Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Chemical Parameters
2.2. Microbiological Analysis
- Total mesophilic microorganisms on plate count agar (PCA), incubated aerobically at 30 °C for 72 h [34];
- Enterobacteriaceae on Violet Red bile glucose agar (VRBGA) incubated aerobically for 24 h at 37 °C [35];
- Coliforms on Violet Red bile agar (VRBA) incubated at 37 °C for 24 h [36];
- Escherichia coli β-glucuronidase positive on Tryptone Bile X-Gluc agar (TBX) incubated aerobically for 24 h at 44 °C [37];
- Coagulase-positive Staphylococci on Baird Parker with RPF supplement, incubated aerobically for 24–48 h at 37 °C [38];
- Sulfite reducing anaerobes on Iron sulfite agar (ISA) incubated at 37 °C for 24 h [39];
- Molds on Dichloran Rose Bengal chloramphenicol agar (DRBC) incubated aerobically for five days at 25 °C.
- Detection of Salmonella spp. consisted in enrichment buffered peptone water (BPW) with Salmonella supplement incubated at 41.5 °C for 18–24 h and a subsequent step performed by VIDAS UP (SPT).
- Detection of L. monocytogenes consisted in enrichment in LMX broth with LMX supplement incubated at 37 °C for 26–30 h and then a subsequent step performed by VIDAS L. monocytogenes Xpress (LMX).
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Osuna-Martinez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus indica): A review on its antioxidants properties and potential pharmacological use in chronic diseases. Nat. Prod. Chem. Res. 2014, 2, 153. [Google Scholar]
- Reyes-Agüero, J.A.; Aguirre-Rivera, J.R.; Hernandez, M.H. Systematic notes and detailed description of Opuntia ficus-indica (L.) Mill. (Cactaceae). Agrociencia 2005, 39, 395–408. [Google Scholar]
- Inglese, P.; Basile, F.; Schirra, M. Cactus pear fruit production. In Cacti: Biology and Uses; Univ of California Press: Berkeley, CA, USA, 2002; pp. 163–179. [Google Scholar]
- Cushman, J.C.; Davis, S.C.; Yang, X.; Borland, A.M. Development and use of bioenergy. J. Exper. Bot. 2015, 66, 4177–4193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mason, P.M.; Glover, K.; Smith, J.A.C.; Willis, K.J.; Woods, J.; Thompson, I.P. The potential of CAM crops as a globally significant bioenergy resource: Moving from ‘fuel or food’ to ‘fuel and more food’. Energy Environ. Sci. 2015, 8, 2320–2329. [Google Scholar] [CrossRef]
- Do Nascimento Santos, T.; Dutra, E.D.; Gomes do Prado, A.; Leite, F.C.B.; de Souza, R.D.F.R.; dos Santos, D.C.; Moraes, C.A.; Simoes, D.A.; de Morais, M.A.; Menezes, R.S.C. Potential for biofuels from the biomass of prickly pear cladodes: Challenges for bioethanol and biogas production in dry areas. Biomass Bioenergy 2016, 85, 215–222. [Google Scholar] [CrossRef]
- FAO. Cactus (Opuntia spp.) as Forage; FAO: Rome, Italy, 2001. [Google Scholar]
- FAO. Agro-Industrial Utilization of Cactus Pear; FAO: Rome, Italy, 2013. [Google Scholar]
- FAO and ICARDA. Crop Ecology, Cultivation and Uses of Cactus Pear; FAO and ICARDA: Rome, Italy, 2017. [Google Scholar]
- Feugang, J.M.; Konarski, P.; Zou, D.; Stintzing, F.C.; Zou, C. Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front. Biosci. 2006, 11, 2574–2589. [Google Scholar] [CrossRef] [PubMed]
- Bouzoubaȃ, Z.; Essoukrati, Y.; Tahrouch, S.; Hatimi, A.; Gharby, S.; Harhar, H. Phytochemical study of prickly pear from Southern Morocco. J. Saudi Soc. Agric. Sci. 2016, 15, 155–161. [Google Scholar] [CrossRef] [Green Version]
- De Oliveira, J.P.F.; De Andrade Ferreira, M.; Alves, A.M.S.V.; De Melo, A.C.C.; De Andrade, I.B.; Suassuna, J.M.A.; De Lima, S.J. Spineless cactus as a replacement for sugarcane in the diets of finishing lambs. Trop. Anim. Health Prod. 2017, 49, 139–144. [Google Scholar] [CrossRef]
- Cardosoa, D.B.; De Carvalhoa, F.F.R.; de Medeirosb, G.R.; Guima, A.; Cabralc, A.M.D.; Verasd, R.M.L.; Dos Santosa, K.C.; Dantasb, L.C.N.; Nascimento, A.G.D. Levels of inclusion of spineless cactus (Nopalea cochenillifera Salm Dyck) in the diet of lambs. Anim. Feed Sci. Technol. 2019, 247, 23–31. [Google Scholar] [CrossRef]
- Shoop, M.C.; Alford, E.J.; Mayland, H.F. Plains prickly pear is a good forage for cattle. J. Range Manag. 1977, 30, 12–17. [Google Scholar] [CrossRef]
- Guevara, J.C.; Suassuna, P.; Felker, P. Opuntia forage production systems: Status and prospects for rangeland applications. Rangel. Ecol. Manag. 2009, 62, 428–434. [Google Scholar] [CrossRef]
- Guevara, J.C.; Felker, P.; Balzarini, M.G.; Páez, S.A.; Estevez, O.R.; Paez, M.N.; Antúnez, J.C. Productivity, cold hardiness and forage quality of spineless progeny of the Opuntia ficus indica 1281 x O. lindheimerii 1250 cross in Mendoza plain, Argentina. J. Prof. Assoc. Cactus Dev. 2011, 13, 48–62. [Google Scholar]
- Cordova-Torres, A.V.; Costa, R.G.; Medeiros, A.N.; Araújo Filho, J.T.; Ramos, A.O.; Alves, N.D. Performance of sheep fed forage cactus with total water restriction. Rev. Bra. Saúde E 2017, 18, 369–377. [Google Scholar] [CrossRef] [Green Version]
- Salem, H.B.; Nefzaoui, A.; Abdouli, H.; Ørskov, E.R. Effect of increasing level of spineless cactus (Opuntia ficus indica var. inermis) on intake and digestion by sheep given straw-based diets. Anim. Sci. 1996, 62, 293–299. [Google Scholar] [CrossRef]
- Tegegne, F.; Kijora, C.; Peters, K.J. Study on the optimal level of cactus pear (Opuntia ficus indica) supplementation to sheep and its contribution as source of water. Small Rum. Res. 2007, 72, 157–164. [Google Scholar] [CrossRef]
- Mayer, J.A.; Cushman, J.C. Nutritional and mineral content of prickly pear cactus: A highly water-use efficient forage, fodder and food species. J. Agron. Crop Sci. 2019, 205, 625–634. [Google Scholar] [CrossRef]
- Zeedan, K.H.I.; EL-Neney, B.A.; Abd EL-Latif, A.I.; Awadien, N.B.; Ebeid, T.A. Effect of using residues prickly pear as a source of dietary feedstuffs on productive performance, biological traits and immune response of rabbit. 1- Prickly pear cladodes. Egypt Poult. Sci. J. 2015, 35, 923–943. [Google Scholar]
- Nobel, P.S.; Bobich, E.G. Environmental biology. In Cacti, Biology and Uses; Nobel, P.S., Ed.; University of California Press: Los Angeles, CA, USA, 2002; Volume 5, pp. 7–74. [Google Scholar]
- Bhatt, M.R.; Nagar, P.S. Evaluation of physicochemical property and fatty acid composition of Opuntia elatior seed oil. J. Prof. Assoc. Cactus Dev. 2013, 15, 13–19. [Google Scholar]
- Rodriguez-Garcia, M.E.; De Lira, C.; Hernández-Becerra, E.; Cornejo-Villegad, M.A.; Palacios-Fonseca, A.J.; Rojas Molina, I.; Reynoso, R.; Quintero, L.C.; Del Real, A.; Zepeda, A.; et al. Physicochemical characterization of Nopal pads (Opuntia ficus indica) and dry vacuum nopal powder as a function of the maturation. Plant Food Hum. Nutr. 2007, 62, 107–112. [Google Scholar] [CrossRef]
- Ramadan, M.F.; Mörsel, J.T. Recovered lipids from prickly pear [Opuntia ficus-indica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem. 2003, 83, 447–456. [Google Scholar] [CrossRef]
- Yahia, E.M.; Mondragon-Jacobo, C. Nutritional components and anti-oxidant capacity of ten cultivars and lines of cactus pear fruit (Opuntia spp.). Food Res. Int. 2011, 44, 2311–2318. [Google Scholar] [CrossRef]
- Zenteno-Ramirez, G.; Juárez-Flores, B.I.; Aguirre-Rivera, J.R.; Monreal-Montes, M.; García, J.M.; Serratosa, M.P.; Varo Santos, M.Á.; Ortiz Pèrez, M.D.; Rendon-Huerta, J.A. Juices of prickly pear fruits (Opuntia spp.) as functional foods. Ital. J. Food Sci. 2018, 30, 614–627. [Google Scholar]
- Sumaya-Martínez, M.T.; Cruz-Jaime, S.; Madrigal-Santillán, E.; García-Paredes, J.D.; Cariño-Cortés, R.; Cruz-Cansino, N.; Valadez-Vega, C.; Martinez-Cardenas, L.; Alanís-García, E. Betalain, acid ascorbic, phenolic contents and antioxidant properties of purple, red, yellow and white cactus pears. Int. J. Mol. Sci. 2011, 12, 6452–6468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rana, G.K.; Singh, Y.; Ansari, F. Food Additives. In Innovative Approaches in Agriculture and Environmental Development; Chhatarpal, S., Ed.; JPS Scientific Publications: Tamil Nadu, India, 2019; p. 269. [Google Scholar]
- AOAC. Official Methods of Analysis, 18th ed.; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fibre, neutral detergent fibre, and no starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- INRA. INRA Feeding System for Ruminants; Wageningen Academic Publishers: Wageningen, The Netherlands, 2018; p. 640. [Google Scholar]
- Yemm, E.W.; Willis, A.J. The estimation of carbohydrates in plant extracts by anthrone. Biochemical 1954, 157, 508–514. [Google Scholar] [CrossRef] [Green Version]
- ISO 4833-1. Microbiology of the food chain—Horizontal method for the enumeration of microorganisms. In Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique; International Standardization Organization: Geneva, Switzerland, 2013.
- ISO 21528-2. Microbiology of the food chain—Horizontal method for the detection and enumeration of Enterobacteriaceae. In Part 2: Colony-Count Technique; International Standardization Organization: Geneva, Switzerland, 2017.
- ISO 4832. Microbiology of food and animal feeding stuffs. Horizontal method for the enumeration of coliforms. In Colony-Count Technique; International Standardization Organization: Geneva, Switzerland, 2006.
- ISO 16649; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase—Positive Escherichia Coli—Part 2: Colony-Count Technique at 44 Degrees C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D- Glucuronide; International Standardization Organization: Geneva, Switzerland, 2010.
- ISO 6888-2:1999/Amd 1. Microbiology of food and animal feeding stuffs–horizontal method for the enumeration of coagulase-positive staphylococci (Staphylococcus aureus and other species). In Part 2: Technique Using Rabbit Plasma Fibrinogen Agar Medium; International Standardization Organization: Geneva, Switzerland, 2003.
- ISO 15213. Microbiology of food and animal feeding stuffs. In Horizontal Method for the Enumeration of Sulphite-Reducing Bacteria Growing under Anaerobic Conditions; International Standardization Organization: Geneva, Switzerland, 2003.
- Aureli, P.; Fiore, A.; Scalfaro, C.; Franciosa, G. Microbiological and molecular methods for analysis of probiotic based food supplements for human consumption. Rapp. Istisan 2008, 8, 63. [Google Scholar]
- SAS. ‘SAS/STAT Qualification Tools User’s Guide (Version 9.2); Statistical Analysis System. Institute Inc.: Cary, NC, USA, 2010. [Google Scholar]
- Todaro, M.; Alabiso, M.; Scatassa, M.L.; Di Grigoli, A.; Mazza, F.; Maniaci, G.; Bonanno, A. Effect of the inclusion of fresh lemon pulp in the diet of lactating ewes on the properties of milk and cheese. Anim. Feed Sci. Technol. 2017, 225, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Özcan, M.M.; Al Juhaimi, F.Y. Nutritive value and chemical composition of prickly pear seeds (Opuntia ficus indica L.) growing in Turkey. Int. J. Food Sci. Nutr. 2011, 62, 533–536. [Google Scholar] [CrossRef]
- Bampidis, V.A.; Robinson, P.H. Citrus by-products as ruminant feeds: A review. Anim. Feed Sci. Technol. 2006, 128, 175–217. [Google Scholar] [CrossRef]
- Wizna, H.A.; Rizal, Y.; Dharma, A.; Kompiang., I.P. Improving the quality of tapioca by-products (onggok) as poultry feed through fermentation by Bacillus amyloliquefaciens. Pak. J. Nutr. 2009, 8, 1636–1640. [Google Scholar]
- Correddu, F.; Lunesu, M.F.; Buffa, G.; Atzori, A.S.; Nudda, A.; Battacone, G.; Pulina, G. Can Agro-Industrial By-Products Rich in Polyphenols be Advantageously Used in the Feeding and Nutrition of Dairy Small Ruminants? Animals 2020, 10, 131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 3781–3804. [Google Scholar] [CrossRef] [PubMed]
Items | PPB | Peel and Pulp (28%) | Seeds (72%) |
---|---|---|---|
Dry matter (%) | 30.45 | 30.87 | 30.56 |
Crude protein (%DM) 1 | 5.32 | 5.00 | 5.75 |
Ether extract (%DM) | 5.04 | 3.60 | 8.54 |
NDFom (%DM) 2 | 51.38 | 41.50 | 73.27 |
ADFom (%DM) 3 | 41.15 | 34.50 | 57.25 |
ADL (%DM) 4 | 14.64 | 5.13 | 21.37 |
NFC (%DM) 5 | 29.68 | 30.41 | 9.18 |
Ash (%DM) | 8.58 | 19.49 | 3.26 |
NEL (MJ/kg DM) 6 | 4.59 | 5.04 | 4.41 |
pH | 5.00 | 5.01 | 5.02 |
Items | 1 PMB Treatment | Storage (Days) | SEM 6 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 3 | 7 | 14 | 21 | Treatment (T) | Storage (S) | T × S | ||||
Dry matter (DM) | % | 30.05 AC | 29.14 BC | 28.36 BC | 31.52 A | 32.26 A | 0.608 | ** | ** | ns | |
Crude protein | % DM | 5.32 | 6.06 | 6.65 | 7.02 | 7.45 | 0.258 | * | *** | * | |
T0 | 5.32 A | 6.33 AC | 7.47 Bx | 6.80 BC | 8.21 Bx | ||||||
T50 | 5.32 A | 6.95 B | 6.52 By | 7.86 C | 7.48 Cx | ||||||
T100 | 5.32 A | 5.13 A | 6.51 By | 6.59 B | 7.65 Cx | ||||||
T150 | 5.32 A | 5.84 AC | 6.10 BCy | 6.84 B | 6.47 By | ||||||
Ether extract | % DM | 5.04 | 4.60 | 5.08 | 4.29 | 4.63 | 0.262 | ns | ns | ns | |
NDFom 2 | % DM | 51.38 B | 58.48 BC | 65.60 A | 64.68 A | 62.03 AC | 1.256 | ns | *** | ns | |
ADFom 3 | % DM | 41.15 A | 47.86 B | 50.63 B | 48.84 B | 48.91 B | 0.844 | ns | *** | ns | |
ADL 4 | % DM | 14.64 A | 15.93 AC | 17.89 B | 17.18 BC | 18.05 B | 0.511 | ns | ** | ns | |
Ash | % DM | 7.81 a | 8.83 a | 8.86 a | 9.15 ab | 10.08 b | 0.941 | ns | * | ns | |
NFC 5 | % DM | 30.45 | 22.03 | 13.82 | 14.85 | 15.80 | 0.413 | ns | *** | ** | |
T0 | 30.45 A | 20.96 Bx | 15.53 C | 11.45 C | 15.34 C | ||||||
T50 | 30.45 A | 21.66 Bx | 13.65 C | 14.96 C | 13.94 C | ||||||
T100 | 30.45 A | 24.55 By | 10.64 C | 16.11 C | 15.91 C | ||||||
T150 | 30.45 A | 25.96 By | 15.44 C | 16.89 C | 18.01 C | ||||||
Soluble sugars | % DM | 13.34 | 16.82 | 9.66 | 9.52 | 8.91 | 0.906 | ns | *** | ** | |
T0 | 13.34 A | 12.86 Bx | 10.11 C | 10.08 C | 9.10 C | ||||||
T50 | 13.34 A | 14.29 Bx | 9.33 C | 9.29 C | 9.22 C | ||||||
T100 | 13.34 A | 20.98 By | 9.54 C | 9.37 C | 8.62 C | ||||||
T150 | 13.34 A | 19.15 By | 9.67 C | 9.37 C | 8.68 C | ||||||
pH | 5.01 | 4.27 | 4.07 | 4.70 | 6.23 | 0.209 | ns | *** | *** | ||
T0 | 5.01 A | 3.86 Bx | 3.80 B | 5.02 A | 6.90 CX | ||||||
T50 | 5.01 A | 4.05 Bx | 4.05 B | 4.38 B | 5.97 CY | ||||||
T100 | 5.01 A | 4.42 By | 4.21 B | 4.55 B | 5.67 CY | ||||||
T150 | 5.01 Aa | 4.73 Abz | 4.23 B | 4.84 Ab | 5.97 CY |
Items | 1 PMB Treatment | Storage (Days) | SEM 7 | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 7 | 21 | Treatment (T) | Storage (S) | T × S | ||||
M17 30°C 2 | Log CFU/g | 7.15 a | 7.97 b | 6.91 a | 0.237 | ns | * | ns | |
M17 44°C 2 | Log CFU/g | 5.60 A | 7.69 B | 6.01 A | 0.395 | ns | ** | ns | |
MRS 30°C 3 | Log CFU/g | 7.23 A | 8.12 B | 5.92 C | 0.173 | ns | *** | ns | |
MRS 44°C 3 | Log CFU/g | 5.52 A | 8.05 B | 5.07 C | 0.118 | ns | *** | ns | |
PCA 4 | Log CFU/g | 5.23 | 7.30 | 6.24 | 0.344 | ns | ** | ** | |
T0 | 5.23 Aa | 6.20 Ab | 8.30 BX | ||||||
T50 | 5.23 Aa | 6.26 Ab | 8.30 BX | ||||||
T100 | 5.23 a | 6.26 b | 6.64 bY | ||||||
T150 | 5.23 a | 6.26 b | 5.97 bY | ||||||
VRBGA 5 | Log CFU/g | 5.11 | 4.21 | 4.81 | 0.661 | ns | * | * | |
T0 | 5.11 a | 5.40 ax | 5.62 ax | ||||||
T50 | 5.11 a | <1.00 by | 5.48 ax | ||||||
T100 | 5.11 a | <1.00 by | 3.18 cy | ||||||
T150 | 5.11 a | <1.00 by | 2.54 cy | ||||||
VRBA 6 | Log CFU/g | 5.08 | 3.74 | 4.18 | 0.574 | ns | * | * | |
T0 | 5.08 a | 4.52 ax | 5.08 ax | ||||||
T50 | 5.08 a | <1.00 by | 5.08 ax | ||||||
T100 | 5.08 a | <1.00 by | 2.67 cy | ||||||
T150 | 5.08 a | <1.00 by | 2.15 cy |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Todaro, M.; Alabiso, M.; Di Grigoli, A.; Scatassa, M.L.; Cardamone, C.; Mancuso, I.; Mazza, F.; Bonanno, A. Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation. Animals 2020, 10, 949. https://doi.org/10.3390/ani10060949
Todaro M, Alabiso M, Di Grigoli A, Scatassa ML, Cardamone C, Mancuso I, Mazza F, Bonanno A. Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation. Animals. 2020; 10(6):949. https://doi.org/10.3390/ani10060949
Chicago/Turabian StyleTodaro, Massimo, Marco Alabiso, Antonino Di Grigoli, Maria Luisa Scatassa, Cinzia Cardamone, Isabella Mancuso, Francesca Mazza, and Adriana Bonanno. 2020. "Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation" Animals 10, no. 6: 949. https://doi.org/10.3390/ani10060949
APA StyleTodaro, M., Alabiso, M., Di Grigoli, A., Scatassa, M. L., Cardamone, C., Mancuso, I., Mazza, F., & Bonanno, A. (2020). Prickly Pear By-Product in the Feeding of Livestock Ruminants: Preliminary Investigation. Animals, 10(6), 949. https://doi.org/10.3390/ani10060949