Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data
2.2. Statistical Model
2.3. Selection Intensities and Effective Population Size
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rönnegård, L.; Felleki, M.; Fikse, W.F.; Mulder, H.; Strandberg, E. Variance component and breeding value estimation for genetic heterogeneity of residual variance in Swedish Holstein dairy cattle. J. Dairy Sci. 2013, 96, 2627–2636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenplas, J.; Bastin, C.; Gengler, N.; Mulder, H.A. Genetic variance in micro-environmental sensitivity for milk and milk quality in Walloon Holstein cattle. J. Dairy Sci. 2013, 96, 5977–5990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marjanovic, J.; Mulder, H.A.; Khaw, H.L.; Bijma, P. Genetic parameters for uniformity of harvest weight and body size traits in the GIFT strain of Nile tilapia. Gen. Sel. Evol. 2016, 48, 41. [Google Scholar] [CrossRef] [Green Version]
- Broom, D.M. Welfare assessment and relevant ethical decisions: Key concepts. Annu. Rev. Biomed. Sci. 2008, 20, 79–90. [Google Scholar] [CrossRef]
- Mormede, P.; Terenina, E. Molecular genetics of the adrenocortical axis and breeding for robustness. Domest. Anim. Endocrinol. 2012, 43, 116–131. [Google Scholar] [CrossRef]
- Formoso-Rafferty, N.; Cervantes, I.; Ibáñez-Escriche, N.; Gutiérrez, J.P. Correlated genetic trends for production and welfare traits in a mouse population divergently selected for birth weight environmental variability. Animal 2016, 10, 1770–1777. [Google Scholar] [CrossRef] [Green Version]
- Blasco, A.; Martínez-Álvaro, M.; García, M.L.; Ibáñez Escriche, N.; Argente, M.J. Selection for environmental variance of litter size in rabbits. Gen. Sel. Evol. 2017, 49, 48. [Google Scholar] [CrossRef] [Green Version]
- Bolet, G.; Gaffeau, H.; Joly, T.; Theau-Clement, M.; Falieres, J.; Hurtaud, J.; Bodin, L. Genetic homogenisation of birth weight in rabbits: Indirect selection response for uterine horn characteristics. Livest. Sci. 2007, 111, 28–32. [Google Scholar] [CrossRef] [Green Version]
- Poigner, J.; Szendro, Z.S.; Lévai, A.; Radnai, I.; Biró-Németh, E. Effect of birth weight and litter size on growth and mortality in rabbit. World Rabbit Sci. 2000, 8, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Argente, M.J.; García, M.L.; Muelas, R.; Blasco, A. Divergent selection for residual variance of litter size. In Proceedings of the 10th World Rabbit Congress, Sharm El-Sheikh, Egypt, 3–6 September 2012. [Google Scholar]
- Formoso-Rafferty, N.; Cervantes, I.; Ibañez-Escriche, N.; Gutiérrez, J.P. Modulating birth weight heritability in mice. J. Anim. Sci. 2017, 95, 531–537. [Google Scholar] [CrossRef]
- Formoso-Rafferty, N.; Cervantes, I.; Ibáñez-Escriche, N.; Gutiérrez, J.P. Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice. J. Anim. Breed. Genet. 2016, 133, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Formoso-Rafferty, N.; Arias-Álvarez, M.; Gutiérrez, J.P.; Cervantes, I. Embryo mortality and fertility in divergently selected lines for birth weight homogeneity in mice. In Proceedings of the 69th Annual Meeting of European Association for Animal Production, Dubrovnik, Croatia, 27–31 August 2018. [Google Scholar]
- Formoso-Rafferty, N.; Cervantes, I.; Sánchez, J.P.; Gutiérrez, J.P.; Bodin, L. Effect of feed restriction on the environmental variability of birth weight in divergently selected lines of mice. Gen. Sel. Evol. 2019, 51, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández, J.; Toro, M. The use of mathematical programming to control inbreeding in selection schemes. J. Anim. Breed. Genet. 1999, 116, 447–466. [Google Scholar] [CrossRef]
- SAS/STAT® User’s Guide (Release 8.2). Cary: SAS Inst. Available online: https://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/ets_ug_7314.pdf (accessed on 21 May 2020).
- Gutiérrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet. 2011, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analyzing pedigree information. J. Anim. Breed. Genet. 2005, 122, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Tatliyer, A.; Cervantes, I.; Formoso-Rafferty, N.; Gutiérrez, J.P. The Statistical Scale Effect as a Source of Positive Genetic Correlation between Mean and Variability: A Simulation Study. G3 Genes Genomes Genet. 2019, 9, 3001–3008. [Google Scholar] [CrossRef] [Green Version]
- Moreno, A.; Ibáñez-Escriche, N.; García-Ballesteros, S.; Salgado, C.; Nieto, B.; Gutiérrez, J.P. Correlated genetic trend in the environmental variability of weight traits in mice. Livest. Sci. 2012, 148, 189–195. [Google Scholar] [CrossRef]
- Mocé, M.L.; Santacreu, M.A.; Climent, A.; Blasco, A. Divergent selection for uterine capacity in rabbits. III. Responses in uterine capacity and its components estimated with a cryopreserved control populations. J. Anim. Sci. 2005, 83, 2308–2312. [Google Scholar] [CrossRef]
- Zhang, X.S.; Wang, J. Evolution and maintenance of the environmental component of the phenotypic variance: Benefit of plastic traits under changing environments. Amer. Naturalist. 2005, 166, 569–580. [Google Scholar] [CrossRef]
- Milligan, B.N.; Fraser, D.; Kramer, D.L. Within-litter birth weight variation in the domestic pig and its relation to pre-weaning survival; weight gain; and variation in weaning weights. Livest. Sci. 2002, 76, 181–191. [Google Scholar] [CrossRef] [Green Version]
- Rendón del Águila, J.U.; Martínez-Gamba, R.G.; Herradora, M.A.; Alonso-Spilsbury, M. Efecto del peso al nacer; tamaño de camada y posición en la ubre sobre el crecimiento de cerdos durante la lactancia y engorda. Rev. Mex. Cienc. Pec. 2017, 8, 75–81. [Google Scholar] [CrossRef] [Green Version]
- Bharathidhasan, A.; Narayan, R.; Gopu, P.; Subramanian, A.; Prabakaran, R.; Rajendran, R. Effect of nongenetic factors on birth weight; weaning weight and preweaning gain of Babri goat. J. Vet. Med. Anim. Sci. 2009, 5, 99–103. [Google Scholar]
- Krishnan, R.S.; Daniel, J.C. “Blastokinin”: Inducer and regulator of blastocyst development in the rabbit uterus. Science 1967, 158, 490–492. [Google Scholar] [CrossRef] [PubMed]
- Vallet, J.L.; Freking, B.A.; Leymaster, K.A.; Christenson, R.K. Allelic variation in the erythropoietin receptor gene is associated with uterine capacity and litter size in swine. Anim. Genet. 2005, 36, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Argente, M.J.; Santacreu, M.A.; Climent, A.; Bolet, G.; Blasco, A. Divergent selection for uterine capacity in rabbits. J. Anim. Sci. 1997, 75, 2350–2354. [Google Scholar] [CrossRef]
- Blasco, A.; Bidanel, J.P.; Bolet, G.; Haley, C.S.; Santacreu, M.A. The genetics of prenatal survival of pigs and rabbits: A review. Livest. Prod. Sci. 1993, 37, 1–21. [Google Scholar] [CrossRef]
- Argente, M.J.; Calle, E.W.; García, M.L.; Blasco, A. Correlated response in litter size components in rabbits selected for litter size variability. J. Anim. Breed. Genet. 2017, 134, 505–511. [Google Scholar] [CrossRef]
- Quiniou, N.; Dagorn, J.; Gaudré, D. Variation of piglets’ birth weight and consequences on subsequent performance. Livest. Sci. 2002, 78, 63–70. [Google Scholar] [CrossRef]
- Auldist, D.E.; Morrish, L.; Eason, P.; King, R.H. The influence of litter size on milk production of sows. Anim. Sci. 1998, 67, 333–337. [Google Scholar] [CrossRef]
- Argente, M.J.; García, M.L.; Zbyňovská, K.; Petruška, P.; Capcarová, M.; Blasco, A. Correlated Response to Selection for Litter Size Environmental Variability in Rabbits’ Resilience. Animal 2019, 13, 2348–2355. [Google Scholar] [CrossRef] [PubMed]
- Mesa, H.; Safranski, H.T.; Cammack, K.M.; Weaber, R.L.; Lambersn, W.R. Genetic and phenotypic relationships of farrowing and weaning survival to birth and placental weights in pigs. J. Anim. Sci. 2006, 84, 32–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assan, N.; Makuza, S.M. The effect of non genetic factors on birth weight and weaning weight in three sheep breeds of Zimbabwe. Asian-Australas. J. Anim. Sci. 2005, 18, 151–157. [Google Scholar] [CrossRef]
- Roehe, R.; Shrestha, N.P.; Mekkawy, W.; Baxter, E.M.; Knap, P.W.; Smurthwaite, K.M.; Jarvis, S.; Lawrence, A.B.; Edwards, S.A. Genetic analyses of piglet survival and individual birth weight on first generation data of a selection experiment for piglet survival under outdoor conditions. Livest. Sci. 2009, 121, 173–181. [Google Scholar] [CrossRef]
- Damgaard, L.H.; Rydhmer, L.; Lovendahl, P.; Grandinson, K. Genetic parameters for within-litter variation in piglet birth weight and change in within-litter variation during suckling. J. Anim. Sci. 2003, 81, 604–610. [Google Scholar] [CrossRef]
- Wolf, J.; Zakova, E.; Groeneveld, E. Within-litter variation of birth weight in hyperprolific Czech Large White sows and its relation to litter size traits; stillborn piglets and losses until weaning. Livest. Sci. 2008, 115, 195–205. [Google Scholar] [CrossRef]
- Assan, N. Various factors influencing birth weight in animal production. A Review. Scien. J. Rev. 2013, 2, 156–175. [Google Scholar]
Trait | Records | Dams | Litters | Mean ± SD | |
---|---|---|---|---|---|
Birth traits | BW | 1697 | 132 | 192 | 1.58 ± 0.27 |
LS | 192 | 132 | 192 | 9.12 ± 2.81 | |
SB | 192 | 132 | 192 | 95.38 ± 16.99 | |
Weaning traits | WW | 1602 | 132 | 192 | 10.79 ± 2.50 |
LSw | 192 | 132 | 192 | 8.26 ± 3.49 | |
WG | 1602 | 132 | 192 | 9.20 ± 3.01 | |
SW | 192 | 132 | 192 | 88.48 ± 26.66 | |
Variability traits | V | 186 | 129 | 186 | 0.025 ± 0.033 |
SD | 186 | 129 | 186 | 0.138 ± 0.075 | |
CV | 186 | 129 | 186 | 0.085 ± 0.041 |
Generation | High | Low | ||||||
---|---|---|---|---|---|---|---|---|
i | % | Ne (F) | Ne (c) | i | % | Ne (F) | Ne (c) | |
Initial | 1.93 | 7 | 111 | 85 | −1.37 | 21 | 111 | 85 |
1 | 1.24 | 26 | 115 | 58 | −1.19 | 29 | 119 | 63 |
2 | 1.16 | 30 | 119 | 51 | −1.24 | 26 | 122 | 54 |
3 | 1.28 | 25 | 72 | 47 | −1.33 | 23 | 110 | 51 |
4 | 1.23 | 27 | 68 | 46 | −1.20 | 28 | 57 | 42 |
5 | 1.24 | 27 | 57 | 43 | −1.08 | 34 | 50 | 39 |
6 | 1.46 | 18 | 54 | 39 | −1.25 | 26 | 48 | 40 |
7 | 1.08 | 34 | 46 | 39 | −0.90 | 44 | 50 | 40 |
8 | 1.32 | 23 | 46 | 39 | −1.15 | 31 | 44 | 40 |
9 | 1.38 | 21 | 47 | 37 | −1.23 | 27 | 46 | 38 |
10 | 1.15 | 31 | 41 | 36 | −0.94 | 41 | 42 | 38 |
11 | 1.32 | 23 | 39 | 35 | −1.13 | 31 | 40 | 36 |
12 | 0.80 | 50 | 41 | 34 | −0.93 | 42 | 43 | 35 |
13 | 1.38 | 21 | 39 | 36 | −1.01 | 38 | 41 | 37 |
14 | 0.94 | 41 | 39 | 35 | −1.30 | 24 | 40 | 36 |
15 | 1.16 | 30 | 38 | 35 | −1.23 | 27 | 40 | 36 |
16 | 1.22 | 28 | 40 | 35 | −1.07 | 35 | 41 | 35 |
17 | 1.08 | 34 | 39 | 35 | −1.34 | 22 | 40 | 35 |
V | SD | CV | BW | WW | WG | LS | LSw | SB | SW | |
---|---|---|---|---|---|---|---|---|---|---|
Line | *** | *** | *** | *** | *** | *** | *** | *** | * | * |
PN | n.s. | n.s. | n.s. | *** | *** | *** | * | n.s. | n.s. | n.s. |
Line*PN | n.s. | n.s. | n.s. | *** | n.s. | * | n.s. | n.s. | n.s. | n.s. |
Sex | - | - | - | *** | n.s. | n.s. | - | - | - | - |
LS | n.s. | n.s. | n.s. | * | n.s. | n.s. | - | - | *** | *** |
LS*LS | n.s. | n.s. | n.s. | n.s. | *** | *** | - | - | *** | ** |
Line | Parturition Number | BW | WW | WG |
---|---|---|---|---|
High | 1 | 1.69 a (0.01) | 11.78 a (0.11) | 10.04 b (0.10) |
2 | 1.68 a (0.03) | 10.98 b (0.21) | 9.24 c (0.20) | |
Control | 1 | 1.59 b (0.01) | 12.10 a (0.09) | 10.44 a (0.08) |
2 | 1.72 a (0.01) | 10.67 bc (0.10) | 8.91 c (0.16) | |
Low | 1 | 1.38 c (0.01) | 10.18 c (0.09) | 8.74 c (0.08) |
2 | 1.39 c (0.02) | 8.97 d (0.16) | 7.52 d (0.10) |
Line | Survival at Birth (%) | Survival at Weaning (%) |
---|---|---|
High | 88.68 b (±2.80) | 79.64 b (±4.37) |
Control | 96.91 ab (±2.29) | 87.91 ab (±3.57) |
Low | 98.47 a (±1.95) | 96.37 a (±3.04) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Formoso-Rafferty, N.; Chavez, K.N.; Ojeda, C.; Cervantes, I.; Gutiérrez, J.P. Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line. Animals 2020, 10, 920. https://doi.org/10.3390/ani10060920
Formoso-Rafferty N, Chavez KN, Ojeda C, Cervantes I, Gutiérrez JP. Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line. Animals. 2020; 10(6):920. https://doi.org/10.3390/ani10060920
Chicago/Turabian StyleFormoso-Rafferty, Nora, Katherine Natalia Chavez, Candela Ojeda, Isabel Cervantes, and Juan Pablo Gutiérrez. 2020. "Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line" Animals 10, no. 6: 920. https://doi.org/10.3390/ani10060920
APA StyleFormoso-Rafferty, N., Chavez, K. N., Ojeda, C., Cervantes, I., & Gutiérrez, J. P. (2020). Selection Response in a Divergent Selection Experiment for Birth Weight Variability in Mice Compared with a Control Line. Animals, 10(6), 920. https://doi.org/10.3390/ani10060920