Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Husbandry:
2.2. Experimental Design and Diets
2.3. Growth Performance and Carcass Yield
2.4. Statistical Analysis:
3. Results
4. Discussion
4.1. Growth Performance, Feed/Protein Conversion Ratio and Nitrogen Excretion of Broiler Chicks
4.2. Carcass Yield, Body Organs and Chemical Composition of Breast Meat
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Attia, Y.A.; Böhmer, B.M.; Roth-Maier, D.A. Responses of broiler chicks raised under constant relatively high ambient temperature to enzymes, amino acid supplementations, or diet density. Archive Für Geflügelkunde 2006, 70, 80–91. [Google Scholar]
- Attia, Y.A.; Hassan, R.A.; Tag El-Din, A.E.; Abou-Shehema, B.M. Effect of ascorbic acid or increasing metabolizable energy level with or without supplementation of some essential amino acids on productive and physiological traits of slow-growing chicks exposed to chronic heat stress. J. Anim. Physiol. Anim. Nutr. 2011, 95, 744–755. [Google Scholar] [CrossRef] [PubMed]
- Dozier, W.A.; Kidd, M.T.; Corzo, A. Dietary amino acid responses of broiler chickens. J. Appl. Poult. Res. 2008, 17, 157–167. [Google Scholar] [CrossRef]
- Kim, J.H.; Patterson, P.H.; Kim, W.K. Impact of dietary crude protein, synthetic amino acid and keto acid formulation on nitrogen excretion. Int. J. Poult. Sci. 2014, 13, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Chalova, V.I.; Kim, J.H.; Patterson, P.H.; Ricke, S.C.; Kim, W.K. Reduction of nitrogen excretion and emissions from poultry: A review for conventional poultry. World’s Poult. Sci. J. 2016, 72, 509–520. [Google Scholar] [CrossRef]
- Fancher, B.I.; Jensen, L.S. Dietary protein level and essential amino acid content: Influence upon female broiler performance during the grower period. Poult. Sci. 1989, 68, 897–908. [Google Scholar] [CrossRef]
- Han, Y.; Suzuki, H.; Parsons, C.M.; Baker, H. Amino acid fortification of a low-protein corn and soybean meal diet for chicks. Poult. Sci. 1992, 71, 1168–1178. [Google Scholar] [CrossRef]
- Laudadio, V.; Dambrosio, A.; Normanno, G.; Khan, R.U.; Naz, S.; Rowghani, E.; Tufarelli, V.; Bunchasak, C.U.; Tanaka, S.K.; Ohtani, S.; et al. The effect of supplementing methionine plus cystine to a low-protein diet on the growth performance and fat accumulation of growing broiler chicks. Asian-Australas. J. Anim. Sci. 1997, 10, 185–191. [Google Scholar]
- Alleman, F.; Michel, J.; Chagneau, A.M.; Leclercq, B. The effects of dietary protein independent of essential amino acids on growth and body composition in genetically lean and fat chickens. Br. Poult. Sci. 2000, 41, 214–218. [Google Scholar] [CrossRef]
- Aletor, V.A.; Hamid, I.I.; Niess, E.; Pfeffer, E. Low-protein amino acids-supplemented diets in broiler-chickens: Effects on performance, carcass characteristics whole-body–composition and efficiencies of nutrient utilization. J. Sci. Food Agric. 2000, 80, 547–554. [Google Scholar] [CrossRef]
- Aletor, V.A.; Roth, F.X.; Paulicks, B.R.; Roth-Maier, D.A. Growth, body-fat deposition, nitrogen excretion and efficiencies of nutrients utilization in broiler-chicks fed low-protein diets supplemented with amino acids, conjugated linoleic acid or an -glucosidase inhibitor. Archive Geflügelk 2001, 66, 21–30. [Google Scholar]
- Laudadio, V.; Dambrosio, A.; Normanno, G.; Khan, R.U.; Naz, S.; Rowghani, E.; Tufarelli, V. Effect of reducing dietary protein level on performance responses and some microbiological aspects of broiler chickens under summer environmental conditions. Avian Biol. Res. 2012, 5, 88–92. [Google Scholar] [CrossRef]
- McGill, E.; Kamyab, A.; Firman, J.D. Low crude protein corn and soybean meal diets with amino acid supplementation for broilers in the starter period. 1. Effects of feeding 15% crude protein. Int. J. Poult. Sci. 2012, 11, 161–165. [Google Scholar]
- McGill, E.; Kamyab, A.; Firman, J.D. Low crude protein corn and soybean meal diets with amino acid supplementation for broilers in the starter period. 2. Effects of feeding 13% crude protein. Int. J. Poult. Sci. 2012, 11, 166–171. [Google Scholar]
- Scott, M.L.; Nesheim, M.C.; Young, R.J. Nutrition of the Chicken, 3rd ed.; M. L. Scott and Associates: Ithaca, NY, USA, 1982. [Google Scholar]
- Fernandez, S.R.; Aoyagi, S.; Han, Y.; Parsons, C.; Baker, D.H. Limiting order of amino acids in corn and soybean meal for growth of the chick. Poult. Sci. 1994, 73, 1887–1896. [Google Scholar] [CrossRef]
- Baker, D.M. Problems and pitfalls in animal experiments designed to establish dietary requirements for essential nutrients. J. Nutr. 1986, 116, 2339–2349. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Wang, J.Q.; Gu, K.T.; Deng, Q.Q.; Wang, J.P. Effects of dietary protein levels and multienzyme supplementation on growth performance and markers of gut health of broilers fed a miscellaneous meal based diet. Anim. Feed Sci. Technol. 2017, 234, 110–117. [Google Scholar] [CrossRef]
- Holsheimer, J.P.; Janssen, W.M.M.A. Limiting amino acids in low protein maize-soybean meal diets fed to broiler chicks from 3 to 7 weeks of age. Br. Poult. Sci. 1991, 32, 151–158. [Google Scholar] [CrossRef]
- Lipstein, B.; Bornstein, S.; Bartov, I. The replacement of some of the soybean meal by the first limiting amino acids in practical broiler diets. 3. Effects of protein concentration and amino acid supplementation in broiler finisher diets on fat deposition on the carcass. Br. Poult. Sci. 1975, 16, 627–635. [Google Scholar] [CrossRef]
- Leclercq, B.; Chagneau, A.M.; Cochard, T.; Khoury, J. Comparative responses of genetically lean and fat chickens to lysine, arginine and non-essential amino acid supply. I. Growth and body composition. Br. Poult. Sci. 1994, 35, 687–696. [Google Scholar] [CrossRef]
- Sterling, K.G.; Costa, E.F.; Henry, M.H.; Pesti, G.M.; Bakalli, R.I. Responses of broiler chickens to cottonseed and soybean meal-based diets at several protein levels. Poult. Sci. 2002, 81, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Jiang, Y.; Tang, J.; Wen, Z.G.; Zhang, Q.; Huang, W.; Hou, S.S. Effects of low-protein diets on growth performance and carcass yield of growing White Pekin ducks. Poult. Sci. 2017, 96, 1370–1375. [Google Scholar] [CrossRef] [PubMed]
- Ospina-Rojas, I.C.; Murakami, A.E.; Duarte, C.R.A.; Eyng, C.; Oliveira, A.L.; Janeiro, V. Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. Br. Poult. Sci. 2014, 55, 766–773. [Google Scholar] [CrossRef] [PubMed]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy of Sciences, National Research Council: Washington, DC, USA, 1994. [Google Scholar]
- Association Official Analytical Chemistry (AOAC). Official Methods of Analysis, 19th ed.; Association Official Analytical Chemistry: Washington, DC, USA, 2007. [Google Scholar]
- SAS Institute. SAS® User’s Guide for Personal Computer; SAS Institute Inc.: Cary, NC, USA, 2007. [Google Scholar]
- Attia, Y.A.; Al-Harthi, M.A.; Hassan, S.S. Turmeric (Curcuma longa Linn.) as a phytogenic growth promoter alternative for antibiotic and comparable to mannan oligosaccharides for broiler chicks. Rev. Mex. Cienc. Pecu. 2017, 8, 11–21. [Google Scholar] [CrossRef]
- Quinteiro-Filho, W.M.; Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Sakai, M.; Sá, L.R.M.D.; Palermo-Neto, J. Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poult. Sci. 2010, 89, 1905–1914. [Google Scholar] [CrossRef]
- Chrystal, P.V.; Moss, A.F.; Khoddami, A.; Naranjo, V.D.; Selle, P.H.; Liu, S.Y. Impacts of reduced-crude protein diets on key parameters in male broiler chickens offered maize-based diets. Poult. Sci. 2020, 99, 505–516. [Google Scholar] [CrossRef]
- Van Harn, J.; Dijkslag, M.A.; van Krimpen, M.M. Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poult. Sci. 2019, 98, 4868–4877. [Google Scholar] [CrossRef]
- Smith, R.E. Assessment of the availability of the amino acid in fish meal, soybean meal and feather meal by chick growth assay. Poult. Sci. 1968, 47, 1624. [Google Scholar] [CrossRef]
- Miller, D.; Kifer, R.R. Factors affecting protein evaluation of fish meal by chick bioassay. Poult. Sci. 1970, 49, 999–1004. [Google Scholar] [CrossRef]
- Ravindran, V.; Hew, L.; Ravindran, G.; Bryden, W. Apparent ileal digestibility of amino acids in dietary ingredients for broiler chickens. Anim. Sci. 2005, 81, 85–97. [Google Scholar] [CrossRef]
- Han, Y.; Baker, D.H. Effects of sex, heat stress, body weight and genetic strain on the lysine requirement of broiler chicks. Poult. Sci. 1993, 72, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Baker, D.H. Lysine requirement of fast and slow growing broiler chicks. Poult. Sci. 1991, 70, 2108–2114. [Google Scholar] [CrossRef] [PubMed]
- Aggoor, F.A.M.; El-Naggar, N.M.; Mehrez, A.Z.; Attia, Y.A.; Qota, E.M.A. Effect of different dietary protein and energy levels during roaster period on: 1-Performance and economic evaluation of broiler chicks. Egypt. Poult. Sci. 1997, 17, 81–105. [Google Scholar]
- Costa, M.J.; Da Zaragoza-Santacruz, S.; Frost, T.J.; Halley, J.; Pesti, G.M. Straight-run vs. sex separate rearing for 2 broiler genetic lines Part 1: Live production parameters, carcass yield, and feeding behavior. Poult. Sci. 2017, 96, 2641–2661. [Google Scholar] [CrossRef]
- Waguespack, A.M.; Powell, S.; Bidner, T.D.; Payne, R.L.; Southern, L.L. Effect of incremental levels of L-lysine and determination of the limiting amino acids in low crude protein corn-soybean meal diets for broilers. Poult. Sci. 2009, 88, 1216–1226. [Google Scholar] [CrossRef]
- Warnick, R.E.; Anderson, J.O. Limiting essential amino acids in soybean meal for growing chickens and the effects of heat upon availability of the essential amino acids. Poult. Sci. 1968, 47, 281–287. [Google Scholar] [CrossRef]
- Schwartz, R.W.; Bray, D.J. Limiting amino acids in 40:60 and 15:85 blends of corn: Soybean protein for the chicks. Poult. Sci. 1975, 54, 1814. [Google Scholar]
- Uzu, G. Limit of reduction of the protein level in broiler feeds. Poult. Sci. 1982, 61, 1557–1558. [Google Scholar]
- Shao, D.; Shen, Y.; Zhao, X.; Wang, Q.; Hu, Y.; Shi, S.; Tong, H. Low-protein diets with balanced amino acids reduce nitrogen excretion and foot pad dermatitis without affecting the growth performance and meat quality of free-range yellow broilers. Ital. J. Anim. Sci. 2018, 17, 698–705. [Google Scholar] [CrossRef] [Green Version]
- Jensen, L.S.; Mendonca, C.X. Amino acid nutrition of broilers during the grower period. In Georgia Nutrition Conference for the Feed Industry; University of Georgia: Athens, GA, USA, 1988; pp. 76–83. [Google Scholar]
- D’Mello, J.P.E. (Ed.) Amino acid imbalances, antagonisms and toxicities. In Amino Acid in Farm Animal Nutrition; CAB International: Wallingford, UK, 1994; pp. 63–98. [Google Scholar]
- Awad, E.A.; Zulkifli, I.; Soleimani, A.F.; Loh, T.C. Individual non-essential amino acids fortification of a low-protein diet for broilers under hot and humid tropical climate. Poult. Sci. 2014, 94, 2772–2777. [Google Scholar] [CrossRef]
- Dean, D.W.; Bidner, T.D.; Southern, L.L. Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poult. Sci. 2006, 85, 288–296. [Google Scholar] [CrossRef] [PubMed]
- El-Boushy, A.R. Broiler growth response from practical low-protein diets supplemented with urea and diammonium hydrogen phosphate. Neth. J. Agric. Sci. 1980, 28, 147–155. [Google Scholar]
- Kagan, A.; Balloun, S.L. Urea and aspartic acid supplementation of low-protein broiler diets. Br. Poult. Sci. 1976, 17, 403–413. [Google Scholar] [CrossRef] [PubMed]
- Aletor, V.A.; Eder, K.; Becker, K.; Paulicks, B.R.; Roth, F.X.; Roth-Maier, D.A. The effects of conjugated linoleic acids or an alpha-glucosidase inhibitor on tissue lipid concentrations and fatty acid composition of broiler chicks fed a low-protein diet. Poult. Sci. 2003, 82, 796–804. [Google Scholar] [CrossRef]
- Alleman, F.; Leclercq, B. Effect of dietary protein and environmental temperature on growth performance and water intake of male broiler chickens. Poult. Sci. 1997, 38, 607–610. [Google Scholar] [CrossRef]
- Jacob, J.; Blair, R.; Ibrahim, S.; Scott, T.; Newberry, R. Using reduced protein diets to minimize nitrogen excretion of broilers. Poult. Sci. 1995, 74 (Suppl. 1), 127. [Google Scholar]
- Nahashon, S.M.; Bartlett, J.R.; Smith, E.J. Responses to dietary crude protein and energy levels by cross of chickens involving White Plymouth Rock. Poult. Sci. 1995, 74 (Suppl. 1), 207. [Google Scholar]
- Hegedüs, M. Dietary factors influencing protein utilization: A review. Acta Vet. Hung. 1992, 40, 133–143. [Google Scholar]
- Moran, E.T.; Bushong, R.D.; Bilgili, S.F. Reducing dietary crude protein for broilers while satisfying amino acid requirements by least-cost formulation: Live performance, litter composition, and yield of fast-food carcass cute of six weeks. Poult. Sci. 1992, 71, 1687–1694. [Google Scholar] [CrossRef]
- Keshavarz, K.; Austic, R.E. The use of low-protein, low-phosphorus, amino acid- and phytase-supplemented diets on laying hens performance and nitrogen and phosphorus excretion. Poult. Sci. 2004, 83, 75–83. [Google Scholar] [CrossRef]
- Leclercq, B. The influence of dietary protein content on the performance of genetically lean or fat growing chickens. Br. Poult. Sci. 1983, 24, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Cahaner, A.; Leenstra, F. Effects of high temperature on growth and efficiency of male and female broilers from lines selected for high weight gain, favorable Feed conversion, and high or low fat content. Poult. Sci. 1992, 71, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.R.; Pesti, G.M.; Bakalli, R.I.; Ware, G.O.; Menten, J.F.M. Further studies on the influence of genotype and dietary protein on the performance of broilers. Poult. Sci. 1998, 77, 1678–1687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredients, % | Trial 1 | Trial 2 | |||
---|---|---|---|---|---|
18% | 15% Animal | 15% Plant | 18% | 15% | |
Yellow corn | 71.63 | 73.00 | 73.00 | 66.86 | 72.40 |
Soybean meal | 21.00 | 15.00 | 20.00 | 24.71 | 16.90 |
Fish meal (72% CP herring) | 2.00 | 1.73 | 0.00 | 2.00 | 2.00 |
Meat meal | 2.00 | 1.73 | 0.00 | 0.00 | 0.00 |
Soybean oil | 0.50 | 1.45 | 1.70 | 1.65 | 1.56 |
Bone meal | 1.40 | 1.68 | 2.38 | 1.70 | 1.88 |
Lime stone | 0.82 | 0.72 | 0.63 | 0.75 | 0.72 |
Vit + Min premix 1 | 0.25 | 0.25 | 0.25 | 0.25 | 0.25 |
NaCl | 0.30 | 0.30 | 0.30 | 0.30 | 0.30 |
DL-methionine | 0.10 | 0.19 | 0.20 | 0.11 | 0.19 |
L-lysine | 0.00 | 0.26 | 0.28 | 0.06 | 0.25 |
Sand | 0.00 | 3.69 | 1.26 | 1.61 | 3.55 |
Total | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
Calculated values, % | |||||
ME kcal/ kg | 3008 | 3000 | 3041 | 3000 | 3004 |
Tryptophan | 0.23 | 0.18 | 0.19 | 0.24 | 0.19 |
Ca | 1.01 | 1.01 | 1.01 | 0.91 | 0.91 |
Available P | 0.41 | 0.41 | 0.41 | 0.37 | 0.37 |
Determined values 2, % | |||||
Crude protein | 19.04 | 15.54 | 15.18 | 18.63 | 15.23 |
Methionine | 0.30 | 0.25 | 0.24 | 0.31 | 0.26 |
TSAA | 0.92 | 0.70 | 0.68 | 0.59 | 0.51 |
Lysine | 0.92 | 0.70 | 0.72 | 0.96 | 0.74 |
Arg | 1.02 | 0.84 | 0.81 | 1.03 | 0.86 |
Val | 0.89 | 0.69 | 0.71 | 0.82 | 0.71 |
Ile | 0.71 | 0.62 | 0.60 | 0.73 | 0.59 |
Item | Groups | SEM 1 | P Value | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Body weight at 28 d, g | 1009 | 1006 | 1011 | 1005 | 1002 | 1018 | 1006 | 15.3 | 0.99 |
Body weight at 49 d, g | 1964 | 1940 | 1970 | 1938 | 1947 | 1970 | 1853 | 28.7 | 0.88 |
Body weight gain, g | 955 | 934 | 959 | 933 | 945 | 952 | 947 | 21.1 | 0.78 |
Feed intake, g | 2212 | 2223 | 2257 | 2263 | 2223 | 2226 | 2226 | 12.7 | 0.15 |
Protein intake, g | 409.2 a | 333.4 b | 338.5 b | 339.4 b | 333.5 b | 333.9 b | 333.9 b | 1.96 | 0.01 |
Feed conversion ratio, g/g | 2.32 | 2.38 | 2.35 | 2.43 | 2.35 | 2.34 | 2.35 | 0.11 | 0.74 |
Protein Conversion Ratio, g/g | 0.428 a | 0.357 b | 0.353 b | 0.364 b | 0.353 b | 0.351 b | 0.353 b | 0.009 | 0.01 |
Item | Groups | SEM | P Value | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Body weight 30 d, g | 1155 | 1176 | 1167 | 1153 | 1171 | 1160 | 1166 | 25.1 | 0.99 |
Body weight 45 d, g | 1959 | 1977 | 1992 | 1988 | 1981 | 1993 | 1971 | 37.2 | 0.99 |
Body weight gain, | 804 | 801 | 824 | 835 | 810 | 834 | 806 | 25.8 | 0.95 |
Feed intake, g | 1717 | 1756 | 1763 | 1782 | 1796 | 1763 | 1753 | 23.4 | 0.38 |
Protein intake, g | 309 a | 263 b | 264 c | 267 b | 269 b | 265 b | 263 b | 3.05 | 0.01 |
Feed conversion ratio, g/g | 2.14 | 2.19 | 2.14 | 2.13 | 2.22 | 2.11 | 2.17 | 0085 | 0.98 |
Protein conversion ratio, g/g | 0.384 a | 0.329 b | 0.321 b | 0.320 b | 0.333 b | 0.317 b | 0.326 b | 0.014 | 0.01 |
Excreta nitrogen, % | 4.03 | 3.18 | 3.25 | 3.47 | 3.79 | 3.71 | 3.90 | 0.54 | 0.17 |
Excreta dry matter, % | 21.0 | 20.9 | 21.8 | 21.1 | 21.6 | 22.2 | 22.7 | 1.6 | 0.46 |
Item | Groups | SEM | P Value | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Carcass yield | |||||||||
Dressing 1, % | 62.2 | 61.9 | 62.2 | 62.0 | 63.2 | 63.4 | 62.5 | 0.97 | 0.17 |
Breast + wings, % | 23.4 | 23.3 | 22.5 | 24.4 | 23.6 | 22.4 | 22.1 | 0.77 | 0.40 |
Thigh + legs, % | 21.7 | 22.3 | 22.0 | 21.6 | 21.6 | 23.6 | 22.6 | 0.67 | 0.40 |
Abdominal fat, % | 1.71 | 1.82 | 1.83 | 1.81 | 1.80 | 2.19 | 1.93 | 0.24 | 0.36 |
Liver, % | 2.42 | 2.67 | 2.24 | 2.18 | 2.14 | 2.31 | 2.29 | 0.44 | 0.10 |
Heart, % | 0.64 | 0.65 | 0.64 | 0.69 | 0.62 | 0.65 | 0.65 | 0.041 | 0.93 |
Pancreas, % | 0.23 | 0.25 | 0.22 | 0.21 | 0.24 | 0.24 | 0.23 | 0.012 | 0.43 |
Spleen, % | 0.131 | 0.125 | 0.108 | 0.161 | 0.125 | 0.134 | 0.149 | 0.013 | 0.14 |
Chemical characteristics of breast meat | |||||||||
Moisture, % | 74.2 | 74.4 | 73.8 | 75.1 | 74.9 | 74.6 | 74.9 | 2.42 | 0.58 |
Crude protein, % | 82.7 | 81.4 | 81.4 | 82.0 | 81.9 | 82.0 | 82.0 | 1.73 | 0.74 |
Ether extract, % | 13.1 | 13.4 | 13.8 | 13.0 | 13.2 | 13.6 | 13.5 | 0.74 | 0.68 |
Ash, % | 4.2 | 5.2 | 4.8 | 5.0 | 4.9 | 4.4 | 4.5 | 0.12 | 0.39 |
Item | Groups | SEM | P Value | ||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
Dressing 1, % | 62.4 | 63.7 | 61.8 | 60.8 | 61.2 | 63.2 | 60.0 | 0.96 | 0.11 |
Breast + wings, % | 30.5 | 31.1 | 30.2 | 29.2 | 30.4 | 32.4 | 29.6 | 0.71 | 0.07 |
Thigh + legs, % | 32.9 | 34.8 | 32.1 | 32.1 | 31.7 | 31.8 | 31.4 | 0.89 | 0.16 |
Abdominal fat, % | 1.71 | 1.80 | 2.10 | 1.84 | 1.45 | 1.33 | 1.62 | 0.25 | 0.39 |
Liver, % | 1.84 | 1.95 | 2.22 | 2.09 | 2.02 | 1.93 | 1.99 | 0.13 | 0.49 |
Heart, % | 0.44 | 0.46 | 0.51 | 0.47 | 0.42 | 0.44 | 0.45 | 0..03 | 0.43 |
Gizzard, % | 1.54 b | 2.00 a | 1.90 a | 1.88 a | 1.83 a,b | 1.76 a,b | 1.53 b | 0.10 | <0.01 |
Pancreas, % | 0.21 | 0.18 | 0.20 | 0.19 | 0.20 | 0.18 | 0.19 | 0.015 | 0.69 |
Spleen, % | 0.129 a | 0.083 c | 0.087 b,c | 0.124 a,b | 0.115 a–c | 0.121 a,b | 0.088 b,c | 0.012 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attia, Y.A.; Bovera, F.; Wang, J.; Al-Harthi, M.A.; Kim, W.K. Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals 2020, 10, 973. https://doi.org/10.3390/ani10060973
Attia YA, Bovera F, Wang J, Al-Harthi MA, Kim WK. Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals. 2020; 10(6):973. https://doi.org/10.3390/ani10060973
Chicago/Turabian StyleAttia, Youssef A., Fulvia Bovera, Jinquan Wang, Mohammed A. Al-Harthi, and Woo Kyun Kim. 2020. "Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions" Animals 10, no. 6: 973. https://doi.org/10.3390/ani10060973
APA StyleAttia, Y. A., Bovera, F., Wang, J., Al-Harthi, M. A., & Kim, W. K. (2020). Multiple Amino Acid Supplementations to Low-Protein Diets: Effect on Performance, Carcass Yield, Meat Quality and Nitrogen Excretion of Finishing Broilers under Hot Climate Conditions. Animals, 10(6), 973. https://doi.org/10.3390/ani10060973