Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Sampling
2.2. Genome Sequencing and Variant Calling
2.3. Population Genetic Analysis
2.4. Detecting Positive Selection
2.5. Candidate Genes Analysis
3. Results
3.1. Sequencing and Identification of SNPs and Indels
3.2. Identification of Selective Sweep
3.3. Kegg Pathway Analyses of the Candidate Genes under Selection
4. Discussion
4.1. Genetic Diversity in the Du’an Goat
4.2. Putatively-Selected Genes
4.2.1. Immune System
4.2.2. Body Size
4.2.3. Heat Tolerance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability
Conflicts of Interest
References
- Zeder, M.A.; Hesse, B. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science 2000, 287, 2254–2257. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Jeong, S.; Kim, K.H.; Lim, W.-J.; Lee, H.-Y.; Kim, N. Discovery of Genomic Characteristics and Selection Signatures in Korean Indigenous Goats Through Comparison of 10 Goat Breeds. Front. Genet. 2019, 10, 699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, L.; Li, J.; Ma, N.; Ma, Y.; Wang, J.; Yin, C.; Luo, J.; Liu, N.; Jia, Z.; Fu, C. Animal Genetic Resources in China: Sheep and Goats; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Yi, S.; He, B.; Ma, J.; Su, W.; Li, G. Investigation of liver function of Du’an goat in Guangxi. Guangxi Agric. Sci. 2008, 3, 374–376. [Google Scholar]
- Benjelloun, B.; Alberto, F.J.; Streeter, I.; Boyer, F.; Coissac, E.; Stucki, S.; BenBati, M.; Ibnelbachyr, M.; Chentouf, M.; Bechchari, A. Characterizing neutral genomic diversity and selection signatures in indigenous populations of Moroccan goats (Capra hircus) using WGS data. Front. Genet. 2015, 6, 107. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Li, M.; Li, Y.; Yang, Z.; Wang, X.; Pan, X.; Gong, M.; Zhang, Y.; Guo, Y. The origin of domestication genes in goats. Sci. Adv. 2020, 6, eaaz5216. [Google Scholar] [CrossRef]
- Guo, J.; Zhong, J.; Li, L.; Zhong, T.; Wang, L.; Song, T.; Zhang, H. Comparative genome analyses reveal the unique genetic composition and selection signals underlying the phenotypic characteristics of three Chinese domestic goat breeds. Genet. Sel. Evol. 2019, 51, 70. [Google Scholar] [CrossRef] [Green Version]
- Lai, F.-N.; Zhai, H.-L.; Cheng, M.; Ma, J.-Y.; Cheng, S.-F.; Ge, W.; Zhang, G.-L.; Wang, J.-J.; Zhang, R.-Q.; Wang, X. Whole-genome scanning for the litter size trait associated genes and SNPs under selection in dairy goat (Capra hircus). Sci. Rep. 2016, 6, 38096. [Google Scholar] [CrossRef]
- Green, M.R.; Sambrook, J. Molecular cloning: A Laboratory Manual, 4th ed.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2012. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Bickhart, D.M.; Rosen, B.D.; Koren, S.; Sayre, B.L.; Hastie, A.R.; Chan, S.; Lee, J.; Lam, E.T.; Liachko, I.; Sullivan, S.T. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat. Genet. 2017, 49, 643–650. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, K.; Li, M.; Hakonarson, H. ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010, 38, e164. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [Green Version]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, S.-S.; Xu, J.-Y.; He, W.-M.; Yang, T.-L. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2019, 35, 1786–1788. [Google Scholar] [CrossRef]
- Barbato, M.; Orozco-terWengel, P.; Tapio, M.; Bruford, M.W. SNeP: A tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front. Genet. 2015, 6, 109. [Google Scholar] [CrossRef] [Green Version]
- Browning, S.R.; Browning, B.L. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 2007, 81, 1084–1097. [Google Scholar] [CrossRef] [Green Version]
- Szpiech, Z.A.; Hernandez, R.D. Selscan: An efficient multithreaded program to perform EHH-based scans for positive selection. Mol. Biol. Evol. 2014, 31, 2824–2827. [Google Scholar] [CrossRef] [Green Version]
- DeGiorgio, M.; Huber, C.D.; Hubisz, M.J.; Hellmann, I.; Nielsen, R. SweepFinder2: Increased sensitivity, robustness and flexibility. Bioinformatics 2016, 32, 1895–1897. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Mao, X.; Huang, J.; Ding, Y.; Wu, J.; Dong, S.; Kong, L.; Gao, G.; Li, C.-Y.; Wei, L. KOBAS 2.0: A web server for annotation and identification of enriched pathways and diseases. Nucleic Acids Res. 2011, 39, W316–W322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, D.; Luo, N.; Tan, X.; Zhao, Z.; Huang, Y.; Na, R.; Zhang, J.; Zhao, Y. Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Sci. Rep. 2016, 6, 36372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berihulay, H.; Islam, R.; Jiang, L.; Ma, Y. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel. Animals 2019, 9, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visser, C.; Lashmar, S.F.; Van Marle-Köster, E.; Poli, M.A.; Allain, D. Genetic diversity and population structure in South African, French and Argentinian Angora goats from genome-wide SNP data. PLoS ONE 2016, 11. [Google Scholar] [CrossRef] [PubMed]
- Gettins, P.G. Serpin structure, mechanism, and function. Chem. Rev. 2002, 102, 4751–4804. [Google Scholar] [CrossRef] [PubMed]
- Di Maggio, L.S.; Tirloni, L.; Pinto, A.F.; Diedrich, J.K.; Yates, J.R., III; Benavides, U.; Carmona, C.; da Silva Vaz, I., Jr.; Berasain, P. Across intra-mammalian stages of the liver f luke Fasciola hepatica: A proteomic study. Sci. Rep. 2016, 6, 32796. [Google Scholar] [CrossRef] [Green Version]
- Khanizadeh, S.; Mehrdad, R.; Mohebbi, S.; Naghoosi, H.; Mousavinasab, S.; Romnani, S.; Azimzadeh, P.; Sharifian, A.; Zali, M. Correlation between Polymorphism of-56 SNP (T/C) Interferon-γ Receptor 1 Gene and Chronic HBV Infection. Iran. J. Virol. 2011, 2, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Muszlak, M.; Chapgier, A.; Barry, R.H.; Castella, C.; Cremades, F.; Goulois, E.; Laporte, R.; Casanova, J.; Ranaivoarivony, V.; Hebert, J. Multifocal infection due to Mycobacterium intracellulare: First case of interferon gamma receptor partial dominant deficiency in tropical French territory. Arch. De Pediatrie Organe Off. De La Soc. Fr. De Pediatrie 2007, 14, 270–272. [Google Scholar] [CrossRef]
- Zhu, J.; Martinez, J.; Huang, X.; Yang, Y. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-β. Blood 2007, 109, 619–625. [Google Scholar] [CrossRef] [Green Version]
- Bertolini, F.; Servin, B.; Talenti, A.; Rochat, E.; Kim, E.; Oget, C.; Palhiere, I.; Crisa, A.; Catillo, G.; Steri, R. Signatures of selection and environmental adaptation across the goat genome post-domestication. Genet. Sel. Evol. 2018, 50, 57. [Google Scholar] [CrossRef]
- Weedon, M.N.; Lettre, G.; Freathy, R.M.; Lindgren, C.M.; Voight, B.F.; Perry, J.R.; Elliott, K.S.; Hackett, R.; Guiducci, C.; Shields, B. A common variant of HMGA2 is associated with adult and childhood height in the general population. Nat. Genet. 2007, 39, 1245–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouwman, A.C.; Daetwyler, H.D.; Chamberlain, A.J.; Ponce, C.H.; Sargolzaei, M.; Schenkel, F.S.; Sahana, G.; Govignon-Gion, A.; Boitard, S.; Dolezal, M. Meta-analysis of genome-wide association studies for cattle stature identifies common genes that regulate body size in mammals. Nat. Genet. 2018, 50, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Plassais, J.; Kim, J.; Davis, B.W.; Karyadi, D.M.; Hogan, A.N.; Harris, A.C.; Decker, B.; Parker, H.G.; Ostrander, E.A. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat. Commun. 2019, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Makvandi-Nejad, S.; Hoffman, G.E.; Allen, J.J.; Chu, E.; Gu, E.; Chandler, A.M.; Loredo, A.I.; Bellone, R.R.; Mezey, J.G.; Brooks, S.A. Four loci explain 83% of size variation in the horse. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlgren, A.; Lundmark, P.; Axelsson, T.; Lind, L.; Syvänen, A.-C. Association of the estrogen receptor 1 (ESR1) gene with body height in adult males from two Swedish population cohorts. PLoS ONE 2008, 3, e1807. [Google Scholar] [CrossRef] [PubMed]
- Gunnell, D.; Okasha, M.; Davey Smith, G.; Oliver, S.; Sandhu, J.; Holly, J. Height, leg length, and cancer risk: A systematic review. Epidemiol. Rev. 2001, 23, 313–342. [Google Scholar] [CrossRef] [Green Version]
- Khankari, N.K.; Shu, X.-O.; Wen, W.; Kraft, P.; Lindström, S.; Peters, U.; Schildkraut, J.; Schumacher, F.; Bofetta, P.; Risch, A. Association between adult height and risk of colorectal, lung, and prostate cancer: Results from meta-analyses of prospective studies and Mendelian randomization analyses. PLoS Med. 2016, 13, e1002118. [Google Scholar] [CrossRef] [Green Version]
- Brisson, J.; Morrison, A.S.; Kopans, D.B.; Sadowsky, N.L.; Kalisher, L.; Twaddle, J.A.; Meyer, J.E.; Henschke, C.I.; Cole, P. Height and weight, mammographic features of breast tissue, and breast cancer risk. Am. J. Epidemiol. 1984, 119, 371–381. [Google Scholar] [CrossRef]
- Chen, K.; Liao, Y.; Zhang, J. The major aeroallergens in Guangxi, China. Clin. Exp. Allergy 1988, 18, 589–596. [Google Scholar] [CrossRef]
- Chou, S.-D.; Prince, T.; Gong, J.; Calderwood, S.K. mTOR is essential for the proteotoxic stress response, HSF1 activation and heat shock protein synthesis. PLoS ONE 2012, 7, e39679. [Google Scholar] [CrossRef]
- Kakigi, R.; Naito, H.; Ogura, Y.; Kobayashi, H.; Saga, N.; Ichinoseki-Sekine, N.; Yoshihara, T.; Katamoto, S. Heat stress enhances mTOR signaling after resistance exercise in human skeletal muscle. J. Physiol. Sci. 2011, 61, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, T.; Naito, H.; Kakigi, R.; Ichinoseki-Sekine, N.; Ogura, Y.; Sugiura, T.; Katamoto, S. Heat stress activates the A kt/m TOR signalling pathway in rat skeletal muscle. Acta Physiol. 2013, 207, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, Z.; Du, Z.; Zhang, H. mTOR regulates phase separation of PGL granules to modulate their autophagic degradation. Cell 2018, 174, 1492–1506.e1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ning, Q.; Qu, K.; Hanif, Q.; Jia, Y.; Cheng, H.; Zhang, J.; Chen, N.; Chen, H.; Huang, B.; Lei, C. MTOR Variation Related to Heat Resistance of Chinese Cattle. Animals 2019, 9, 915. [Google Scholar] [CrossRef] [Green Version]
- Adachi, T.; Nakagawa, H.; Chung, I.; Hagiya, Y.; Hoshijima, K.; Noguchi, N.; Kuo, M.T.; Ishikawa, T. Nrf2-dependent and-independent induction of ABC transporters ABCC1, ABCC2, and ABCG2 in HepG2 cells under oxidative stress. J. Exp. Ther. Oncol. 2007, 6, 335–348. [Google Scholar]
- Hankir, M.K.; Kranz, M.; Gnad, T.; Weiner, J.; Wagner, S.; Deuther-Conrad, W.; Bronisch, F.; Steinhoff, K.; Luthardt, J.; Klöting, N. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. Embo Mol. Med. 2016, 8, 796–812. [Google Scholar] [CrossRef]
- Wang, J.; Xue, X.; Liu, Q.; Zhang, S.; Peng, M.; Zhou, J.; Chen, L.; Fang, F. Effects of duration of thermal stress on growth performance, serum oxidative stress indices, the expression and localization of ABCG2 and mitochondria ROS production of skeletal muscle, small intestine and immune organs in broilers. J. Therm. Biol. 2019, 85, 102420. [Google Scholar] [CrossRef]
- Belhadj Slimen, I.; Najar, T.; Ghram, A.; Abdrrabba, M. Heat stress effects on livestock: Molecular, cellular and metabolic aspects, a review. J. Anim. Physiol. Anim. Nutr. 2016, 100, 401–412. [Google Scholar] [CrossRef] [Green Version]
- Ippolito, D.L.; Lewis, J.A.; Yu, C.; Leon, L.R.; Stallings, J.D. Alteration in circulating metabolites during and after heat stress in the conscious rat: Potential biomarkers of exposure and organ-specific injury. BMC Physiol. 2014, 14, 14. [Google Scholar] [CrossRef] [Green Version]
- Hou, Y.; Wang, X.; Ping, J.; Lei, Z.; Gao, Y.; Ma, Z.; Jia, C.; Zhang, Z.; Li, X.; Jin, M. Metabonomics approach to assessing the modulatory effects of kisspeptin-10 on liver injury induced by heat stress in rats. Sci. Rep. 2017, 7, 7020. [Google Scholar] [CrossRef] [Green Version]
KEGG Term | Corrected p | Gene Count |
---|---|---|
Olfactory transduction | 2.22 × 1034 | 44 (448) |
Amoebiasis | 0.00194 | 6 (95) |
PD-L1 expression and PD-1 checkpoint pathway in cancer | 0.0097 | 5 (89) |
Acute myeloid leukemia | 0.021178 | 4 (66) |
Staphylococcus aureus infection | 0.003584 | 5 (68) |
Tuberculosis | 0.023397 | 6 (179) |
Purine metabolism | 0.029284 | 5 (130) |
Proteoglycans in cancer | 0.032434 | 6 (203) |
Salivary secretion | 0.040032 | 4 (90) |
Breed | Number of SNPs | Nucleotide Diversity | Inbreeding Coefficient 1 | Average r2 (50 kb) |
---|---|---|---|---|
Du’an goat | 17,317,364 | 0.001905 | 0.06613 | 0.3674 |
Iranian indigenous goat 2 | 35,742,191 | 0.001998 | 0.06229 | 0.087908 |
Moroccan indigenous goat 2 | 32,914,220 | 0.001859 | 0.06143 | 0.079364 |
Saanen goat 2 | 36,845,217 | 0.001783 | 0.00207 | 0.063634 |
Nubian goat 2 | 23,726,534 | 0.001117 | −0.0234 | 0.487128 |
Boer goat 2 | 32,384,827 | 0.001724 | −0.04455 | 0.091387 |
Korean indigenous goat 2 | 37,715,208 | 0.001472 | 0.01661 | 0.161031 |
Capra aegagrus2 | 39,222,625 | 0.001804 | 0.06821 | 0.087908 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Q.; Wang, Z.; Sun, J.; Huang, Y.; Hanif, Q.; Liao, Y.; Lei, C. Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock. Animals 2020, 10, 994. https://doi.org/10.3390/ani10060994
Chen Q, Wang Z, Sun J, Huang Y, Hanif Q, Liao Y, Lei C. Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock. Animals. 2020; 10(6):994. https://doi.org/10.3390/ani10060994
Chicago/Turabian StyleChen, Qiuming, Zihao Wang, Junli Sun, Yingfei Huang, Quratulain Hanif, Yuying Liao, and Chuzhao Lei. 2020. "Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock" Animals 10, no. 6: 994. https://doi.org/10.3390/ani10060994
APA StyleChen, Q., Wang, Z., Sun, J., Huang, Y., Hanif, Q., Liao, Y., & Lei, C. (2020). Identification of Genomic Characteristics and Selective Signals in a Du’an Goat Flock. Animals, 10(6), 994. https://doi.org/10.3390/ani10060994