Inflammatory Correlated Response in Two Lines of Rabbit Selected Divergently for Litter Size Environmental Variability
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Experiment Animals
2.3. Blood Collection
2.4. Haemogram
2.5. Assessment of C-Reactive Protein, Cytokines (Interleukin 6 and Tumour Necrosis Factor Alpha) and Cortisol
2.6. Assessment of Biochemical Parameters
2.7. Statistical Analysis
3. Results
3.1. Immune Parameters
3.2. Cytokines, C-Reactive Protein (CRP) and Cortisol
3.3. Biochemical Parameters
4. Discussion
4.1. Immune Parameters
4.2. Cytokines, C-Reactive Protein (CRP) and Cortisol
4.3. Biochemical Parameters
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bodin, L.; Bolet, G.; García, M.; Garreau, H.; Larzul, C.; David, I. Robustesse et canalisation: Vision de généticiens. INRA Prod. Anim. 2010, 23, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Broom, D.M. Welfare assessment and relevant ethical decisions: Key concepts. Ann. Rev. Biomed. Sci. 2008, 20, 79–90. [Google Scholar] [CrossRef]
- Mormede, P.; Boisseau-Sowinski, L.; Chiron, J.; Diederich, C.; Eddison, J.; Guichet, J.L.; Le Neidre, P.; Meunier-Salaun, M.C. Bien-être animal: Context, definition, évaluation. INRA Prod. Anim. 2018, 31, 145–162. [Google Scholar] [CrossRef]
- Scrivo, R.; Vasile, M.; Bartosiewicz, I.; Valesini, G. Inflammation as “common soil” of the multifactorial diseases. Autoimmun. Rev. 2011, 10, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.A.; Wang, Y.X.; Jiang, C. L Inflammation: The Common Pathway of Stress-Related. Diseases. 2017, 11, 316–327. [Google Scholar]
- Del Giudice, M.; Gangestad, M. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef]
- Lockwood, K.M.; Marsland, A.L.; Cohen, M.; Gianaros, P.J. Sex Differences in the association between stressor-evoked interleukin-6 reactivity and C-reactive protein. Brain. Behav. Immun. 2016, 58, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Haran, J.P.; Suner, S.; Gardier, F. Correlation of C-reactive protein to severity of symptoms in acute influenza a infection. J. Emerg. Trauma Schock 2012, 5, 149–152. [Google Scholar] [CrossRef]
- Shrotriya, S.; Walsh, D.; Nowacki, A.S.; Lorton, C.; Aktas, A.; Hullihen, B.; Benanni-Baiti, N.; Hauser, K.; Ayvaz, S.; Estfan, B. Serum C-reactive protein is an important and powerful prognostic biomarker in most adult solid tumors. PLOS ONE 2018, 13, e0202555. [Google Scholar] [CrossRef]
- Chen, W.; Zheng, K.I.; Liu, S.; Yan, Z.; Xu, C.; Qiao, Z. Plasma CRP level is positively associated with the severity of COVID-19. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 18. [Google Scholar] [CrossRef]
- Stoner, L.; Lucero, A.A.; Palmer, R.B.; Jones, M.L.; Young, M.J.; Faulkner, J. Inflammatory biomarkers for predicting cardiovascular disease. Clin. Biochem. 2013, 46, 1353–1371. [Google Scholar] [CrossRef] [PubMed]
- Otero, R.W.; Velasco, H.; Sandoval, H. The protective role of bilirubin in human beings. Rev. Colomb. Gastroenterol. 2009, 24, 293–301. [Google Scholar]
- Lung, L.H.D.S.; Carvalheiro, R.; Neves, H.H.D.R.; Mulder, H.A. Genetics and genomics of uniformity and resilience in livestock and aquaculture species: A review. J. Anim. Breed. Genet. 2020, 137, 263–280. [Google Scholar]
- Blasco, A.; Martínez-Álvaro, M.; García, M.L.; Ibáñez-Escriche, N.; Argente, M.J. Selection for environmental variance of litter size in rabbit. Genet. Sel. Evol. 2017, 49, 48–56. [Google Scholar] [CrossRef] [Green Version]
- Argente, M.J.; García, M.L.; Zbyňovká, K.; Petruška, P.; Capcarová, M.; Blasco, A. Correlated response to selection for litter size environmental variability in rabbit’s resilience. Animal 2019, 13, 2348–2355. [Google Scholar] [CrossRef]
- Lidfors, L.; Edström, T. The Laboratory Rabbit. In The UFAW Handbook on the Care and Management of Laboratory and Other Research Animals, 8th ed.; Hubrecht, R., Kirkwood, J., Eds.; Wiley-Blackwell: West Sussex, UK, 2010; pp. 399–417. [Google Scholar]
- Blasco, A. Bayesian Data Analysis for Animal Scientists; Springer: New York, NY, USA, 2017. [Google Scholar]
- Leineweber, C.; Müller, E.; Marschang, R.E. Blood reference intervals for rabbits (Oryctolagus cuniculus) from routine diagnostic samples. Best immung von Blutreferenzwerten für Kaninchen (Oryctolagus cuniculus) aus Routine diagnostic proben. Tierarztl Prax Ausg K Kleintiere Heimtiere 2018, 46, 393–398. [Google Scholar] [CrossRef]
- Ihedioha, J.; Okorie, I.; Kanu, C.O.; Iwuogu, U.M. Leucocyte alterations associated with continual subacute blood loss. In Proceedings of the 33rd Annual Conference of Nigerian Society of Animal Production held in Ogun State, Abeokuta, Nigeria, 16–20 March 2008. [Google Scholar]
- Mbanasor, U.U.; Anene, B.M.; Chinezie, A.B.; Nnaji, T.O.; Eze, J.I.; Ezekwe, A.G. Haematology of normal trypanosome infected Muturu cattle in southeastern Nigeria. Niger. J. Anim. Prod. 2003, 30, 236–241. [Google Scholar] [CrossRef]
- Moore, M.D.; Zimmerman, K.; Smith, A.S. Hematological assessment in pet rabbits blood sample collection and blood cell identification. Vet. Clin. North. Am. Exot. Anim. Pract. 2015, 18, 9–19. [Google Scholar] [CrossRef]
- García Quirós, A.; Arnau Bonachera, A.; Penadés, M.; Cervera Fras, M.C.; Martinez-Paredes, E.; Ródenas Martínez, L.; Pascual Amorós, J.J. A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Vet. Immunol. Immunopathol. 2014, 161, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.X.; Gao, Y. New insights into roles of basophils in initiating T helper type 2 immunity. Chin. Herb. Med. 2020, 12, 14–18. [Google Scholar] [CrossRef]
- Furze, R.C.; Rankin, S.M. Neutrophil mobilization and clearance in the bone marrow. Immunology 2008, 125, 281–288. [Google Scholar] [CrossRef]
- Mahgoub, O.; Kadim, I.T.; Tageldin, M.H.; Al-Marzooqi, W.S.; Khalaf, S.Q.; Ali, A.A. Clinical profile of sheep fed non-conventional feeds containing phenols and condensed tannins. Small Rumin. Res. 2008, 78, 115–122. [Google Scholar] [CrossRef]
- Stilwell, G.; Carvalho, R.C.; Lima, M.S.; Broom, D.M. Effect of caustic paste disbudding, using local anaesthesia with and without analgesia, on behaviour and cortisol of calves. Appl. Anim. Behav. Sci. 2009, 116, 35–44. [Google Scholar] [CrossRef]
- Washington, I.M.; Van Hoosier, G. Clinical Biochemistry and Hematology. In The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents; Suckow, M.A., Stevens, K.A., Wilson, R.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 57–116. [Google Scholar]
- Mainau, E.; Manteca, X. Pain and discomfort caused by parturition in cows and sows. Appl. Anim. Behav. Sci. 2011, 135, 241–251. [Google Scholar] [CrossRef]
- Gladden, N.; McKeegan, D.; Viora, L.; Ellis, A.K. Postpartum ketoprofen treatment does not alter stress biomarkers in cows and calves experiencing assisted and unassisted parturition: A randomised controlled trial. Vet. Rec. 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, J.L.; Tonelli, L.; Sternberg, E.M. Neuroendocrine regulation of immunity. Ann. Rev. Immunol. 2002, 20, 125–163. [Google Scholar] [CrossRef] [Green Version]
- Glaser, R.; Kiecolt-Glaser, J.K. Stress-induced immune dysfunction: Implications for health. Nature Rev. Immunol. 2005, 5, 243–251. [Google Scholar] [CrossRef]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in inflammation, immunity, and disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Amanda, M.; Elena, S.; Mauricio, A.; Rajko, R. TNF-α in tuberculosis: A cytokine with a split personality. Inflamm. Allergy Drug Targets 2009, 8, 53–62. [Google Scholar]
- Bruunsgaard, H.; Andersen-Ranberg, K.; Jeune, B.; Pedersen, A.N.; Skinhøj, P.; Pedersen, B.K. A high plasma concentration of TNF-α is associated with dementia in centenarians. J. Gerontol. Ser. Biol. Sci. Med Sci. 1999, 54, 357–364. [Google Scholar] [CrossRef] [Green Version]
- Jialal, I.; Devaraj, S.; Venugopal, S.K. C-reactive protein: Risk marker or mediator in atherothrombosis? Hypertension 2004, 441, 6–11. [Google Scholar] [CrossRef]
- Baumeister, D.; Akhtar, R.; Ciufolini, S.; Pariante, C.M.; Mondelli, V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol. Psychiatry 2016, 21, 642–649. [Google Scholar] [CrossRef] [Green Version]
- Markanday, A. Acute phase reactants in infections: Evidence-based review and a guide for clinicians. Open Forum Infect. Dis. 2015, 2, 1–7. [Google Scholar] [CrossRef]
- Rauw, W.M. Immune response from a resource allocation perspective. Front. Genet. 2012, 3, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, A.; Tate, M.; Mathew, G.; Vince, J.E.; Ritchie, R.H.; De Han, J.B. Oxidative Stress and NLRP3-Inflammasome Activity as Significant Drivers of Diabetic Cardiovascular Complications: Therapeutic Implications. Front. Physiol. 2018, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, J.; Kitajima, S.; Watanabe, T.; Xu, J.; Zhang, J.; Liu, E.; Chen, Y.E. Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol. Ther. 2015, 146, 104–119. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Li, L.; Li, X.; Li, J.; Wang, D.; Zhang, H. The relationship between serum bilirubin and inflammatory bowel disease. Hindawi Mediat. Inflamm. 2019, 5256460. [Google Scholar] [CrossRef]
- Inoguchi, T.; Sonoda, N.; Meada, Y. Bilirubin as an important physiological modulator of oxidative stress and chronic inflammation in metabolic syndrome and diabetes: A new aspect on old molecule. Diabetol. Int. 2016, 7, 338–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elitok, B. Reference values for heamatological and biochemical parameters in Saanen goats breeding in Afyonkarahisar province. Kocatepe Vet. J. 2012, 5, 7–11. [Google Scholar]
- Koenig, G.; Seneff, S. Gamma-glutamyl transferase: a predictive biomarker of cellular antioxidant in adequacy and disease risk. Dis Markers. 2015, 2015, 818570. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.; Flamm, S.L.; Di Bisceglie, A.M.; Bodenheimer, H.C. Serum activity of alanine amino transferase (ALT) as an indicator of health and disease. Hepatology 2008, 47, 1363–1370. [Google Scholar] [CrossRef]
- Dirksen, K.; Verzijl, T.; Van den Ingh, T.S. Hepatocyte derived micro RNAs as sensitive serum biomarkers of hepatocellular injury in Labrador retrievers. Vet. J. 2016, 211, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Casto-Rebollo, C.; Argente, M.J.; García, M.L.; Pena, R.; Ibáñez-Escriche, N. Identification of functional mutations associated with environmental variance of litter size in rabbits. Genet. Sel. Evol. 2020, 52, 22. [Google Scholar] [CrossRef] [PubMed]
N | Liveweight (g) | |
---|---|---|
March | 17 | 3395 |
April | 16 | 3480 |
May | 16 | 3290 |
June | 19 | 3440 |
July | 10 | 3475 |
H | L | DH-L | HPD95% | p | |
---|---|---|---|---|---|
WBC (×103/µL) | 7.48 | 8.35 | −0.87 | −1.8, 0.15 | 0.95 |
Lymphocytes (%) | 60.2 | 61.9 | −1.7 | −10.4, 6.73 | 0.66 |
Neutrophils (%) | 33.6 | 31.9 | 1.7 | −6.52, 9.94 | 0.66 |
Monocytes (%) | 3.5 | 3.16 | 0.34 | −0.5, 1.2 | 0.77 |
Eosinophils (%) | 2.28 | 2.41 | −0.13 | −0.67, 0.45 | 0.69 |
Basophils (%) | 0.42 | 0.53 | −0.11 | −0.26, 0.03 | 0.93 |
H | L | DH-L | HPD95% | p | |
---|---|---|---|---|---|
IL-6 (pg/mL) | 84.8 | 85.2 | −0.6 | −8.6, 7.2 | 0.55 |
TNF-α (pg/mL) | 50.1 | 36.3 | 13.8 | −9.2, 36.6 | 0.90 |
CRP (µg/mL) | 85.5 | 47.4 | 38.1 | 15.8, 60.8 | 1.00 |
Cortisol (ng/mL) | 24.5 | 25.1 | −0.6 | −4.7, 3.5 | 0.60 |
H | L | DH-L | HPD95% | p | |
---|---|---|---|---|---|
Bilirubin (µmol/L) | 4.74 | 4.66 | 0.08 | −0.05, 0.2 | 0.88 |
Cholesterol (µmol/L) | 1.24 | 1.1 | 0.14 | −0.07, 0.34 | 0.91 |
ALP (U/L) | 21.1 | 18.7 | 2.4 | −0.92, 5.62 | 0.93 |
GGT (U/L) | 5.98 | 5.63 | 0.35 | −0.20, 0.92 | 0.89 |
BA (µmol/L) | 3.15 | 2.59 | 0.56 | −0.54, 1.68 | 0.84 |
ALB (g/L) | 13.6 | 13.5 | 0.1 | −0.77, 1.07 | 0.61 |
BUN (µmol/L) | 7.56 | 7.62 | −0.06 | −1.06, 0.97 | 0.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beloumi, D.; Blasco, A.; Muelas, R.; Santacreu, M.A.; García, M.d.l.L.; Argente, M.-J. Inflammatory Correlated Response in Two Lines of Rabbit Selected Divergently for Litter Size Environmental Variability. Animals 2020, 10, 1540. https://doi.org/10.3390/ani10091540
Beloumi D, Blasco A, Muelas R, Santacreu MA, García MdlL, Argente M-J. Inflammatory Correlated Response in Two Lines of Rabbit Selected Divergently for Litter Size Environmental Variability. Animals. 2020; 10(9):1540. https://doi.org/10.3390/ani10091540
Chicago/Turabian StyleBeloumi, Dhekra, Agustín Blasco, Raquel Muelas, María Antonia Santacreu, María de la Luz García, and María-José Argente. 2020. "Inflammatory Correlated Response in Two Lines of Rabbit Selected Divergently for Litter Size Environmental Variability" Animals 10, no. 9: 1540. https://doi.org/10.3390/ani10091540
APA StyleBeloumi, D., Blasco, A., Muelas, R., Santacreu, M. A., García, M. d. l. L., & Argente, M. -J. (2020). Inflammatory Correlated Response in Two Lines of Rabbit Selected Divergently for Litter Size Environmental Variability. Animals, 10(9), 1540. https://doi.org/10.3390/ani10091540