Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia
Abstract
:Simple Summary
Abstract
1. Introduction
2. Non-Typhoidal Salmonella Outbreaks in Humans
2.1. New South Wales
2.2. Victoria
2.3. South Australia
2.4. Queensland
2.5. Tasmania
2.6. Australian Capital Territory
2.7. Northern Territory
3. Prevalence of Non-Typhoidal Salmonella in Foods of Animal Origin
3.1. New South Wales
3.2. Victoria
3.3. Western Australia
3.4. South Australia
3.5. Queensland
3.6. Multi-States
4. Antimicrobial Resistance Patterns of Non-Typhoidal Salmonella at the Human–Food Interface in Australia
4.1. New South Wales
4.2. Victoria
4.3. Western Australia
4.4. South Australia
4.5. Multi-States
5. Food-Related Origin of Salmonella Infections/Outbreaks in Australian States
6. Management Strategies
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
State/Region | Year | Place | Age Range | No. of Cases with Symptoms | No. of Lab-Confirmed Cases | No. of Hospitalisations | No. of Deaths | Suspected Source(s) | Serotype(s) | Reference |
---|---|---|---|---|---|---|---|---|---|---|
NSW | 2018–19 | Metropolitan Sydney region | - | 193 | - | - | - | 13 NSW poultry egg facilities | Enteritidis | [49] |
2015 | Shopping complex | 3–45 | 19 | 6 | 1 | - | Cooked-tuna sushi rolls | Agona | [16] | |
2015 | Bakery | 1–77 | 26 | 19 | - | - | Vietnamese bread rolls containing pork or chicken with chicken-liver pâté and raw egg mayonnaise filling | Typhimurium | [30] | |
2014 | High-profile sports club | - | 35 | 10 | - | - | Lamb meal supplied by an external caterer | Typhimurium | [31] | |
2011 | Vietnamese bakery | 1–75 | 83 | 47 | 20 | - | Chicken, pork and salad rolls | Typhimurium | [29] | |
2010 | Kebab takeaway shop | 7–70 | 45 | 31 | 8 | - | Chicken kebab roll containing hummus and tabbouleh | Typhimurium | [47] | |
2009 | Privately catered barbeque at a sport club | 1–70 | 71 | 30 | 13 | - | Raw egg mayonnaise used in a Russian salad | Typhimurium | [32] | |
2008 | Private seller/restaurant | 3–91 | - | 44 | 6 | - | Egg/egg-containing dishes | Typhimurium | [33] | |
2008 | Aged-care facility | median age 81.5 years | 10 | 8 | - | - | Raw egg dessert | Typhimurium | [26] | |
2007 | Bakery | 1–74 | 365 | 319 | 136 | - | Mayonnaise-containing raw egg | Typhimurium | [27] | |
2005 | - | 11–81 | - | 37 | - | - | Lambs’ liver | Typhimurium | [36] | |
2002 | Restaurant | 1–77 | 17 | 12 | 2 | - | Shell egg-based salad dressings | Potsdam | [34] | |
VIC | 2002 | Bakery | - | - | 10 | - | - | Contaminated eggs or cream | Typhimurium | [50] |
2001 | Hotel buffet | 7–72 | 18 | 4 | 2 | - | Lambs’ fry | Typhimurium | [14] | |
SA | 2017–18 | - | 1–91 | - | 25 | 10 | - | Free-range eggs | Hessarek | [51] |
2009 | Wedding | 2–90 | 30 | 9 | - | - | Garlic aioli containing raw egg yolk | Typhimurium | [58] | |
2005 | Catered luncheons | 21–63 | 61 | 32 | - | - | Bread rolls contaminated with chicken | Typhimurium | [57] | |
2003 | Commercial food outlets | 3–82 | - | 6 | - | - | Cheesecake containing eggs | Typhimurium | [56] | |
2001 | Aged-care facility | - | 18 | 13 | 3 | - | Pie glaze containing raw egg | Typhimurium | [54] | |
2001 | Christmas function | - | - | 11 | 4 | - | Eggs used in preparing tiramisu | Typhimurium | [53] | |
2001 | Italian restaurant | 26–31 | - | 2 | - | - | Unrecognised | Zanzibar | [55] | |
2000 | Chinese restaurant | 1–77 | - | 6 | - | - | Unrecognised | Typhimurium | [142] | |
QLD | 2007 | Restaurants | 1–54 | - | 44 | - | - | Egg | Typhimurium | [143] |
2003 | Restaurant | 2–75 | 19 | 13 | - | - | Roast pork | Typhimurium | [60] | |
2004 | Brisbane CBD (lunch meal) | 20–39 | 13 | 11 | - | - | Sushi | Singapore | [61] | |
2002 | Child-care centre | 1–5 | 16 | 10 | - | - | Egg sandwich | Typhimurium | [59] | |
WA | 2000 | Religious festival celebration | 1–73 | 53 | 14 | - | - | Mock ice-cream dessert containing raw eggs | Typhimurium | [144] |
TAS | 2007 | Bakery | NA | - | 18 | - | - | Bakery products | Typhimurium | [63] |
Retail businesses | NA | - | 2 | - | - | Eggs or dishes containing eggs | Typhimurium | |||
2008 | Restaurant | NA | - | 47 | - | - | Chicken sandwiches containing aioli | Typhimurium | ||
2005 | Group functions and restaurants | 1–86 | - | 125 | - | - | Products containing raw egg | Typhimurium | [62] | |
ACT | 2012 | Café | 19–62 | - | 20 | 2 | - | Eggs benedict | Typhimurium | [64] |
2009 | Restaurant | 9–71 | 20 | 9 | - | - | Tiramisu dessert containing raw egg | Typhimurium | [66] | |
2008 | Restaurant | 3–53 | 24 | 16 | 2 | - | Eggs and hollandaise sauce | Typhimurium | [65] | |
NT | 2017 | Aboriginal community | 3–63 | 22 | 7 | 2 | - | Sea-turtle meat | Muenchen | [17] |
2015 | Restaurant | 16–74 | 21 | 9 | 7 | - | Duck prosciutto | Typhimurium | [15] | |
2009 | Car rally | 21–72 | 76 | - | - | - | Barramundi fillets | Litchfield | [69] |
State | Product | Sample size | Percentage Positive | Predominant Serotype(s) | Detection Method | Reference |
---|---|---|---|---|---|---|
NSW | Chicken meat | 549 | 47.70 | Sofia Infantis Typhimurium Kiambu Subsp. 1 | Cultural | [79] |
Chicken carcasses | 90 | 47.80 | Salmonella spp. | APIA | [80] | |
90 | 37.80 | AS | ||||
90 | 20.00 | USDA | ||||
VIC | Eggs | 8958 | 0.002 | Typhimurium | [81] | |
0.005 | Infantis | |||||
Raw milk | 15 | 7.00 | Salmonella spp. | Cultural | [82] | |
SA | Free-range eggs | - | 1.34 | Salmonella spp. | Cultural | [92] |
Pooled shell crush | 100 | 1.00 | Mbandaka | Cultural | [91] | |
Caged eggs | 72 | 2.70 | Mbandaka | Cultural | [90] | |
Cage-laid eggs | 521 | 4.00 | Oranienburg Worthington Typhimurium | Cultural—quantitative polymerase chain reaction (PCR) | [89] | |
Cage-laid eggs | 310 pooled samples | 4.50 | Infantis | Cultural | [88] | |
Cage-laid eggs | 60 pooled sample | 7.00 | Infantis | Cultural | [87] | |
Retail chicken meat | 365 | 38.80 | Infantis Typhimurium Sofia Kiambu | Cultural, ELISA kit | [93] | |
Retail table eggs | 199 pooled samples | 3.50 | Infantis Typhimurium Johannesburg | |||
Cage-laid eggs | 500 | 0.00 | - | Cultural | [86] | |
Whole chicken, skinless breasts, livers | 260 | 53.70 | - | Cultural | [92] | |
Kangaroo carcasses | 60 | 0.00 | - | Cultural | [95] | |
385 | 1.04 | Muenchen Singapore | ||||
Minced kangaroo meat | 50 | 18.00 | Muenchen Havana | |||
Abdominal cavities of kangaroo carcasses | 120 | 12.00 | Singapore Zehlendorf Infantis Fremantle Anatum Sofia Kottbus Rubislaw | |||
QLD | Chicken meat | 310 | 35.50 | Sofia Infantis Typhimurium Kiambu Subsp. 1 | Cultural | [79] |
Goat carcasses | 121 | 28.90 | Saintpaul Typhimurium Chester Agona | Cultural | [97] | |
Feral pig carcasses | 217 | 1.38 | Salmonella spp. | Automated PCR | [100] | |
Frozen chicken nuggets | 300 batch | 8.70 | Salmonella subsp. I Salmonella subsp. II (Sofia) Typhimurium | Cultural | [102] | |
Kangaroo carcasses | 836 | 0.84 | Emmastad Rubislaw Eastbourne Muenchen Havana Saintpaul Reading | Automated PCR | [96] | |
Pre-chill cattle carcasses | 100 | 2.00 | Muenchen | Cultural | [98] | |
Chilled cattle carcasses | 100 | 3.00 | Bredeney Give Mbandaka Muenchen | |||
Egg and egg products (whole egg, egg pulp, egg yolk and individual farm egg pulp) | 1031 | 32.00 | Singapore Mbandaka Cerro Typhimurium Infantis | Cultural | [103] | |
WA | Pooled caecal samples | 200 | 26.50 | Sofia Abortusovis Adelaide Typhimurium | [114] | |
Retail table eggs | 200 pooled samples | 11.50 | Typhimurium Infantis | Cultural | [85] | |
Intestinal contents of rangeland goats | 400 | 26.50 | Typhimurium Chester Saintpaul | [84] | ||
Multi-States | Lymph nodes of beef cattle carcasses | 1464 | 0.48 | Typhimurium Virchow Dublin Kentucky Chailey | BAX PCR assay | [112] |
Sheep and lamb legs | 613 | 2.70 | Bovismorbificans Adelaide Saintpaul Typhimurium Havana Newport Tennessee Chester Kottbus Infantis Hvittingvoss | Cultural | [110] | |
Shoulders | 613 | 0.80 | ||||
Frozen boneless sheep/lamb products | 551 | 3.00 | ||||
Frozen boneless beef | 1165 | 0.00 | Salmonella spp. | Cultural | [107] | |
Beef primal cuts | 1144 | 0.00 | ||||
Fresh pork sausages | 116 | 8.60 | Salmonella spp. | Cultural | [116] | |
Fresh pork mince | 148 | 1.50 | ||||
Pre-chill sheep carcasses | 164 | 1.30 | Salmonella spp. | Automated immunomagnetic separation | [111] | |
Chicken carcasses | 90 | 99.00 | Sofia Typhimurium Chester | Cultural | [113] | |
180 | 38.30 | |||||
Ground beef | 360 | 1.10 | Typhimurium | Cultural | [104] | |
Diced lamb | 360 | 0.60 | Infantis Typhimurium | |||
Chilled sheep carcasses | 1117 | 0.00 | Salmonella spp. | Cultural | [109] | |
Frozen boneless sheep meat | 560 | 0.50 | ||||
Chilled beef carcasses | 1155 | 0.00 | Salmonella spp. | Cultural | [106] | |
Frozen boneless beef | 1082 | 0.09 | ||||
Beef carcasses | 1275 | 0.20 | Salmonella spp. | Cultural | [105] | |
Frozen boneless beef | 990 | 0.10 | ||||
Sheep carcasses | 917 | 0.10 | Salmonella spp. | Cultural | [108] | |
Frozen boneless sheep meat | 467 | 1.30 |
State/ Region | Source | Species/Serotype | Antibiotic | Resistance % | Applied Method | Reference |
---|---|---|---|---|---|---|
NSW | Diarrhoeal calves’ faeces | Salmonella spp. | Ampicillin | 18.4 | Kirby–Bauerdisc diffusion | [126] |
Combination sulphonamides | 21.1 | |||||
Tetracycline | 11.8 | |||||
Sulfamethoxazole/trimethoprim | 11.8 | |||||
Neomycin | 13.2 | |||||
Ceftiofur | 1.3 | |||||
Kanamycin | 9.2 | |||||
Apramycin | 5.3 | |||||
Amoxycillin/clavulanic acid | 1.3 | |||||
Streptomycin | 25 | |||||
Nalidixic acid | 0 | |||||
Amikacin | 0 | |||||
Livestock | Salmonella spp. | Amoxicillin/clavulanic | 0 | [127] | ||
Cefalexin | 0 | |||||
Cefoxitin | 0 | |||||
Cefotaxime | 0 | |||||
Cefepime | 0 | |||||
Nalidixic acid | 0 | |||||
Ciprofloxacin | 0 | |||||
Imipenem | 0 | |||||
Azithromycin | 0 | |||||
Sulfafurazole | 28.5 | |||||
Ampicillin | 17 | |||||
Tetracycline | 15.8 | |||||
Trimethoprim | 8.5 | |||||
Neomycin | 4.2 | |||||
Apramycin | 3 | |||||
Chloramphenicol | 2.4 | |||||
Gentamicin | 1.2 | |||||
Ticarcillin/clavulanic acid | 0.6 | |||||
VIC | Bovine, ovine and caprine dairy farm environments | Orion Infantis Zanzibar | Amoxicillin and clavulanic acid | NA | [128] | |
Ampicillin | 0 | |||||
Cefazolin | 0 | |||||
Cefotaxime | 0 | |||||
Cefoxitin | 0 | |||||
Ceftiofur | 0 | |||||
Ceftriaxone | 0 | |||||
Chloramphenicol | 0 | |||||
Ciprofloxacin | 0 | |||||
Chloramphenicol | 0 | |||||
Gentamicin | 0 | |||||
Kanamycin | 0 | |||||
Meropenem | 0 | |||||
Nalidixic acid | 0 | |||||
Streptomycin | 0 | |||||
Tetracycline | 0 | |||||
Sulfamethoxazole/trimethoprim | 0 | |||||
SA | Backyard chicken’s faeces | Salmonella subsp. 2 ser 21: z10: z6 (Wandsbek) | Ampicillin | - | Disc diffusion | [130] |
Cephalothin | - | |||||
WA | Retail table eggs | Typhimurium | Ampicillin | 6.7 | Micro-broth dilution | [85] |
Typhimurium Infantis | Sulfamethoxazole | 0 | ||||
Trimethoprim | 0 | |||||
Gentamicin | 0 | |||||
Azithromycin | 0 | |||||
Ciprofloxacin | 0 | |||||
Nalidixic Acid | 0 | |||||
Tetracycline | 0 | |||||
Tigecycline | 0 | |||||
Meropenem | 0 | |||||
Ceftazidime | 0 | |||||
Cefotaxime | 0 | |||||
Colistin | 0 | |||||
Chloramphenicol | 0 | |||||
Intestinal content of rangeland goats | Salmonella spp. | Azithromycin | 14.2 | Broth microdilution assay | [84] | |
Tetracycline | 10.5 | |||||
Ampicillin | 5.7 | |||||
Amoxicillin–clavulanate | 3.8 | |||||
Cefoxitin | 3.8 | |||||
Trimethoprim/sulfamethoxazole | 1.9 | |||||
Gentamicin | 0.9 | |||||
Streptomycin | 0.9 | |||||
Multi-States | Beef cattle faeces | Florfenicol | 29.2 | [129] | ||
Streptomycin | 7.5 | |||||
Ampicillin | 7.5 | |||||
Trimethoprim/sulfamethoxazole | 7.5 | |||||
Tetracycline | 6.6 | |||||
Cephalosporins | 0 | |||||
Fluoroquinolones | 0 | |||||
Dairy cattle faeces | Florfenicol | 34.7 | ||||
Cephalosporins | 0 | |||||
Fluoroquinolones | 0 | |||||
Veal calf faeces | Florfenicol | 38.9 | ||||
Cephalosporins | 0 | |||||
Fluoroquinolones | 0 | |||||
Caecal contents of slaughter-age pigs | Salmonella spp. | Ampicillin | 20.3 | Micro-broth dilution | [133] | |
Tetracycline | 26.1 | |||||
Chloramphenicol | 7.3 | |||||
Trimethoprim/sulfamethoxazole | 11.6 | |||||
Amoxicillin/clavulanate | 2.9 | |||||
Gentamicin | 2.9 | |||||
Streptomycin | 22 | |||||
Ceftiofur | 0 | |||||
Cefoxitin | 0 | |||||
Ceftriaxone | 0 | |||||
Ciprofloxacin | 0 | |||||
Caged layer flocks | Mbandaka | Amoxycillin | 6.66 | Broth microdilution | [131] | |
Ampicillin | 6.66 | |||||
Cephalothin | 3.33 | |||||
Tetracycline | 16.66 | |||||
Trimethoprim | 3.33 | |||||
Typhimurium | Amoxycillin | 3.84 | ||||
Ampicillin | 3.84 | |||||
Tetracycline | 3.84 | |||||
Worthington | Amoxycillin | 16.12 | ||||
Ampicillin | 16.12 | |||||
Cephalothin | 6.45 | |||||
Lot-fed cattle | Typhimurium | Ticarcillin/clavulanic acid | 1 isolate | VITEK Juniorsystem | [135] | |
Trimethoprim/sulfamethoxazole | ||||||
Trimethoprim | ||||||
Typhimurium | Amikacin | 1 isolate | ||||
Ampicillin | ||||||
Ceftazidime | ||||||
Typhimurium | Nitrofurantoin | 1 isolate | ||||
Typhimurium | Ticarcillin/clavulanic acid | 1 isolate | ||||
Grass-fed cattle | Give | Cephalothin | 1 isolate | |||
Human Animal food products | Weltevreden | Ampicillin | 2.2 | MIC | [134] | |
Streptomycin | 2.2 | |||||
Sulfamethoxazole | 2.2 | |||||
Tetracycline | 2.2 | |||||
Trimethoprim | 2.2 | |||||
Nalidixic acid | 0 | |||||
Neomycin | 0 | |||||
Chloramphenicol | 0 | |||||
Florphenicol | 0 | |||||
Caecal samples of chickens at slaughter | Sofia | Streptomycin | 1.9 | MIC | [114] | |
Ampicillin | 3.8 | |||||
Cefoxitin | 11.3 | |||||
Salmonella spp. | Ceftiofur | 0 | ||||
Chloramphenicol | 0 | |||||
Ciprofloxacin | 0 | |||||
Colistin | 0 | |||||
Florfenicol | 0 | |||||
Gentamicin | 0 | |||||
Tetracycline | 0 | |||||
Trimethoprim/sulf | 0 | |||||
Ceftriaxone | 0 | |||||
Amoxicillin–clavulanate | 0 |
References
- Moore, C.; Banura, P.; Pegues, D.; Miller, S. Nontyphoidal salmonellosis. In Tropical Infectious Diseases, 3rd ed.; Guerrant, R., Walker, D., Weller, P., Eds.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2011; pp. 128–136. [Google Scholar]
- Mishu, B.; Koehler, J.; Lee, L.; Tauxe, R. Outbreaks of Salmonella enteritidis infections in the United States, 1985–1991. J. Infect. Dis. 1994, 169, 547–552. [Google Scholar] [CrossRef] [PubMed]
- Angulo, F.J.; Tippen, S.; Sharp, D.J.; Payne, B.J.; Collier, C.; Hill, J.E.; Barrett, T.J.; Clark, R.M.; Geldreich, E.E.; Donnell, H.D.; et al. A community waterborne outbreak of salmonellosis and the effectiveness of a boil water order. Am. J. Public Health 1997, 87, 580–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriksen, R.S.; Vieira, A.R.; Karlsmose, S.; Lo Fo Wong, D.M.A.; Jensen, A.B.; Wegener, H.C.; Aarestrup, F.M. Global monitoring of Salmonella serovar distribution from the World Health Organization global foodborne infections network country data bank: Results of quality assured laboratories from 2001 to 2007. Foodborne Pathog. Dis. 2011, 8, 887–900. [Google Scholar] [CrossRef] [Green Version]
- Sterzenbach, T.; Crawford, R.W.; Winter, S.E.; Bäumler, A.J. Salmonella virulence mechanisms and their genetic basis. In Salmonella in Domestic Animals, 2nd ed.; Barrow, P.A., Methner, U., Eds.; CAB International: Wallingford, UK, 2013; pp. 80–103. [Google Scholar]
- Uche, I.V.; MacLennan, C.A.; Saul, A. A systematic review of the incidence, risk factors and case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014). PLoS Negl. Trop. Dis. 2017, 11, e0005118. [Google Scholar] [CrossRef] [PubMed]
- Eng, S.K.; Pusparajah, P.; Ab Mutalib, N.S.; Ser, H.L.; Chan, K.G.; Lee, L.H. Salmonella: A review on pathogenesis, epidemiology and antibiotic resistance. Front. Life Sci. 2015, 8, 284–293. [Google Scholar] [CrossRef] [Green Version]
- Grassl, G.A.; Finlay, B.B. Pathogenesis of enteric Salmonella infections. Curr. Opin. Gastroenterol. 2008, 24, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Porwollik, S.; Dagan, A.; Marzel, A.; Schorr, Y.I.; Desai, P.T.; Agmon, V.; McClell, M.; Rahav, G.; Gal-Mor, O. Virulence gene profiling and pathogenicity characterization of non-typhoidal Salmonella accounted for invasive disease in humans. PLoS ONE 2013, 8, e58449. [Google Scholar] [CrossRef] [Green Version]
- Williamson, D.A.; Lane, C.R.; Easton, M.; Valcanis, M.; Strachan, J.; Veitch, M.G.; Kirk, M.D.; Howden, B.P. Increasing antimicrobial resistance in nontyphoidal Salmonella isolates in Australia from 1979 to 2015. Antimicrob. Agents Chemother. 2018, 62, e02012-17. [Google Scholar] [CrossRef] [Green Version]
- Crim, S.M.; Griffin, P.M.; Tauxe, R.; Marder, E.P.; Gilliss, D.; Cronquist, A.B.; Cartter, M.; Tobin-D’Angelo, M.; Blythe, D.; Smith, K.; et al. Preliminary incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 U.S. Sites, 2006–2014. Morb. Mortal. Wkly. Rep. 2015, 64, 495–498. [Google Scholar]
- Schmutz, C.; Mausezahl, D.; Jost, M.; Baumgartner, A.; Mausezahl-Feuz, M. Inverse trends of Campylobacter and Salmonella in Swiss surveillance data, 1988–2013. Eurosurveillance 2016, 21, 30130. [Google Scholar] [CrossRef]
- DTU Food. Annual Report on Zoonoses in Denmark 2013; National Food Institute, Technical University of Denmark: Søborg, Denmark, 2014. [Google Scholar]
- Greig, J.; Lalor, K.; Ferreira, C.; McCormick, E. An outbreak of Salmonella typhimurium phage type 99 linked to a hotel buffet in Victoria. Commun. Dis. Intell. Q. Rep. 2001, 25, 277–278. [Google Scholar] [PubMed]
- Draper, A.D.; Morton, C.N.; Heath, J.N.; Lim, J.A.; Schiek, A.I.; Davis, S.; Krause, V.L.; Markey, P.G. An outbreak of salmonellosis associated with duck prosciutto at a Northern Territory restaurant. Commun. Dis. Intell. Q. Rep. 2017, 41, E16–E20. [Google Scholar]
- Thompson, C.K.; Wang, Q.; Bag, S.K.; Franklin, N.; Shadbolt, C.T.; Howard, P.; Fearnley, E.J.; Quinn, H.E.; Sintchenko, V.; Hope, K.G. Epidemiology and whole genome sequencing of an ongoing point-source Salmonella Agona outbreak associated with sushi consumption in western Sydney, Australia 2015. Epidemiol. Infect. 2017, 145, 2062–2071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Draper, A.D.K.; James, C.L.; Pascall, J.E.; Shield, K.J.; Langrell, J.; Hogg, A. An outbreak of Salmonella Muenchen after consuming sea turtle, Northern Territory, Australia, 2017. Commun. Dis. Intell. Q. Rep. 2017, 41, E290–E294. [Google Scholar] [PubMed]
- Glass, K.; Fearnley, E.; Hocking, H.; Raupach, J.; Veitch, M.; Ford, L.; Kirk, M.D. Bayesian source attribution of salmonellosis in South Australia. Risk Anal. 2016, 36, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, C.R.; Musto, J.; Pingault, N.; Miller, M.; Stafford, R.; Gregory, J.; Polkinghorne, B.G.; Kirk, M.D. Salmonella Typhimurium and outbreaks of egg-associated disease in Australia, 2001 to 2011. Foodborne Pathog. Dis. 2016, 13, 379–385. [Google Scholar] [CrossRef]
- OzFoodNet Working Group. OzFoodNet quarterly report, 1 April to 30 June 2014. Commun. Dis. Intell. Q. Rep. 2016, 40, E290–E296. [Google Scholar]
- Crump, J.A.; Medalla, F.M.; Joyce, K.W.; Krueger, A.L.; Hoekstra, R.M.; Whichard, J.M.; Barzilay, E.J.; Emerging Infections Program NARMS Working Group. Antimicrobial resistance among invasive nontyphoidal Salmonella enterica isolates in the United States: National Antimicrobial Resistance Monitoring System, 1996 to 2007. Antimicrob. Agents Chemother. 2011, 55, 1148–1154. [Google Scholar] [CrossRef] [Green Version]
- Ceyssens, P.J.; Mattheus, W.; Vanhoof, R.; Bertrand, S. Trends in serotype distribution and antimicrobial susceptibility in Salmonella enterica isolates from humans in Belgium, 2009 to 2013. Antimicrob. Agents Chemother. 2015, 59, 544–552. [Google Scholar] [CrossRef] [Green Version]
- World Health Organisation. Antimicrobial Resistance; Global Report on surveillance; World Health Organisation: Geneva, Switzerland, 2014; Available online: http://www.who.int/drugresistance/documents/surveillancereport/en/ (accessed on 10 May 2020).
- Centers for Disease Prevention and Control. Antibiotic Resistance Threats in the United States 2013; Centers for Disease Prevention and Control: Atlanta, GA, USA, 2014. Available online: https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf (accessed on 10 May 2020).
- Ford, L.; Glass, K.; Veitch, M.; Wardell, R.; Polkinghorne, B.; Dobbins, T.; Lal, A.; Kirk, M.D. Increasing incidence of Salmonella in Australia, 2000–2013. PLoS ONE 2016, 11, e0163989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts-Witteveen, A.R.; Campbell, B.A.; Merritt, T.D.; Massey, P.D.; Shadbolt, C.T.; Durrheim, D.N. Egg-associated Salmonella outbreak in an aged care facility, New South Wales, 2008. Commun. Dis. Intell. Q. Rep. 2009, 33, 49–52. [Google Scholar] [PubMed]
- Mannes, T.; Gupta, L.; Craig, A.; Rosewell, A.; McGuinness, C.A.; Musto, J.; Shadbolt, C.; Biffin, B. A large point-source outbreak of Salmonella Typhimurium phage type 9 linked to a bakery in Sydney, March 2007. Commun. Dis. Intell. Q. Rep. 2010, 34, 41–48. [Google Scholar] [PubMed]
- Victorian Government Department of Human Services. Surveillance of Notifiable Infectious Diseases in Victoria 1997; Victorian Government Department of Human Services: Melbourne, Australia, 2011.
- Norton, S.; Huhtinen, E.; Conaty, S.; Hope, K.; Campbell, B.; Tegel, M.; Boyd, R.; Cullen, B. A large point-source outbreak of Salmonella Typhimurium linked to chicken, pork and salad rolls from a Vietnamese bakery in Sydney. West. Pac. Surveill. Response J. 2012, 3, 16–23. [Google Scholar]
- Chandra, M.; Lord, H.; Fletcher-Lartey, S.; Alexander, K.; Egana, N.; Conaty, S. A Salmonella Typhimurium outbreak linked to Vietnamese bread rolls in South Western Sydney, Australia, 2015. West. Pac. Surveill. Response J. 2017, 8, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, K.; Johnstone, T.; Huhtinen, E.; Najjar, Z.; Lorentzos, P.; Shadbolt, C.; Shields, J.; Gupta, L. Foodborne illness outbreak investigation in a high-profile sports club. Sports Med.-Open 2017, 3, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jardine, A.; Ressler, K.A.; Botham, S.; Irwin, M.J.; Shadbolt, C.; Vally, H.; Ferson, M.J. An outbreak of Salmonella typhimurium 108/170 at a privately catered barbeque at a Sydney sports club. Foodborne Pathog. Dis. 2011, 8, 1215–1219. [Google Scholar] [CrossRef]
- Craig, A.T.; Musto, J.A.; Carroll, T.F.; Roberts-Witteveen, A.R.; McCarthy, R.A.; Wang, Q. An investigation of Salmonella Typhimurium linked to contaminated eggs on the Central Coast of NSW, 2008. NSW Public Health Bull. 2013, 24, 99–101. [Google Scholar]
- Unicomb, L.; Bird, P.; Dalton, C. Outbreak of Salmonella Potsdam associated with salad dressing at a restaurant. Commun. Dis. Intell. Q. Rep. 2003, 27, 508–512. [Google Scholar]
- National Enteric Pathogen Surveillance Scheme (NEPSS) Data; Microbiological Diagnostic Unit, Department of Microbiology and Immunology, The University of Melbourne: Melbourne, Australia, 2002.
- Hess, I.M.; Neville, L.M.; McCarthy, R.; Shadbolt, C.T.; McAnulty, J.M. A Salmonella Typhimurium 197 outbreak linked to the consumption of lambs’ liver in Sydney, NSW. Epidemiol. Infect. 2008, 136, 461–467. [Google Scholar] [CrossRef]
- Layton, M.C.; Calliste, S.G.; Gomez, T.M.; Patton, C.; Brooks, S. A mixed foodborne outbreak with Salmonella Heidelberg and Campylobacter jejuni in a nursing home. Infect. Control. Hosp. Epidemiol. 1997, 18, 115–121. [Google Scholar] [CrossRef]
- Cornell, J.; Neal, K.R. Protracted outbreak of Salmonella Typhimurium definite phage type 170 food poisoning related to tripe, ‘pig bag’, and chitterlings. Commun. Dis. Public Health 1998, 1, 28–30. [Google Scholar] [PubMed]
- Dione, M.M.; Geerts, S.; Antonio, M. Characterisation of novel strains of multiply antibiotic-resistant Salmonella recovered from poultry in Southern Senegal. J. Infect. Dev. Ctries. 2011, 6, 436–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haley, C.; Dargatz, D.A.; Bush, E.J.; Erdman, M.M.; Fedorka-Cray, P.J. Salmonella prevalence and antimicrobial susceptibility from the national animal health monitoring system swine 2000 and 2006 studies. J. Food Prot. 2012, 75, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Quiroz-Santiago, C.; Rodas-Suárez, O.R.; Carlos, R.V.; Fernández, F.J.; Quiñones-Ramírez, E.I.; Vázquez-Salinas, C. Prevalence of Salmonella in vegetables from Mexico. J. Food Prot. 2009, 72, 1279–1282. [Google Scholar] [CrossRef]
- Nicolay, N.; Thornton, L.; Cotter, S.; Garvey, P.; Bannon, O.; McKeown, P.; Cormican, M.; Fisher, I.; Little, C.; Boxall, N.; et al. Salmonella enterica serovar Agona European outbreak associated with a food company. Epidemiol. Infect. 2011, 139, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Anderson, P.N.; Hume, M.E.; Byrd, J.A.; Hernandez, C.; Stevens, S.M.; Stringfellow, K.; Caldwell, D.J. Molecular analysis of Salmonella serotypes at different stages of commercial turkey processing. Poult. Sci. 2010, 89, 2030–2037. [Google Scholar] [CrossRef]
- Brouard, C.; Espié, E.; Weill, F.X.; Kérouanton, A.; Brisabois, A.; Forgue, A.M.; Vaillant, V.; de Valk, H. Two consecutive large outbreaks of Salmonella enterica serotype Agona infections in infants linked to the consumption of powdered infant formula. Pediat. Infect. Dis. 2007, 26, 148–152. [Google Scholar] [CrossRef]
- Diez-Garcia, M.; Capita, R.; Alonso-Calleja, C. Influence of serotype on the growth kinetics and the ability to form biofilms of Salmonella isolates from poultry. Food Microbiol. 2012, 31, 173–180. [Google Scholar] [CrossRef]
- The National Enteric Pathogens Surveillance System (NEPSS). Communicable diseases surveillance–Additional reports. Commun. Dis. Intell. Q. Rep. 2006, 30, 486–494. [Google Scholar]
- Torres, M.I.; Lewis, P.; Cook, L.; Cook, P.; Kardamanidis, K.; Shadbolt, C.; Campbell, B. An outbreak of Salmonella Typhimurium linked to a kebab takeaway shop. Commun. Dis. Intell. Q. Rep. 2012, 36, 101–106. [Google Scholar]
- Chousalkar, K.K.; Sexton, M.; McWhorter, A.; Hewson, K.; Martin, G.; Shadbolt, C.; Goldsmith, P. Salmonella typhimurium in the Australian egg industry: Multidisciplinary approach to addressing the public health challenge and future directions. Crit. Rev. Food Sci. Nutr. 2017, 57, 2706–2711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- NSW Government. Food Authority. Annual Report, 2018–2019. 2020. Available online: https://www.foodauthority.nsw.gov.au/sites/default/files/2020-01/annual_report_2018_19.pdf (accessed on 15 June 2020).
- Tomaska, N.A.; Lalor, K.; Gregory, J.E.; O’Donnell, H.J.; Dawood, F.; Williams, C.M. Salmonella typhimurium U290 outbreak linked to a bakery. Commun. Dis. Intell. Q. Rep. 2003, 27, 514–516. [Google Scholar] [PubMed]
- Kenny, B.; Miller, M.J.; McEvoy, V.; Centofanti, A.; Stevens, C.P.; Housen, T. A protracted outbreak of Salmonella Hessarek infection associated with one brand of eggs—South Australia, March 2017-July 2018. Commun. Dis. Intell. (2018) 2019, 43. [Google Scholar] [CrossRef] [PubMed]
- Australian Bureau of Statistics. 3101.0-Australian Demographic Statistics, Dec 2013 [Internet] Canberra. 2014 [Revised 24 September 2014]. Available online: http://www.abs.gov.au/AUSSTATS/[email protected]/allprimarymainfeatures/FA627CA7C5708380CA257D5D0015EB95?opendocument (accessed on 8 August 2018).
- Hall, R. Outbreak of gastroenteritis due to Salmonella typhimurium phage type I 35a following consumption of raw egg. Commun. Dis. Intell. Q. Rep. 2002, 26, 285–287. [Google Scholar] [PubMed]
- Tribe, I.G.; Cowell, D.; Cameron, P.; Cameron, S. An outbreak of Salmonella typhimurium phage type 135 infection linked to the consumption of raw shell eggs in an aged care facility. Commun. Dis. Intell. Q. Rep. 2002, 26, 38–39. [Google Scholar]
- Tribe, I.G.; Cameron, S. Salmonella Zanzibar in rural South Australia. Commun. Dis. Intell. Q. Rep. 2001, 25, 102. [Google Scholar]
- Fielding, J.E.; Snell, P.; Milazzo, A.; Del Fabbro, L.; Raupach, J. An outbreak of Salmonella typhimurium phage type 4 linked to cold set cheesecake. Commun. Dis. Intell. Q. Rep. 2003, 27, 513–514. [Google Scholar]
- Moffatt, C.R.; Combs, B.G.; Mwanri, L.; Holland, R.; Delroy, B.; Cameron, S.; Givney, R.C. An outbreak of Salmonella Typhimurium phage type 64 gastroenteritis linked to catered luncheons in Adelaide, South Australia, June 2005. Commun. Dis. Intell. Q. Rep. 2006, 30, 443–448. [Google Scholar]
- Denehy, E.J.; Raupach, J.C.; Cameron, S.A.; Lokuge, K.M.; Koehler, A.P. Outbreak of Salmonella typhimurium phage type 44 infection among attendees of a wedding reception, April 2009. Commun. Dis. Intell. Q. Rep. 2011, 35, 192–196. [Google Scholar]
- McCall, B.J.; Bell, R.J.; Neill, A.S.; Micalizzi, G.R.; Vakaci, G.R.; Towner, C.D. An outbreak of Salmonella typhimurium phage type 135a in a child care centre. Commun. Dis. Intell. Q. Rep. 2003, 27, 257–259. [Google Scholar]
- Quinn, H.E.; Stafford, R.J.; Bell, R.J.; Blumke, G.; Young, M. A cluster of Salmonella Typhimurium phage type U307 associated with a restaurant. Commun. Dis. Intell. Q. Rep. 2005, 29, 83–84. [Google Scholar] [PubMed]
- Barralet, J.; Stafford, R.; Towner, C.; Smith, P. Outbreak of Salmonella Singapore associated with eating sushi. Commun. Dis. Intell. Q. Rep. 2004, 28, 527–528. [Google Scholar] [PubMed]
- Stephens, N.; Sault, C.; Firestone, S.M.; Lightfoot, D.; Bell, C. Large outbreaks of Salmonella Typhimurium phage type 135 infections associated with the consumption of products containing raw egg in Tasmania. Commun. Dis. Intell. Q. Rep. 2007, 31, 118–124. [Google Scholar] [PubMed]
- Stephens, N.; Coleman, D.; Shaw, K. Recurring outbreaks of Salmonella typhimurium phage type 135 associated with the consumption of products containing raw egg in Tasmania. Commun. Dis. Intell. Q. Rep. 2008, 32, 466–468. [Google Scholar]
- Moffatt, C.R.; Appuhamy, R.; Kaye, A.; Carswell, A.; Denehy, D. An outbreak of Salmonella Typhimurium phage type 135a gastroenteritis linked to eggs served at an Australian Capital Territory café. Commun. Dis. Intell. Q. Rep. 2012, 36, E281–E285. [Google Scholar]
- Dyda, A.; Hundy, R.; Moffatt, C.R.; Cameron, S. Outbreak of Salmonella Typhimurium 44 related to egg consumption. Commun. Dis. Intell. Q. Rep. 2009, 33, 414–418. [Google Scholar]
- Reynolds, A.; Moffatt, C.R.; Dyda, A.; Hundy, R.L.; Kaye, A.L.; Krsteski, R.; Rockliff, S.; Kampen, R.; Kelly, P.M.; O’Brien, E.D. An outbreak of gastroenteritis due to Salmonella Typhimurium phage type 170 associated with consumption of a dessert containing raw egg. Commun. Dis. Intell. Q. Rep. 2010, 34, 329–333. [Google Scholar]
- Gibbs, R.; Pingault, N.; Mazzucchelli, T.; O’Reilly, L.; MacKenzie, B.; Green, J.; Mogyorosy, R.; Stafford, R.; Bell, R.; Hiley, L.; et al. An outbreak of Salmonella enterica serotype Litchfield infection in Australia linked to consumption of contaminated papaya. J. Food Prot. 2009, 72, 1094–1098. [Google Scholar] [CrossRef] [Green Version]
- The OzFoodNet Working Group. OzFoodNet: Enhancing foodborne disease surveillance across Australia: Quarterly report, 1 July to 30 September 2003. Commun. Dis. Intell. Q. Rep. 2003, 27, 504–507. [Google Scholar]
- Wallace, P.; Kirk, M.D.; Munnoch, S.A.; Gunn, J.; Stafford, R.J.; Kelly, P.M. An outbreak of Salmonella Litchfield on a car rally, Northern Territory, 2009. Commun. Dis. Intell. Q. Rep. 2010, 34, 124–126. [Google Scholar]
- Bosch, S.; Tauxe, R.V.; Behravesh, C. Turtle-Associated Salmonellosis, United States, 2006–2014. Emerg. Infect. Dis. 2016, 22, 1149–1155. [Google Scholar] [CrossRef]
- United States Food & Drug Administration. Title 21, Code of Federal Regulation, Part 1240.62–Turtles Intrastate and Interstate Requirements. Code of Federal Regulations (US). 2016. Available online: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=1240.62 (accessed on 14 July 2019).
- Department of the Environment. Chelonia mydas in Species Profile and Threats Database, Australian Government Department of Environment, Canberra. 2017. Available online: http://www.environment.gov.au/sprat (accessed on 13 July 2017).
- O’Grady, K.; Krause, V. An Outbreak of Salmonellosis Linked to a Marine Turtle. North. Territ. Dis. Control Bull. 1998, 5, 1–5. Available online: http://digitallibrary.health.nt.gov.au/prodjspui/bitstream/10137/506/473/Vol.%205%20no%204%20December%201998.pdf (accessed on 1 June 2020).
- Gu, D.; Wang, Z.; Tian, Y.; Kang, X.; Meng, C.; Chen, X.; Pan, Z.; Jiao, X. Prevalence of Salmonella isolates and their distribution based on Whole-Genome Sequence in a chicken slaughterhouse in Jiangsu, China. Front. Vet. Sci. 2020, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Zwe, Y.H.; Tang, V.C.Y.; Aung, K.T.; Gutierrez, R.A.; Ng, L.C.; Yuk, H.G. Prevalence, sequence types, antibiotic resistance and, gyr Amutations of Salmonella isolated from retail fresh chicken meat in Singapore. Food Control. 2018, 90, 233–240. [Google Scholar] [CrossRef]
- Thung, T.Y.; Radu, S.; Mahyudin, N.A.; Rukayadi, Y.; Zakaria, Z.; Mazlan, N.; Tan, B.H.; Lee, E.; Yeoh, S.L.; Chin, Y.Z.; et al. Prevalence, virulence genes and antimicrobial resistance profiles of Salmonella serovars from retail beef in Selangor, Malaysia. Front. Microbiol. 2017, 8, 2697. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Ge, B.; De Villena, J.; Sudler, R.; Yeh, E.; Zhao, S.; White, D.G.; Wagner, D.; Meng, J. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., Area. Appl. Environ. Microbiol. 2001, 67, 5431–5436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://www.dpi.nsw.gov.au/about-us/publications/pdi/2018/poultry (accessed on 5 June 2020).
- Pointon, A.; Sexton, M.; Dowsett, P.; Saputra, T.; Kiermeier, A.; Lorimer, M.; Holds, G.; Arnold, G.; Davos, D.; Combs, B.; et al. A baseline survey of the microbiological quality of chicken portions and carcasses at retail in two Australian states (2005 to 2006). J. Food Prot. 2008, 71, 1123–1134. [Google Scholar] [CrossRef] [PubMed]
- King, S.; Galea, F.; Hornitzky, M.; Adams, M.C. A comparative evaluation of the sensitivity of Salmonella detection on processed chicken carcasses using Australian and US methodologies. Lett. Appl. Microbiol. 2008, 46, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Crabb, H.K.; Gilkerson, J.R.; Browning, G.F. Does only the age of the hen matter in Salmonella enterica contamination of eggs? Food Microbiol. 2019, 77, 1–9. [Google Scholar] [CrossRef]
- McAuley, C.M.; McMillan, K.; Moore, S.C.; Fegan, N.; Fox, E.M. Prevalence and characterization of foodborne pathogens from Australian dairy farm environments. J. Dairy Sci. 2014, 9, 7402–7412. [Google Scholar] [CrossRef]
- Meat and Livestock Australia (MLA). Going into Goats: A Practical Guide to Producing Goats in the Rangelands. 2016, Meat and Livestock Australia, North Sydney, Australia. Available online: http://www.rangelandgoats.com.au (accessed on 27 May 2020).
- Al-Habsi, K.; Jordan, D.; Harb, A.; Laird, T.; Yang, R.; O’Dea, M.; Jacobson, C.; Miller, D.W.; Ryan, U.; Abraham, S. Salmonella enterica isolates from Western Australian rangeland goats remain susceptible to critically important antimicrobials. Sci. Rep. 2018, 8, 15326. [Google Scholar] [CrossRef] [PubMed]
- Sodagari, H.R.; Baraa Mohammed, A.; Wang, P.; O’Dea, M.; Abraham, S.; Robertson, I.; Habib, I. Non-typhoidal Salmonella contamination in egg shells and contents from retail in Western Australia: Serovar diversity, multilocus sequence types, and phenotypic and genomic characterizations of antimicrobial resistance. Int. J. Food Microbiol. 2019, 308, 108305. [Google Scholar] [CrossRef] [PubMed]
- Chousalkar, K.K.; Flynn, P.; Sutherland, M.; Roberts, J.R.; Cheetham, B.F. Recovery of Salmonella and Escherichia coli from commercial egg shells and effect of translucency on bacterial penetration in eggs. Int. J. Food Microbiol. 2010, 142, 207–213. [Google Scholar] [CrossRef]
- Chousalkar, K.K.; Roberts, J.R. Recovery of Salmonella from eggshell wash, eggshell crush, and egg internal contents of unwashed commercial shell eggs in Australia. Poult. Sci. 2012, 91, 1739–1741. [Google Scholar] [CrossRef]
- Gole, V.C.; Chousalkar, K.K.; Roberts, J.R. Survey of Enterobacteriaceae contamination of table eggs collected from layer flocks in Australia. Int. J. Food Microbiol. 2013, 164, 161–165. [Google Scholar] [CrossRef]
- Gole, V.C.; Torok, V.; Sexton, M.; Caraguel, C.G.; Chousalkar, K.K. Association between the indoor environmental contamination of Salmonella with egg contamination on layer farms. J. Clin. Microbiol. 2014, 52, 3250–3258. [Google Scholar] [CrossRef] [Green Version]
- Gole, V.C.; Caraguel, C.G.; Sexton, M.; Fowler, C.; Chousalkar, K.K. Shedding of Salmonella in single age caged commercial layer flock at an early stage of lay. Int. J. Food Microbiol. 2014, 189, 61–66. [Google Scholar] [CrossRef]
- Moyle, T.; Drake, K.; Gole, V.; Chousalkar, K.; Hazel, S. Bacterial contamination of eggs and behaviour of poultry flocks in the free range environment. Comp. Immunol. Microbiol. Infect. Dis. 2016, 49, 88–94. [Google Scholar] [CrossRef]
- Gole, V.C.; Woodhouse, R.; Caraguel, C.; Moyle, T.; Rault, J.L.; Sexton, M.; Chousalkar, K. Dynamics of Salmonella Shedding and welfare of hens in free-range egg production systems. Appl. Environ. Microbiol. 2017, 83, e03313-16. [Google Scholar] [CrossRef] [Green Version]
- Fearnley, E.; Raupach, J.; Lagala, F.; Cameron, S. Salmonella in chicken meat, eggs and humans; Adelaide, South Australia, 2008. Int. J. Food Microbiol. 2011, 146, 219–227. [Google Scholar] [CrossRef]
- Sumner, J.; Raven, G.; Dean, P.; Dowsett, P.; Petrenas, E.; Weiring, R.; West, G.; Lillie, M.; Holds, G.; Pointon, A. A microbiological profile of poultry processed in South Australia. Food Aust. 2004, 56, 335–340. [Google Scholar]
- Holds, G.; Pointon, A.; Lorimer, M.; Kiermeier, A.; Raven, G.; Sumner, J. Microbial profiles of carcasses and minced meat from kangaroos processed in South Australia. Int. J. Food Microbiol. 2008, 123, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Eglezos, S.; Huang, B.; Stuttard, E. A survey of the microbiological quality of kangaroo carcasses processed for human consumption in two processing plants in Queensland, Australia. J. Food Prot. 2007, 70, 1249–1251. [Google Scholar] [CrossRef] [PubMed]
- Duffy, L.; Barlow, R.; Fegan, N.; Vanderlinde, P. Prevalence and serotypes of Salmonella associated with goats at two Australian abattoirs. Lett. Appl. Microbiol. 2009, 48, 193–197. [Google Scholar] [CrossRef]
- Fegan, N.; Vanderlinde, P.; Higgs, G.; Desmarchelier, P. A study of the prevalence and enumeration of Salmonella enterica in cattle and on carcasses during processing. J. Food Prot. 2005, 68, 1147–1153. [Google Scholar] [CrossRef]
- Australian Department of the Environment and Heritage. The feral pig (Sus scrofa). In Invasive Species Publications; Australian Department of the Environment and Heritage: Canberra, Australia, 2004. [Google Scholar]
- Eglezos, S.; Stuttard, E.; Huang, B.; Dykes, G.A.; Fegan, N. A survey of the microbiological quality of feral pig carcasses processed for human consumption in Queensland, Australia. Foodborne Pathog. Dis. 2008, 5, 105–109. [Google Scholar] [CrossRef]
- Standards Australia. Australian Standard for Hygienic Production of Game Meat for Human Consumption; AS 4464; Standards Australia: Sydney, Australia, 1997. [Google Scholar]
- Eglezos, S.; Dykes, G.A.; Huang, B.; Fegan, N.; Stuttard, E. Bacteriological Profile of Raw, Frozen Chicken Nuggets. J. Food Prot. 2008, 71, 613–615. [Google Scholar] [CrossRef]
- Cox, J.M.; Woolcock, J.B.; Sartor, A.L. The Significance of Salmonella, Particularly S. Infantis, to the Australian Egg Ind; Rural Industries Research and Development Corporation: Canberra, Australia, 2002. [Google Scholar]
- Phillips, D.; Jordan, D.; Morris, S.; Jenson, I.; Sumner, J. A national survey of the microbiological quality of retail raw meats in Australia. J. Food Prot. 2008, 71, 1232–1236. [Google Scholar] [CrossRef]
- Phillips, D.; Sumner, J.; Alexander, J.F.; Dutton, K.M. Microbiological quality of Australian beef. J. Food Prot. 2001, 64, 692–696. [Google Scholar] [CrossRef]
- Phillips, D.; Jordan, D.; Morris, S.; Jenson, I.; Sumner, J. A national survey of the microbiological quality of beef carcasses and frozen boneless beef in Australia. J. Food Prot. 2006, 69, 1113–1117. [Google Scholar] [CrossRef]
- Phillips, D.; Bridger, K.; Jenson, I.; Sumner, J. An Australian national survey of the microbiological quality of frozen boneless beef and beef primal cuts. J. Food Prot. 2012, 75, 1862–1866. [Google Scholar] [CrossRef]
- Phillips, D.; Sumner, J.; Alexander, J.F.; Dutton, K.M. Microbiological quality of Australian sheep meat. J. Food Prot. 2001, 64, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Phillips, D.; Jordan, D.; Morris, S.; Jenson, I.; Sumner, J. Microbiological quality of Australian sheep meat in 2004. Meat Sci. 2006, 74, 261–266. [Google Scholar] [CrossRef]
- Phillips, D.; Tholath, S.; Jenson, I.; Sumner, J. Microbiological quality of Australian sheep meat in 2011. Food Control. 2013, 31, 291–294. [Google Scholar] [CrossRef]
- Duffy, L.L.; Small, A.; Fegan, N. Concentration and prevalence of Escherichia coli O157 and Salmonella serotypes in sheep during slaughter at two Australian Abattoirs. Aust. Vet. J. 2010, 88, 399–404. [Google Scholar] [CrossRef]
- Bailey, G.; Huynh, L.; Govenlock, L.; Jordan, D.; Jenson, I. Low prevalence of Salmonella and Shiga Toxin-Producing Escherichia coli in lymph nodes of Australian beef cattle. J. Food Prot. 2017, 80, 2105–2111. [Google Scholar] [CrossRef] [PubMed]
- Mellor, G.E.; Duffy, L.L.; Dykes, G.A.; Fegan, N. Relative prevalence of Salmonella Sofia on broiler chickens pre- and postprocessing in Australia. Poult. Sci. 2010, 89, 1544–1548. [Google Scholar] [CrossRef] [PubMed]
- Abraham, S.; O’Dea, M.; Sahibzada, S.; Hewson, K.; Pavic, A.; Veltman, T.; Abraham, R.; Harris, T.; Trott, D.J.; Jordan, D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS ONE 2019, 14, e0224281. [Google Scholar] [CrossRef] [Green Version]
- Pointon, A.; Horchner, P. Food Safety Risk-Based Profile of Pork Production in Australia Technical Evidence to Support an On-Farm HACCP Scheme; Australian Pork Limited: Barton, Australia, 2010; ISBN 978-0-646-52134-3. [Google Scholar]
- Hamilton, D.; Holds, G.; Smith, G.; Flint, R.; Lorimer, M.; Davos, D.; Kiermeier, A.; Pointon, A. National baseline surveys to characterise processing hygiene and microbial hazards of Australian culled sow meat, retail pork sausages and retail pork mince. In Proceedings of the Ninth International Conference on the Epidemiology and Control of Biological, Chemical and Physical Hazards in Pigs and Pork, Maastricht, The Netherlands, 19–22 June 2011. [Google Scholar]
- Anjum, M.F.; Choudhary, S.; Morrison, V.; Snow, L.C.; Mafura, M.; Slickers, P.; Ehricht, R.; Woodward, M.J. Identifying antimicrobial resistance genes of human clinical relevance within Salmonella isolated from food animals in Great Britain. J. Antimicrob. Chemother. 2011, 66, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Parry, C.M.; Threlfall, E. Antimicrobial resistance in typhoidal and nontyphoidal salmonellae. Curr. Opin. Infect. Dis. 2008, 21, 531–538. [Google Scholar] [CrossRef]
- Lauderdale, T.L.; Aarestrup, F.M.; Chen, P.C.; Lai, J.F.; Wang, H.Y.; Shiau, Y.R.; Huang, I.W.; Hung, C.L.; TSAR hospitals. Multidrug resistance among different serotypes of clinical Salmonella isolates in Taiwan. Diagn. Microbiol. Infect. Dis. 2006, 55, 149e55. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, K.L.; Pant, N.D.; Bhandari, R.; Khatri, S.; Shrestha, B.; Lekhak, B. Re-emergence of the susceptibility of the Salmonella spp. isolated from blood samples to conventional first line antibiotics. Antimicrob. Resist. Infect. Control. 2016, 5, 22. [Google Scholar] [CrossRef] [Green Version]
- Wasyl, D.; Kern-Zdanowicz, I.; Domanska-Blicharz, K.; Zajac, M.; Hoszowski, A. High-level fluoroquinolone resistant Salmonella enterica serovar Kentucky ST198 epidemic clone with IncA/C conjugative plasmid carrying bla(CTX-M-25) gene. Vet. Microbiol. 2015, 175, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Iwamoto, M.; Reynolds, J.; Karp, B.E.; Tate, H.; Fedorka-Cray, P.J.; Plumblee, J.R.; Hoekstra, R.M.; Whichard, J.M.; Mahon, B.E. Ceftriaxone-resistant nontyphoidal Salmonella from humans, retail meats, and food animals in the United States, 1996–2013. Foodborne Pathog. Dis. 2017, 14, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Tate, H.P.; Zhao, S.; Li, C.; Dessai, U.; Simmons, M.; McDermott, P.F. Identification of plasmid-mediated quinolone resistance in Salmonella isolated from swine ceca and retail pork chops in the United States. Antimicrob. Agents Chemother. 2017, 61, e01318-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, A.C.; Turnidge, J.; Collignon, P.; Looke, D.; Barton, M.; Gottlieb, T. Control of fluoroquinolone resistance through successful regulation, Australia. Emerg. Infect. Dis. 2012, 18, 1453–1460. [Google Scholar] [CrossRef]
- Obeng, A.S.; Rickard, H.; Ndi, O.; Sexton, M.; Barton, M. Antibiotic resistance, phylogenetic grouping and virulence potential of Escherichia coli isolated from the faeces of intensively farmed and free range poultry. Vet. Microbiol. 2012, 154, 305–315. [Google Scholar] [CrossRef]
- Izzo, M.; Mohler, V.; House, J. Antimicrobial susceptibility of Salmonella isolates recovered from calves with diarrhoea in Australia. Aust. Vet. J. 2011, 89, 402–408. [Google Scholar] [CrossRef]
- Abraham, S.; Groves, M.D.; Trott, D.J.; Chapman, T.A.; Turner, B.; Hornitzky, M.; Jordan, D. Salmonella enterica isolated from infections in Australian livestock remain susceptible to critical antimicrobials. Int. J. Antimicrob. Agents 2014, 43, 126–130. [Google Scholar] [CrossRef]
- McAuley, C.M.; McMillan, K.E.; Moore, S.C.; Fegan, N.; Fox, E.M. Characterization of Escherichia coli and Salmonella from Victoria, Australia, Dairy Farm Environments. J. Food Prot. 2017, 80, 2078–2082. [Google Scholar] [CrossRef]
- Barlow, R.S.; McMillan, K.E.; Duffy, L.L.; Fegan, N.; Jordan, D.; Mellor, G.E. Prevalence and antimicrobial resistance of Salmonella and Escherichia coli from Australian cattle populations at slaughter. J. Food Prot. 2015, 78, 912–920. [Google Scholar] [CrossRef]
- Manning, J.; Gole, V.; Chousalkar, K. Screening for Salmonella in backyard chickens. Prev. Vet. Med. 2015, 120, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Pande, V.V.; Gole, V.C.; McWhorter, A.R.; Abraham, S.; Chousalkar, K.K. Antimicrobial resistance of non-typhoidal Salmonella isolates from egg layer flocks and egg shells. Int. J. Food Microbiol. 2015, 203, 23–26. [Google Scholar] [CrossRef]
- Hur, J.; Jawale, C.; Lee, J.H. Antimicrobial resistance of Salmonella isolated from food animals: A review. Food Res. Int. 2012, 45, 819–830. [Google Scholar] [CrossRef]
- Kidsley, A.K.; Abraham, S.; Bell, J.M.; O’Dea, M.; Laird, T.J.; Jordan, D.; Mitchell, P.; McDevitt, C.A.; Trott, D.J. Antimicrobial susceptibility of Escherichia coli and Salmonella spp. isolates from healthy pigs in Australia: Results of a pilot national survey. Front. Microbiol. 2018, 9, 1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aarestrup, F.M.; Lertworapreecha, M.; Evans, M.C.; Bangtrakulnonth, A.; Chalermchaikit, T.; Hendriksen, R.S.; Wegener, H.C. Antimicrobial susceptibility and occurrence of resistance genes among Salmonella enterica serovar Weltevreden from different countries. J. Antimicrob. Chemother. 2003, 52, 715–718. [Google Scholar] [CrossRef]
- Fegan, N.; Vanderlinde, P.; Higgs, G.; Desmarchelier, P. Quantification and prevalence of Salmonella in beef cattle presenting at slaughter. J. Appl. Microbiol. 2004, 97, 892–898. [Google Scholar] [CrossRef]
- Jackson, B.R.; Griffin, P.M.; Cole, D.; Walsh, K.A.; Chai, S.J. Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerg. Infect. Dis. 2013, 19, 1239–1244. [Google Scholar] [CrossRef] [Green Version]
- Belanger, P.; Tanguay, F.; Hamel, M.; Phypers, M. An overview of foodborne outbreaks in Canada reported through outbreak summaries: 2008–2014. Canada Commun. Dis. Rep. 2015, 41, 254–262. [Google Scholar] [CrossRef]
- Ford, L.; Moffatt, C.R.M.; Fearnley, E.; Miller, M.; Gregory, J.; Sloan-Gardner, T.S.; Polkinghorne, B.G.; Bell, R.; Franklin, N.; Williamson, D.A.; et al. The Epidemiology of Salmonella enterica Outbreaks in Australia, 2001–2016. Front. Sustain. Food Syst. 2018, 2. [Google Scholar] [CrossRef]
- Fearnley, E.J.; Lal, A.; Bates, J.; Stafford, R.; Kirk, M.D.; Glass, K. Salmonella source attribution in a subtropical state of Australia: Capturing environmental reservoirs of infection. Epidemiol. Infect. 2018, 146, 1903–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Australia’s Foodborne Illness Reduction Strategy 2018–2021+. Available online: https://www1.health.gov.au/internet/fr/publishing.nsf/Content/3139DD4B7DF3E23ACA25822F0004BFDD/$File/AusFIRS18-22CD.pdf (accessed on 5 June 2020).
- Government of Western Australia. Department of Health. Foodborne Illness Reduction Strategy 2018-2021+. 2018. Available online: https://ww2.health.wa.gov.au/-/media/Files/Corporate/general-documents/food/PDF/Priorities-to-reduce-salmonellosis.pdf (accessed on 5 June 2020).
- Milazzo, A. An outbreak of Salmonella Typhimurium RDNC A047 linked to a Chinese restaurant in South Australia. Commun. Dis. Intell. 2000, 24, 347. [Google Scholar]
- Slinko, V.G.; McCall, B.J.; Stafford, R.J.; Bell, R.J.; Hiley, L.A.; Sandberg, S.M.; White, S.A.; Bell, K.M. Outbreaks of Salmonella Typhimurium phage type 197 of multiple genotypes linked to an egg producer. Commun. Dis. Intell. Q. Rep. 2009, 33, 419–425. [Google Scholar] [PubMed]
- Sarna, M.; Dowse, G.; Evans, G.; Guest, C. An outbreak of Salmonella typhimurium PTI35 gastroenteritis associated with a minimally cooked dessert containing raw eggs. Commun. Dis. Intell. Q. Rep. 2002, 26, 32–37. [Google Scholar] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sodagari, H.R.; Wang, P.; Robertson, I.; Habib, I.; Sahibzada, S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals 2020, 10, 1192. https://doi.org/10.3390/ani10071192
Sodagari HR, Wang P, Robertson I, Habib I, Sahibzada S. Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals. 2020; 10(7):1192. https://doi.org/10.3390/ani10071192
Chicago/Turabian StyleSodagari, Hamid Reza, Penghao Wang, Ian Robertson, Ihab Habib, and Shafi Sahibzada. 2020. "Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia" Animals 10, no. 7: 1192. https://doi.org/10.3390/ani10071192
APA StyleSodagari, H. R., Wang, P., Robertson, I., Habib, I., & Sahibzada, S. (2020). Non-Typhoidal Salmonella at the Human-Food-of-Animal-Origin Interface in Australia. Animals, 10(7), 1192. https://doi.org/10.3390/ani10071192