
TNB | 13.54 ± 0.22 | 13.50 ± 0.24 | 13.90 ± 0.40 | 14.61 ± 0.42 | 13.80 ± 0.47 | 13.25 ± 0.67 | n.s. | n.s. |
NBA | 11.88 ± 0.18 a,b | 11.78 ± 0.21 a,b | 12.34 ± 0.34 ª | 11.44 ± 0.38 a,b | 11.09 ± 0.43 a,b | 10.55 ± 0.61 b | n.s. | n.s. |
NSB | 1.66 ± 0.09 a,b | 1.70 ± 0.10 a,b | 1.48 ± 0.17 b | 1.64 ± 0.22 a,b | 1.89 ± 0.25 a | 2.56 ± 0.34 a | 0.03 | 0.05 |
NMU | 0.10 ± 0.03 c | 0.11 ± 0.04 c | 0.09 ± 0.06 c | 1.31 ± 0.09 a | 0.78 ± 0.10 b | 0.31 ± 0.14 c | <0.01 | <0.01 |
NLP | 1.76 ± 0.10 c | 1.82 ± 0.11 b,c | 1.57 ± 0.18 c | 2.95 ± 0.24 a | 2.68 ± 0.26 a | 2.87 ± 0.37 a,b | n.s. | n.s. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laplana, M.; Estany, J.; Fraile, L.J.; Pena, R.N. Resilience Effects of SGK1 and TAP1 DNA Markers during PRRSV Outbreaks in Reproductive Sows. Animals 2020, 10, 902. https://doi.org/10.3390/ani10050902
Laplana M, Estany J, Fraile LJ, Pena RN. Resilience Effects of SGK1 and TAP1 DNA Markers during PRRSV Outbreaks in Reproductive Sows. Animals. 2020; 10(5):902. https://doi.org/10.3390/ani10050902
Chicago/Turabian StyleLaplana, Marina, Joan Estany, Lorenzo José Fraile, and Ramona Natacha Pena. 2020. "Resilience Effects of SGK1 and TAP1 DNA Markers during PRRSV Outbreaks in Reproductive Sows" Animals 10, no. 5: 902. https://doi.org/10.3390/ani10050902
APA StyleLaplana, M., Estany, J., Fraile, L. J., & Pena, R. N. (2020). Resilience Effects of SGK1 and TAP1 DNA Markers during PRRSV Outbreaks in Reproductive Sows. Animals, 10(5), 902. https://doi.org/10.3390/ani10050902