Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Samples Collection and Farm Data Collection
2.2. Chemicals, Reagents and Cultures Media
2.3. Microbiological Assay
2.3.1. Preparation of Culture Media
2.3.2. Extraction of Antimicrobials from Samples and Inhibition Assessment
2.3.3. Positive Controls and Standards Controls
3. Results
3.1. Backyard Poultry Production Characterization
3.2. Presence of Antimicrobial Residues in Backyard Poultry Eggs
3.3. Risk Factors for the Presence of Antimicrobial Residues in Backyard Poultry Eggs
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alders, R.G.; Pym, R.A.E. Village poultry: Still important to millions, eight thousand years after domestication. World’s Poult. Sci. J. 2009, 65, 181–190. [Google Scholar] [CrossRef]
- Di Pillo, F.; Anríquez, G.; Alarcón, P.; Jimenez-Bluhm, P.; Galdames, P.; Nieto, V.; Schultz-Cherry, S.; Hamilton-West, C. Backyard poultry production in Chile: Animal health management and contribution to food access in an upper middle-income country. Prev. Vet. Med. 2019, 164, 41–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conan, A.; Goutard, F.L.; Sorn, S.; Vong, S. Biosecurity measures for backyard poultry in developing countries: A systematic review. BMC Vet. Res. 2012, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Hamilton-West, C.; Rojas, H.; Pinto, J.; Orozco, J.; Hervé-Claude, L.P.; Urcelay, S. Characterization of backyard poultry production systems and disease risk in the central zone of Chile. Res. Vet. Sci. 2012, 93, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Pohjola, L.; Nykasenoja, S.; Kivisto, R.; Soveri, T.; Huovilainen, A.; Hanninen, M.L.; Fredriksson-Ahomaa, M. Zoonotic Public Health Hazards in Backyard Chickens. Zoonoses Public Health 2016, 63, 420–430. [Google Scholar] [CrossRef]
- Bravo-Vasquez, N.; Di Pillo, F.; Lazo, A.; Jimenez-Bluhm, P.; Schultz-Cherry, S.; Hamilton-West, C. Presence of influenza viruses in backyard poultry and swine in El Yali wetland, Chile. Prev. Vet. Med. 2016, 134, 211–215. [Google Scholar] [CrossRef]
- Jimenez-Bluhm, P.; Di Pillo, F.; Bahl, J.; Osorio, J.; Schultz-Cherry, S.; Hamilton-West, C. Circulation of influenza in backyard productive systems in central Chile and evidence of spillover from wild birds. Prev. Vet. Med. 2018, 153, 1–6. [Google Scholar] [CrossRef]
- Rivera, D.; Toledo, V.; Di Pillo, F.; Duenas, F.; Tardone, R.; Hamilton-West, C.; Vongkamjan, K.; Wiedmann, M.; Moreno, A. Backyard Farms Represent a Source of Wide Host Range Salmonella Phages That Lysed the Most Common Salmonella Serovars. J. Food Prot. 2018, 81, 272–278. [Google Scholar] [CrossRef] [Green Version]
- Alegria-Moran, R.; Rivera, D.; Toledo, V.; Moreno-Switt, A.; Hamilton-West, C. First detection and characterization of Salmonella spp. in poultry and swine raised in backyard production systems in central Chile. Epidemiol. Infect. 2017, 145, 3180–3190. [Google Scholar] [CrossRef] [Green Version]
- Clokie, M.R.; Millard, A.D.; Letarov, A.V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Kropinski, A.M.; Sulakvelidze, A.; Konczy, P.; Poppe, C. Salmonella Phages and Prophages—Genomics and Practical Aspects. In Salmonella: Methods and Protocols; Schatten, H., Eisenstark, A., Eds.; Humana Press: Totowa, NJ, USA, 2007; pp. 133–175. [Google Scholar] [CrossRef]
- Lapierre, L.; Quintrel, M.; Lagos-Susaeta, F.; Hervé-Claude, L.P.; Riquelme, R.; Oviedo, P.; Maino, M.; Cornejo, J. Assessment of Antimicrobial and Pesticide Residues in Food Products Sourced from Peasant Family Farming in Chile. J. Food Prot. 2019, 82, 1583–1590. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, J.; Lapierre, L.; Iragüen, D.; Cornejo, S.; Cassus, G.; Richter, P.; San Martin, B. Study of enrofloxacin and flumequine residues depletion in eggs of laying hens after oral administration. J. Vet. Pharmacol. Ther. 2012, 35, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Mund, M.D.; Khan, U.H.; Tahir, U.; Mustafa, B.-E.; Fayyaz, A. Antimicrobial drug residues in poultry products and implications on public health: A review. Int. J. Food Prop. 2017, 20, 1433–1446. [Google Scholar] [CrossRef]
- Munoz, R.; Cornejo, J.; Maddaleno, A.; Araya-Jordan, C.; Iragueen, D.; Pizarro, N.; Martín, B.S. Withdrawal times of oxytetracycline and tylosin in eggs of laying hens after oral administration. J. Food Prot. 2014, 77, 1017–1021. [Google Scholar] [CrossRef]
- Aslam, B.; Kousar, N.; Javed, I.; Raza, A.; Ali, A.; Khaliq, T.; Muhammad, F.; Khan, J.A. Determination of enrofloxacin residues in commercial broilers using high performance liquid chromatography. Int. J. Food Prop. 2016, 19, 2463–2470. [Google Scholar] [CrossRef]
- Ezenduka, E.V.; Oboegbulem, S.I.; Nwanta, J.A.; Onunkwo, J.I. Prevalence of antimicrobial residues in raw table eggs from farms and retail outlets in Enugu State, Nigeria. Trop. Anim. Health Prod. 2011, 43, 557–559. [Google Scholar] [CrossRef]
- Kabir, J.; Umoh, V.; Audu-Okoh, E.; Umoh, J.; Kwaga, J. Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control 2004, 15, 99–105. [Google Scholar] [CrossRef]
- Amiri, H.M.; Tavakoli, H.; Hashemi, G.; Mousavi, T.; Rostami, H.; Fesharaki, M.G.; Gholian, M. The Occurrence of Residues of Furazolidone Metabolite, 3-Amino-2-Oxazolidone, in Eggs Distributed in Mazandaran Province, Iran. SCIMETR 2014, 2, 2–5. [Google Scholar]
- Moscoso, S.; De Los Santos, F.S.; Andino, A.; Diaz-Sanchez, S.; Hanning, I. Detection of quinolones in commercial eggs obtained from farms in the Espaíllat Province in the Dominican Republic. J. Food Prot. 2015, 78, 214–217. [Google Scholar] [CrossRef]
- Dohoo, I.R.; Martin, W.; Stryhn, H.E. Veterinary Epidemiologic Research; Atlantic Veterinary College: Charlottetown, PEI, Canada, 2003. [Google Scholar]
- Gaudin, V.; Hedou, C.; Rault, A.; Verdon, E. Validation of a Five Plate Test, the STAR protocol, for the screening of antibiotic residues in muscle from different animal species according to European Decision 2002/657/EC. Food Addit. Contam. 2010, 27, 935–952. [Google Scholar] [CrossRef] [Green Version]
- Pikkemaat, M.; Rapallini, M.; Zuidema, T.; Elferink, J.; Oostra-van Dijk, S.; Driessen-van Lankveld, W. Screening methods for the detection of antibiotic residues in slaughter animals: Comparison of the European Union Four-Plate Test, the Nouws Antibiotic Test and the Premi® Test (applied to muscle and kidney). Food Addit. Contam. Part A 2011, 28, 26–34. [Google Scholar] [CrossRef] [PubMed]
- SAG. Sistema Medicamentos Veterinarios. Available online: https://medicamentos.sag.gob.cl/ConsultaUPublico/BusquedaMedicamentos_1.asp (accessed on 16 April 2020).
- European Commission. Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Off. J. Eur. Commun. 2002, 221, 8–36. [Google Scholar]
- SAG. Programa Control de Residuos. Available online: http://www.sag.gob.cl/sites/default/files/resultados_residuos_2016-17.pdf (accessed on 16 April 2020).
- Wong, J.; de Bruyn, J.; Bagnol, B.; Grieve, H.; Li, M.; Pym, R.; Alders, R. Small-scale poultry and food security in resource-poor settings: A review. Glob. Food Secur. 2017, 15, 43–52. [Google Scholar] [CrossRef]
- Braykov, N.P.; Eisenberg, J.N.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F. Antibiotic resistance in animal and environmental samples associated with small-scale poultry farming in northwestern Ecuador. Msphere 2016, 1, e00021-15. [Google Scholar] [CrossRef] [Green Version]
- Nonga, H.; Simon, C.; Karimuribo, E.; Mdegela, R. Assessment of Antimicrobial Usage and Residues in Commercial Chicken Eggs from Smallholder Poultry Keepersin Morogoro Municipality, Tanzania. Zoonoses Public Health 2010, 57, 339–344. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Escario, M.; Miguel, E.; Pérez, R.A. Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci. Total Environ. 2018, 643, 1562–1570. [Google Scholar] [CrossRef]
- Walters, E.; McClellan, K.; Halden, R.U. Occurrence and loss over three years of 72 pharmaceuticals and personal care products from biosolids–soil mixtures in outdoor mesocosms. Water Res. 2010, 44, 6011–6020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Hu, S.; Zhang, H.; Shen, G.; Yuan, Z.; Zhang, W. Degradation kinetics and mechanism of sulfadiazine and sulfamethoxazole in an agricultural soil system with manure application. Sci. Total Environ. 2017, 607, 1348–1356. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Guo, M.; Yates, S.R. Degradation kinetics of manure-derived sulfadimethoxine in amended soil. J. Agric. Food Chem. 2006, 54, 157–163. [Google Scholar] [CrossRef]
- Dumas, S.E.; Lungu, L.; Mulambya, N.; Daka, W.; McDonald, E.; Steubing, E.; Lewis, T.; Backel, K.; Jange, J.; Lucio-Martinez, B. Sustainable smallholder poultry interventions to promote food security and social, agricultural, and ecological resilience in the Luangwa Valley, Zambia. Food Secur. 2016, 8, 507–520. [Google Scholar] [CrossRef] [Green Version]
- Taylor, N.; Rushton, J. A Value Chain Approach to Animal Diseases Risk Management: Technical Foundations and Practical Framework for Field Application; FAO: Rome, Italy, 2011; p. 4. [Google Scholar]
- Cháfer-Pericás, C.; Maquieira, A.; Puchades, R. Fast screening methods to detect antibiotic residues in food samples. TrAC Trends Anal. Chem. 2010, 29, 1038–1049. [Google Scholar] [CrossRef]
- Pikkemaat, M.G. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 2009, 395, 893–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Zhu, Q.; Liu, Y.; Shabbir, M.A.B.; Sattar, A.; Peng, D.; Tao, Y.; Chen, D.; Wang, Y.; Yuan, Z. A microbiological inhibition method for the rapid, broad-spectrum, and high-throughput screening of 34 antibiotic residues in milk. J. Dairy Sci. 2019, 102, 10825–10837. [Google Scholar] [CrossRef]
- Beltrán, M.; Berruga, M.; Molina, A.; Althaus, R.; Molina, M. Performance of current microbial tests for screening antibiotics in sheep and goat milk. Int. Dairy J. 2015, 41, 13–15. [Google Scholar] [CrossRef]
- Shahbazi, Y.; Ahmadi, F.; Karami, N. Screening, determination and confirmation of tetracycline residues in chicken tissues using four-plate test, ELISA and HPLC-UV methods: Comparison between correlation results. Food Agric. Immunol. 2015, 26, 821–834. [Google Scholar] [CrossRef]
- Do, M.H.N.; Yamaguchi, T.; Okihashi, M.; Harada, K.; Konishi, Y.; Uchida, K.; Bui, L.T.; Nguyen, T.D.; Phan, H.B.; Bui, H.D.T. Screening of antibiotic residues in pork meat in Ho Chi Minh City, Vietnam, using a microbiological test kit and liquid chromatography/tandem mass spectrometry. Food Control 2016, 69, 262–266. [Google Scholar]
- Idowu, F.; Junaid, K.; Paul, A.; Gabriel, O.; Paul, A.; Sati, N.; Maryam, M.; Jarlath, U. Antimicrobial screening of commercial eggs and determination of tetracycline residue using two microbiological methods. Int. J. Poult. Sci. 2010, 9, 959–962. [Google Scholar] [CrossRef]
- Chowdhury, S.; Hassan, M.M.; Alam, M.; Sattar, S.; Bari, M.S.; Saifuddin, A.; Hoque, M.A. Antibiotic residues in milk and eggs of commercial and local farms at Chittagong, Bangladesh. Vet. World 2015, 8, 467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabbar, A. Microbiological evaluation of antibiotic residues in meat, milk and eggs. J. Microbiol. Biotechnol. Food Sci. 2019, 2019, 2349–2354. [Google Scholar]
- Gaudin, V.; Rault, A.; Hedou, C.; Soumet, C.; Verdon, E. Strategies for the screening of antibiotic residues in eggs: Comparison of the validation of the classical microbiological method with an immunobiosensor method. Food Addit. Contam. Part A 2017, 34, 1510–1527. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.J.; Abd El-Aty, A.; Goudah, A.; Sung, G.M.; Yi, H.; Seo, D.C.; Kim, J.S.; Shim, J.H.; Jeong, J.Y.; Lee, S.H. Monitoring of fluoroquinolone residual levels in chicken eggs by microbiological assay and confirmation by liquid chromatography. Biomed. Chromatogr. 2008, 22, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, S.; Adesiyun, A.; Asgarali, Z.; Swanston, W. Antimicrobial resistance of Campylobacter spp. isolated from broilers in small poultry processing operations in Trinidad. Food Control 2007, 18, 321–325. [Google Scholar] [CrossRef]
Farm Management | Definition and Classification | % |
---|---|---|
Other domestic animals | Presence of other domestic animals in the BPS | 92.0 |
Absence of other domestic animals in the BPS | 8.0 | |
Declared use of poultry | Sale and household consumption | 59.0 |
Household consumption | 41.0 | |
Poultry management | Man is in charge of poultry management | 23.0 |
Woman is in charge of poultry management | 77.0 | |
Feeding | Scavenging, household scraps and supplemented with poultry feed and grains | 53.0 |
Scavenging and household scraps | 47.0 | |
Poultry housing | Poultry are permanently confined during the day | 25.0 |
Poultry are partially confined during the day | 75.0 | |
Guano handling | Use guano as fertilizer | 78.0 |
Does not use guano as fertilizer | 22.0 | |
Poultry in neighbour’s | Neighbours have poultry | 57.0 |
Neighbours do not have poultry | 43.0 | |
Poultry/neighbour’s poultry | Poultry do contact neighbours’ poultry | 23.0 |
Poultry do not contact neighbour’s poultry | 77.0 | |
Replacements | Replace poultry from their own offspring | 64.0 |
Replace poultry from places outside their BPS | 36.0 | |
Water | Poultry drink potable water | 81.0 |
Poultry get water from environmental sources | 19.0 | |
Mortality handling | Bury or burn dead poultry | 53.0 |
Do not bury or burn dead poultry | 47.0 | |
Pharmacotherapy | Give pharmacological treatment to poultry | 66.0 |
Do not give pharmacological treatment to poultry | 34.0 | |
Disinfection prior handling | Wash hands before handling poultry | 38.0 |
Do not wash hands before handling poultry | 62.0 | |
Disinfection post handling | Wash hands after handling poultry | 92.0 |
Do not wash after before handling poultry | 8.0 | |
Water body | Existence of a water body in a radius of 5 km around the BPS | 49.0 |
No existence of a water body in a radius of 5 km around the BPS | 51.0 | |
Commercial farm nearby | Existence of a commercial farm within a radius of 5 km around the BPS | 87.0 |
Nonexistence of a commercial farm within a radius of 5 km around the BPS | 13.0 |
Antimicrobial | Positive BPS (Nº/%) |
---|---|
Tetracyclines | 17/20.5 |
Macrolides | 11/13.3 |
Beta-Lactams | 49/59.0 |
Aminoglycosides | 47/56.6 |
Variable | O.R. | 95% CI | p-Value |
---|---|---|---|
Constant | 12.75 | 0.2–807.42 | 0.2292 |
Presence of other domestic animals | 0.49 | 0.02–9.84 | 0.6403 |
Poultry management in charge of woman | 0.4 | 0.06–2.64 | 0.3394 |
Constant poultry housing | 10.64 | 0.9–125.52 | 0.0604 |
Do not use guano as fertilizer | 0.87 | 0.13–5.85 | 0.8888 |
Poultry contact neighbour’s poultry | 4.39 | 0.72–26.67 | 0.1085 |
Replacements from own offspring | 1.76 | 0.41–7.65 | 0.4457 |
Poultry drink potable water | 0.29 | 0.04–1.9 | 0.1957 |
Mortality is buried/burnt | 1.99 | 0.44–8.98 | 0.3713 |
Poultry receives pharmacotherapy | 0.64 | 0.13–3.04 | 0.5735 |
Presence of a water body 5 km nearby | 0.41 | 0.1–1.71 | 0.2197 |
Number of birds | 1.00 | 0.99–1.01 | 0.711 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cornejo, J.; Pokrant, E.; Figueroa, F.; Riquelme, R.; Galdames, P.; Di Pillo, F.; Jimenez-Bluhm, P.; Hamilton-West, C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals 2020, 10, 1056. https://doi.org/10.3390/ani10061056
Cornejo J, Pokrant E, Figueroa F, Riquelme R, Galdames P, Di Pillo F, Jimenez-Bluhm P, Hamilton-West C. Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals. 2020; 10(6):1056. https://doi.org/10.3390/ani10061056
Chicago/Turabian StyleCornejo, Javiera, Ekaterina Pokrant, Francisco Figueroa, Ricardo Riquelme, Pablo Galdames, Francisca Di Pillo, Pedro Jimenez-Bluhm, and Christopher Hamilton-West. 2020. "Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals" Animals 10, no. 6: 1056. https://doi.org/10.3390/ani10061056
APA StyleCornejo, J., Pokrant, E., Figueroa, F., Riquelme, R., Galdames, P., Di Pillo, F., Jimenez-Bluhm, P., & Hamilton-West, C. (2020). Assessing Antibiotic Residues in Poultry Eggs from Backyard Production Systems in Chile, First Approach to a Non-Addressed Issue in Farm Animals. Animals, 10(6), 1056. https://doi.org/10.3390/ani10061056