Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feeding Grounds of the Wild Boar
2.2. Sample Preparation
2.3. Elemental Analysis
2.4. Nutritional Assumptions Used for Assessment of the Dietary Intake of Elements and Potential Consumer Health Risk (HQ) and Hazard Index (HI)
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Szkoda, J.; Durkalec, M.; Kołacz, R.; Opaliński, S.; Żmudzki, J. Content of cadmium, lead and mercury in the tissues of game animals. Med. Weter. 2012, 68, 689–692. [Google Scholar]
- Chrastný, V.; Vaněk, A.; Teper, L.; Cabala, J.; Procházka, J.; Pechar, L.; Drahota, P.; Penížek, V.; Komárek, M.; Novák, M. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: Effects of land use, type of contamination and distance from pollution source. Environ. Monit. Assess. 2012, 184, 2517–2536. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, A.; Phillips, D.H.; Bowen, J.; Sen, G.B. Contaminants in surface water and sediments near the Tynagh silver mine site, county Galway, Ireland. Sci. Total Environ. 2015, 512, 261–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srebočan, E.; Janicki, Z.; Crnić, A.P.; Tomljanović, K.; Sebečić, M.; Konjević, D. Cadmium, lead and mercury concentrations in selected red deer (Cervus elaphus L.) tissues from north-eastern Croatia. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2012, 47, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Živkov-Balos, M.; Mihaljev, Ž.; Ljubojević, D.; Apić, J. Lead and Cadmium in Wild Boar from Different Grounds in Serbia. Available online: https://niv.ns.ac.rs/StariSajt/tr31084/fajlovi/15/36.2015.pdf (accessed on 7 August 2019).
- Maciołek, H.; Zielińska, A.; Domarecki, T. The geobiological−chemical effect of cadmium and lead on the natural environment. J. Ecol. Health 2013, 17, 63–71. [Google Scholar]
- Douay, F.; Pruvot, C.; Waterlot, C.; Fritsch, C.; Fourrier, H.; Loriette, A.; Bidar, G.; Grand, C.; De Vaufleury, A.; Scheifler, R. Contamination of woody habitat soils around a former lead smelter in the North of France. Sci. Total Environ. 2009, 407, 5564–5577. [Google Scholar] [CrossRef]
- Šajn, R.; Aliu, M.; Stafilov, T.; Alijagić, J. Heavy metal contamination of topsoil around a lead and zinc smelter in Kosovska Mitrovica/Mitrovicë Kosovo/Kosovë. J. Geochem. Explor. 2013, 134, 1–16. [Google Scholar] [CrossRef]
- Stafilov, T.; Šajn, R.; Pancevski, Z.; Boev, B.; Frontasyeva, M.V.; Strelkova, L.P. Heavy metal contamination of topsoils around a lead and zinc smelter in the Republic of Macedonia. J. Hazard. Mater. 2010, 175, 896–914. [Google Scholar] [CrossRef]
- Rudy, M. Contents of Environmental Contaminations in Tissues Depending on the Age of Animals and Chemical Composition of Meat. Ph.D. Thesis, Wyd. Uniwersytetu Rzeszowskiego, Rzeszów, Poland, 2010. (In Polish, in English abstract). [Google Scholar]
- Yarsan, E.; Yipel, M.; Dikmen, B.; Altıntaş, L.; Ekici, H.; Köksal, A. Concentrations of essential and non-essential toxictrace elements in wild boar (Sus scrofa L., 1758) tissues from southern Turkey. Bull. Environ. Contam. Toxicol. 2014, 92, 10–14. [Google Scholar] [CrossRef]
- Crnić, A.P.; Šuran, J.; Madunić, H.C.; Božić, F. Cadmium concentrations in the tissues of young wild boars (Sus scrofa L.) from Moslavina and Slavonia in lowland Croatia. Veterinarski Arhiv. 2015, 85, 323–334. [Google Scholar]
- Srebočan, E.; Crnič, A.P.; Ekert-Kabalin, A.M.; Lazarus, M.; Jurasovič, J.; Tomljanovič, K.; Andreič, D.; Perović, I.S.; Čoz-Rakovac, R. Cadmium, lead, and mercury concentrations in tissues of roe deer (Capreolus capreolus L.) and wild boar (Sus scrofa L.) from lowland Croatia. Czechoslov. J. Food Sci. 2011, 29, 624–633. [Google Scholar] [CrossRef] [Green Version]
- Bilandzić, N.; Sedak, M.; Vratarić, D.; Perić, T.; Simić, B. Lead and cadmium in red deer and wild boar from different hunting grounds in Croatia. Sci. Total Environ. 2009, 407, 4243–4247. [Google Scholar] [CrossRef] [PubMed]
- Kicińska, A.; Glichowska, P.; Mamak, M. Micro- and macroelement contents in the liver of farm and wild animals and the health risks involved in liver consumption. Environ. Monit. Assess. 2019, 6, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rani, A.; Kumar, A.; Lal, A.; Pant, M. Cellular mechanisms of cadmium-induced toxicity: A review. Int. J. Environ. Health B 2014, 24, 378–399. [Google Scholar] [CrossRef]
- Šuran, J.; Prišć, M.; Rašić, D.; Srebočan, E.; Crnić, A.P. Malondialdehyde and heavy metal concentrations in tissues of wild boar (Sus scrofa L.) from central Croatia. J. Environ. Sci. Health B 2013, 48, 147–152. [Google Scholar] [CrossRef]
- Długaszek, M.; Kopczyński, K. Elemental Composition of Muscle Tissue of Wild Animals from Central Region of Poland. Int. J. Environ. Res. 2013, 7, 973–978. [Google Scholar] [CrossRef]
- Babicz, M.; Kasprzyk, A.; Kropiwiec−Domańska, K. Influence of the sex and type of tissue on the basic chemical composition and the content of minerals in the sirloin and offal of fattener pigs. Can. J. Anim. Sci. 2018, 99, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Pereira, P.M.D.C.C.; Vicente, A.F.D.R.B. Meat nutritional composition and nutritive role in the human diet. Meat Sci. 2013, 93, 586–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ustymowicz-Farbiszewska, J.; Fiłon, J.; Górski, J.; Karczewski, J.; Święcka, J. Comparative analysis of the trace element content in daily food rations of postsecondary school students in Bialystok and Warsaw. Probl. Hig. Epidemiol. 2014, 95, 107–114. [Google Scholar]
- European Commission, EC 2008. Commission Regulation No 629/2008 of 2 July 2008 setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Union L 2008, 173, 6–9. [Google Scholar]
- Amici, A.; Danieli, P.P.; Russo, C.; Primi, R.; Ronchi, B. Concentrations of some toxic and trace elements in wild boar (Sus scrofa) organs and tissues in different areas of the province of Viterbo (Central Italy). Ital. J. Anim. Sci. 2012, 11, 354–362. [Google Scholar] [CrossRef]
- Chiari, M.; Cortinovis, C.; Bertoletti, M.; Alborali, L.; Zanoni, M.; Ferretti, E.; Caloni, F. Lead, cadmium and organochlorine pesticide residues in hunted red deer and wild boar from northern Italy. Food Addit. Contam. Part A 2015, 49, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kucharczak, E.; Moryl, A. Influence of environment on content of arsenic and aluminium in hunting animals parenchymal organs. Ochrona Środowiska i Zasobów Naturalnych 2012, 53, 89–96. [Google Scholar]
- Ihiedioha, J.N.; Okoye, C.O.B.; Onyechi, U.A. Health risk assessment of zinc, chromium and nickel from cow meat consumption in an urban Nigerian population. Int. J. Occ. Environ. Health 2014, 20, 281–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polish Standard, PN-A-04018. Agricultural Food Products—Determination of Nitrogen by Kjeldahl; Polish Committee for Standardization: Warsaw, Poland, 1975; pp. 1–3. (In Polish) [Google Scholar]
- Fiske, C.; Subbarow, Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925, 66, 375–400. [Google Scholar]
- Pilarczyk, B.; Tomza-Marciniak, A.; Pilarczyk, R.; Udała, J.; Kruzhel, B.; Ligocki, M. Content of essential and non−essential elements in wild animals from western Ukraine and the health risks associated with meat and liver consumption. Chemosphere 2020, 244, 1–10. [Google Scholar] [CrossRef]
- Krzywy, I.; Krzywy, E.; Peregud-Pogorzelski, J.; Łuksza, K.; Brodkiewicz, A. Cadmium—Is there something to fear? Annales Academiae Medicae Stetinensis. Rocz. AM w Szczecinie 2011, 57, 49–63. [Google Scholar]
- Halamić, J.; Miko, S. Geochemical Atlas of the Republic of Croatia; Croatian Geological Survey: Zagreb, Croatia, 2009. [Google Scholar]
- Gasparik, J.; Dobias, M.; Capcarova, M.; Smehyl, P.; Slamecka, J.; Bujko, J. Concentration of cadmium, mercury, zinc, copper and cobalt in the tissues of wild boar (Sus scrofa) hunted in the western Slovakia. J. Environ. Sci. Health A 2012, 47, 1212–1216. [Google Scholar] [CrossRef]
- Mandas, L. Problemi sanitari della fauna selvatica nelle oasi di protezione faunistica. In Proceedings of the Regional Congress on Ambiente e Sviluppo Sostenibile: La Nuova Provincia del Medio Campidano—Tutela e valoRizzazione Della Fauna Locale, Montevecchio (CA), Italy, 28 August 2005; pp. 3–11. [Google Scholar]
- Gasparik, J.; Massányi, P.; Slamecka, J.; Fabis, M.; Jurcik, R. Concentration of selected metals in liver, kidney, and muscle of the red deer (Cervus elaphus). J. Environ. Sci. Health Part A. 2004, 39, 2105–2111. [Google Scholar] [CrossRef]
- Długaszek, M.; Kopczyński, K. Comparative analysis of liver mineral status of wildlife. Probl. Hig. Epidemiol. 2011, 92, 859–863. [Google Scholar]
- Martelli, P. Controllo Ispettivo Qualitativo di Carni di Cinghiale Regolarmente Macellati Nella Provincia di Siena. Master’s Thesis, Università di Pisa, Pisa, Italy, 2005. [Google Scholar]
- Durkalec, M.; Szkoda, J.; Kolacz, R.; Opalinski, S.; Nawrocka, A.; Żmudzki, J. Bioaccumulation of lead, cadmium and mercury in roe deer and wild boars from areas with different levels of toxic metal pollution. Int. J. Environ. Res. 2015, 9, 205–212. [Google Scholar] [CrossRef]
- Taggart, M.A.; Reglero, M.M.; Camarero, P.R.; Mateo, R. Should legislation regarding maximum Pb and Cd levels in human food also cover large game meat? Environ. Int. 2011, 37, 18–25. [Google Scholar] [CrossRef] [PubMed]
- Kryński, A.; Rokicki, E.; Wrzesień, R. Contamination of organs and tissues of roe deer and wild boars with heavy metals. X Kongres PTNW Wrocław 1996, 1, 500. [Google Scholar]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Lead in Food. EFSA J. 2010, 8, 1570. [Google Scholar] [CrossRef]
- Sales, J.; Kotrba, R. Meat from wild boar (Sus scrofa L.): A review. Meat Sci. 2013, 94, 187–201. [Google Scholar] [CrossRef]
- Roślewska, A.; Stanek, M.; Janicki, B.; Cygan-Szczegielniak, D.; Stasiak, K.; Buzała, M. Effect of sex on the content of elements in meat from wild boars (Sus scrofa L.) originating from the Province of Podkarpacie (south−eastern Poland). J. Elementol. 2016, 21, 823–832. [Google Scholar] [CrossRef]
- Kasprzyk, A.; Stasiak, A.; Babicz, M. Meat quality and ultrastructure of muscle tissue from fatteners of Wild Boar, Pulawska and its crossbreed Pulawska x (Hamshire x Wild Boar). Arch. Tierz. 2010, 53, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Skobrák, E.B.; Bodnár, K.; Jónás, E.M.; Gundel, J.; Jávor, A. The comparison analysis of the main chemical composition parameters of wild boar meat and pork. Lucrări Ştiinţifice, ser. Zootehnie si Biotehnol. 2011, 44, 105–112. [Google Scholar]
- Węglarzy, K. Heavy metals—A source of contamination and environmental impact. Wiadomości Zoot. 2007, 3, 31–38. [Google Scholar]
- Ping, Z.; Huiling, Z.; Wensheng, S. Biotransfer of heavy metals along a soil−plant−insect−chicken food chain: Field study. J. Environ. Sci. 2009, 21, 849–853. [Google Scholar]
- Łuszczek-Trojnar, E.; Błoniarz, P.; Winiarski, B.; Drąg-Kozak, E.; Popek, W. Comparison of cadmium, zinc, manganese and nickel concentrations in fillets of selected species of food fish. Rocz. Nauk. PTZ 2014, 11, 75–84. [Google Scholar]
- Lazarus, M.; Crnic, A.P.; Bilandzic, N.; Kusak, J.; Reljic, S. Cadmium, lead, and mercury exposure assessment among Croatian consumers of freeliving game. Arh. Hig. Rada Toksikol. 2014, 65, 281–292. [Google Scholar] [CrossRef] [PubMed]
Element | LOQ (mg·kg−1) | Certified Value (mg·kg−1) | Analyzed Value (mg·kg−1) | Recovery (%) |
---|---|---|---|---|
Ca | 56 | 131 | 129.17 | 99 |
Mg | 36 | 620.42 | 651.87 | 105 |
Fe | 8.6 | 197.94 | 190.53 | 96 |
Mn | 2.2 | 10.46 | 10.27 | 97 |
Cu | 2.6 | 275.20 | 274.50 | 99 |
Zn | 0.9 | 181.10 | 102.88 | 106 |
K | 40 | 10.23 | 9.45 | 94 |
Cd | 0.8 | 0.097 | 0.097 | 100 |
Pb | 1.3 | 0.063 | 0,069 | 110 |
As | 0.9 | 0.019 | 0.019 | 97 |
Ni | 1.1 | 0.045 | 0.047 | 106 |
Element | Parameter | Group I | Group II | Group III | Female | Male | Effects of Age | Effects of Sex | Interaction A × S |
---|---|---|---|---|---|---|---|---|---|
Pb | Means ± SE | 0.2636 A±0.116 | 0.1630 B ± 0.108 | 0.2015 ± 0.107 | 0.195 ± 0.103 | 0.194 ± 0.116 | ** | ns | ns |
GM | 0.2420 | 0.1423 | 0.1764 | 0.1740 | 0.1641 | ||||
Range | 0.122−0.520 | 0.05–0.470 | 0.07−0.38 | 0.090−0.470 | 0.048−0.520 | ||||
Cd | Means ± SE | 0.4405 ± 0.226 | 0.4227 ± 0.178 | 0.4485 ± 0.284 | 0.3802 b ± 0.229 | 0.4863 a ± 0.200 | ns | * | ns |
GM | 0.3917 | 0.3561 | 0.3870 | 0.2942 | 0.4509 | ||||
Range | 0.02−1.00 | 0.17−0.23 | 0.22−1.03 | 0.020−1.00 | 0.22−1.03 | ||||
As | Means± SE | 0.0469 ± 0.012 | 0.0404 ± 0.016 | 0.0313 ± 0.012 | 0.0379 ± 0.013 | 0.0435 ± 0.016 | ns | ns | ns |
GM | 0.0453 | 0.0375 | 0.0200 | 0.0356 | 0.0404 | ||||
Range | 0.0315–0.0659 | 0.0186−0.0791 | 0.0120−0.0560 | 0.0186−0.0692 | 0.0120−0.0791 |
Element | Parameter | Group I | Group II | Group III | Female | Male | Effects of Age | Effects of Sex | Interaction A × S |
---|---|---|---|---|---|---|---|---|---|
–– | Means ± SE | 2565 A ± 390.36 | 2260 B ± 249.09 | 2709 A ± 429.77 | 2432 ± 296.73 | 2374 ± 410.81 | ** | ns | ** |
GM | 2535.59 | 2246.59 | 2680.03 | 2415.46 | 2340.85 | ||||
Range | 1820−3110 | 1821−2638 | 2120−3410 | 1978−3110 | 1820−3410 | ||||
Ca | Means ± SE | 181.23 ± 104.34 | 249.76 ± 127.39 | 122.94 ± 83.87 | 232.96 a ± 117.42 | 164.73 b ± 114.34 | ns | * | ns |
GM | 152.72 | 187.47 | 101.96 | 199.87 | 129.98 | ||||
Range | 65.5−380 | 32.8−458 | 43.2−269 | 43.2−458 | 32.8−385 | ||||
Mg | Means ± SE | 191.63 a ± 17.07 | 174.06 b B ± 22.12 | 209.63 A ± 23.90 | 183.25 ± 14.58 | 183.69 ± 30.84 | ** | ns | ns |
GM | 190.92 | 172.36 | 208.52 | 182.67 | 180.82 | ||||
Range | 169−220 | 102−200 | 188−261 | 150−208 | 102−261 | ||||
N | Means ± SE | 3610 ± 317 | 3537 ± 388 | 3618 ± 416 | 3607 ± 436 | 3558 ± 313 | ns | ns | ns |
GM | 3647 | 3516 | 3597 | 3581 | 3545 | ||||
Range | 3163−4200 | 2660−4230 | 2970−4240 | 2660−4231 | 2960−4240 | ||||
P | Means ± SE | 1276 A ± 59 | 1066 B ± 164 | 1276 A ± 175 | 1138 ± 188 | 1160 ± 168 | ** | ns | ns |
GM | 1274 | 1052 | 1260 | 1120 | 1147 | ||||
Range | 1150−1350 | 700−1350 | 1000−1560 | 750−1560 | 701−1400 |
Element | Parameter | Group I | Group II | Group III | Female | Male | Effects of Age | Effect of Sex | Interaction A × S |
---|---|---|---|---|---|---|---|---|---|
Fe | Means ± SE | 408.51 ± 135.69 | 344.33 B ± 98.27 | 535.75 A ± 89.81 | 331.35 B ± 88.97 | 435.64 A ± 193.35 | ** | ** | ns |
GM | 390.28 | 331.73 | 476.56 | 321.46 | 404.70 | ||||
Range | 259−696 | 234−553 | 286−1063 | 234−553 | 238−1063 | ||||
Cu | Means ± SE | 6.79 b ± 0.99 | 8.55 a ± 2.52 | 8.82 a ± 2.94 | 8.54 ± 2.64 | 7.75 ± 2.12 | * | ns | * |
GM | 6.73 | 8.21 | 8.42 | 8.19 | 7.48 | ||||
Range | 5.09−8.44 | 4.37−14.90 | 5.60−13.50 | 5.87−14.90 | 4.37−13.50 | ||||
Zn | Means ± SE | 50.24 b ± 7.66 | 61.10 a ± 14.98 | 63.20 a ± 12.13 | 54.73 ± 14.39 | 62.77 ± 12.00 | * | ns | ns |
GM | 49.70 | 59.20 | 62.18 | 61.62 | 53.01 | ||||
Range | 40.3−62.4 | 31.6−89.00 | 44.3−85.20 | 44.3−83.34 | 31.6−89.00 | ||||
Ni | Means ± SE | <LOQ = 0.1 | <LOQ = 0.1 | <LOQ = 0.1 | <LOQ = 0.1 | <LOQ = 0.1 | ns | ns | ns |
GM | 0.099 | 0.095 | 0.091 | 0.097 | 0.093 | ||||
Range | <LOQ = 0.1 | <LOQ = 0.1 | <LOQ = 0.1 | 0.08−0.10 | 0.07−0.10 | ||||
Mn | Means ± SE | 3.300 A ± 0.505 | 2.711 B ± 0.536 | 2.487 B ± 0.432 | 2.847 ± 0.724 | 2.831 ± 0.441 | ** | ns | * |
GM | 3.26 | 2.66 | 2.45 | 2.76 | 2.79 | ||||
Range | 2.7−4.3 | 2−4 | 1.9−3.1 | 1.9−4.3 | 2−4.3 |
Element | Estimated Daily Intake (EDI, mg/kg b.w.) | Health Risk (HQ) for Consumers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | |||||||
Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | |
Fe | 0.46526 | 0.19026 | 0.06203 | 0.02536 | 0.01033 | 0.00422 | 0.66466 | 0.27181 | 0.06203 | 0.03624 | 0.01477 | 0.00604 |
Cu | 0.00802 | 0.00328 | 0.00106 | 0.00043 | 0.00017 | 7.29 × 10−5 | 0.20049 | 0.08198 | 0.02673 | 0.01093 | 0.00445 | 0.00182 |
Zn | 0.05924 | 0.02422 | 0.00789 | 0.00043 | 0.00131 | 0.00053 | 0.19474 | 0.08075 | 0.02633 | 0.01076 | 0.00438 | 0.00179 |
Ni | 0.00011 | 0.00004 | 1.58 × 10−5 | 6.45 × 10−6 | 2.63 × 10−6 | 1.07 × 10−6 | 0.00591 | 0.00241 | 0.00078 | 0.00032 | 0.00013 | 0.00005 |
Mn | 0.00388 | 0.00158 | 0.00051 | 0.00021 | 8.64 × 10−5 | 0.00003 | 0.02776 | 0.01135 | 0.00370 | 0.00151 | 0.00061 | 0.00025 |
As | 5.4 × 10−5 | 0.00002 | 7.2 × 10−6 | 0.000002 | 2.20 × 10−6 | 4.91 × 10−7 | 0.00385 | 0.00157 | 0.00051 | 0.00021 | 8.57 × 10−5 | 0.00003 |
Pb | 0.00028 | 0.00011 | 3.85 × 10−5 | 0.00001 | 6.41 × 10−6 | 2.62 × 10−6 | 0.08242 | 0.03370 | 0.01099 | 0.00449 | 0.00183 | 0.00074 |
Cd | 0.00046 | 0.00019 | 0.000060 | 0.00002 | 0.00001 | 4.24 × 10−6 | 0.46696 | 0.19095 | 0.06226 | 0.02546 | 0.01037 | 0.00424 |
HI | 1.64955 | 0.67457 | 0.21994 | 0.08994 | 0.03665 | 0.00869 |
Element | Estimated Daily Intake (EDI, mg/kg b.w.) | Health Risk (HQ) for Consumers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | |||||||
Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | |
Fe | 0.39545 | 0.16171 | 0.05272 | 0.02156 | 0.00878 | 0.00035 | 0.56493 | 0.00926 | 0.07532 | 0.03080 | 0.01255 | 0.00513 |
Cu | 0.00978 | 0.00400 | 0.00130 | 0.00053 | 0.00021 | 8.89 × 10−5 | 0.24456 | 0.10001 | 0.03260 | 0.01333 | 0.00543 | 0.00222 |
Zn | 0.07057 | 0.02886 | 0.00941 | 0.00384 | 0.00156 | 0.00064 | 0.23521 | 0.09620 | 0.03136 | 0.01282 | 0.00522 | 0.00213 |
Ni | 0.00011 | 4.63 × 10−5 | 1.51 × 10−5 | 6.18 × 10−6 | 2.52 × 10−6 | 1.03 × 10−6 | 0.00566 | 0.00231 | 0.00075 | 0.00030 | 0.00012 | 5.14 × 10−5 |
Mn | 0.00317 | 0.00129 | 0.00042 | 0.00017 | 7.05 × 10−5 | 2.88 × 10−5 | 0.02265 | 0.00926 | 0.00302 | 0.00123 | 0.00050 | 0.00020 |
As | 4.47 × 10−5 | 1.82 × 10−5 | 5.96 × 10−5 | 2.44 × 10−5 | 9.93 × 10−7 | 4.06 × 10−7 | 0.00319 | 0.00130 | 0.00042 | 0.00017 | 7.10 × 10−5 | 2.90 × 10−5 |
Pb | 0.00017 | 6.94 × 10−5 | 2.26 × 10−5 | 9.25 × 10−6 | 3.77 × 10−6 | 1.54 × 10−6 | 0.04846 | 0.01982 | 0.00646 | 0.00262 | 0.00107 | 0.00044 |
Cd | 0.00042 | 0.00017 | 5.66 × 10−5 | 2.31 × 10−5 | 9.43 × 10−6 | 3.86 × 10−6 | 0.42452 | 0.17360 | 0.05660 | 0.02314 | 0.00943 | 0.00385 |
HI | 1.54923 | 0.63354 | 0.20656 | 0.08447 | 0.03442 | 0.01407 |
Element | Estimated Daily Intake (EDI, mg/kg b.w.) | Health Risk (HQ) for Consumers | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | Frequent Consumption (90 times/year) | Periodic Consumption (12 times/year) | Occasional Consumption (two times/year) | |||||||
Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | Children | Adult | |
Fe | 0.56693 | 0.23184 | 0.07559 | 0.03091 | 0.01259 | 0.00515 | 0.80990 | 0.33102 | 0.10798 | 0.04416 | 0.01799 | 0.00736 |
Cu | 0.01003 | 0.00410 | 0.00133 | 0.00054 | 0.00022 | 9.12 × 10−5 | 0.25092 | 0.10261 | 0.03345 | 0.01368 | 0.00557 | 0.00228 |
Zn | 0.07412 | 0.03031 | 0.00988 | 0.00404 | 0.00164 | 0.00067 | 0.24707 | 0.10103 | 0.03294 | 0.01347 | 0.00549 | 0.00224 |
Ni | 0.00010 | 4.44 × 10−5 | 1.45 × 10−5 | 5.92 × 10−6 | 2.41 × 10−6 | 9.87 × 10−7 | 0.00543 | 0.00222 | 0.00072 | 0.00029 | 0.00012 | 4.93 × 10−5 |
Mn | 0.00291 | 0.00119 | 0.00038 | 0.00015 | 6.49 × 10−5 | 2.65 × 10−5 | 0.02086 | 0.00853 | 0.00278 | 0.00113 | 0.00046 | 0.00019 |
As | 2.38 × 10−5 | 9.57 × 10−6 | 3.18 × 10−6 | 1.30 × 10−6 | 5.30 × 10−7 | 2.17 × 10−7 | 0.00170 | 0.00069 | 0.00022 | 9.29 × 10−5 | 3.78 × 10−5 | 1.55 × 10−5 |
Pb | 0.00021 | 8.60 × 10−5 | 2.80 × 10−5 | 1.15 × 10−5 | 4.67 × 10−6 | 1.91 × 10−6 | 0.06008 | 0.02457 | 0.00801 | 0.00327 | 0.00133 | 0.00054 |
Cd | 0.000461 | 0.00018 | 6.15 × 10−5 | 2.52 × 10−5 | 1.03 × 10−5 | 4.19 × 10−6 | 0.46135 | 0.18866 | 0.06151 | 0.02515 | 0.01025 | 0.00419 |
HI | 1.85734 | 0.75954 | 0.24764 | 0.10127 | 0.04127 | 0.01687 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kasprzyk, A.; Kilar, J.; Chwil, S.; Rudaś, M. Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals 2020, 10, 1519. https://doi.org/10.3390/ani10091519
Kasprzyk A, Kilar J, Chwil S, Rudaś M. Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals. 2020; 10(9):1519. https://doi.org/10.3390/ani10091519
Chicago/Turabian StyleKasprzyk, Anna, Janusz Kilar, Stanisław Chwil, and Michał Rudaś. 2020. "Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver" Animals 10, no. 9: 1519. https://doi.org/10.3390/ani10091519
APA StyleKasprzyk, A., Kilar, J., Chwil, S., & Rudaś, M. (2020). Content of Selected Macro- and Microelements in the Liver of Free-Living Wild Boars (Sus scrofa L.) from Agricultural Areas and Health Risks Associated with Consumption of Liver. Animals, 10(9), 1519. https://doi.org/10.3390/ani10091519