Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Silage Preparation and Treatments
2.2. Analysis of Chemical Composition, Fermentation Characteristics, and In Situ Effective Degradability
2.3. Microbial Diversity Analysis
2.3.1. DNA Extraction
2.3.2. PCR Amplification and High-Throughput Sequencing of Metagenomic DNA
2.4. Statistical Analyses
3. Results
3.1. Wet Brewers Grain Characteristics
3.2. Fermentation Characteristics, Chemical Composition, and In Situ Effective Degradability of SF- and CAP-Ensiled WBG after 20 Days
3.3. Microbial Community of Ensiled WBG
3.4. Correlations between Relative Abundance of Bacteria and Fermentation Quality Indices
4. Discussion
4.1. Chemical Composition and Microbial Population of Wet Brewers Grains before Ensiling
4.2. The Effects of Two Additives on Fermentation Quality, Chemical Composition, and Rumen Degradation of Wet Brewers Grain Silage
4.3. The Effects of Two Additives on the Bacterial Community of Wet Brewers Grain Silage
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Data Availability
References
- Mccoy, G.C.; Davis, C.L.; Grenawalt, D.A. Feeding value of pressed brewers’ grains for lactating dairy cows. J. Dairy Sci. 1983, 66, 73–79. [Google Scholar]
- Parmenter, R.T.; Rickard, J.W.; James, D.M. Effects of inclusion of wet brewers grains on the growth performance, carcass characteristics, and meat quality of finishing cattle. Prof. Anim. Sci. 2018, 34, 505–512. [Google Scholar] [CrossRef]
- Preston, R.L.; Vance, R.D.; Cahill, V.R. Energy evaluation of brewers grains for growing and finishing cattle. J. Anim. Sci. 1973, 37, 174–178. [Google Scholar] [CrossRef]
- Souza, L.C.; Zambom, M.A.; Pozza, M.S.S.; Neres, M.A.; Radis, A.C.; Borsatti, L.; Castagnara, D.D.; Gundt, S. Development of microorganisms during storage of wet brewery waste under aerobic and anaerobic conditions. Rev. Bras. Zootecn. 2012, 41, 188–193. [Google Scholar] [CrossRef] [Green Version]
- Ferraretto, L.F.; Filho, W.I.S.; Fernandes, T.; Kim, D.H.; Sultana, H. Effect of ensiling time on fermentation profile and ruminal in vitro starch digestibility in rehydrated corn with or without varied concentrations of wet brewers grains. J. Dairy Sci. 2018, 101, 4643–4649. [Google Scholar] [CrossRef] [Green Version]
- Schneider, R.M.; Harrison, J.H.; Loney, K.A. The effects of bacterial inoculants, beet pulp, and propionic acid on ensiled wet brewers grains. J. Dairy Sci. 1995, 78, 1096–1105. [Google Scholar] [CrossRef]
- Moriel, P.; Artioli, L.F.A.; Poore, M.H.; Ferraretto, L.F. Dry matter loss and nutritional composition of wet brewers grains ensiled with or without covering and with or without soybean hulls and propionic acid. Prof. Anim. Sci. 2015, 31, 559–567. [Google Scholar] [CrossRef]
- Wen, A.Y.; Yuan, X.J.; Wang, J.; Desta, S.T.; Shao, T. Effects of four short-chain fatty acids or salts on dynamics of fermentation and microbial characteristics of alfalfa silage. Anim. Feed Sci. Technol. 2017, 223, 141–148. [Google Scholar] [CrossRef]
- Cazzato, E.; Laudadio, V.; Corleto, A.; Tufarelli, V. Effects of harvest date: Wilting and inoculation on yield and forage quality of ensiling safflower (Carthamus tinctorius L.) biomass. J. Sci. Food Agric. 2011, 91, 2298–2302. [Google Scholar] [CrossRef]
- Chen, L.; Yuan, X.J.; Li, J.F.; Dong, Z.H.; Wang, S.R.; Guo, G.; Shao, T. Effects of applying lactic acid bacteria and propionic acid on fermentation quality, aerobic stability and in vitro gas production of forage-based total mixed ration silage in Tibet. Anim. Prod. Sci. 2019, 59, 376. [Google Scholar] [CrossRef]
- Kung, L.; Myers, C.L.; Neylon, J.M.; Taylor, C.C.; Lazartic, J.; Mills, J.A.; Whiter, A.G. The effects of buffered propionic acid-based additives alone or combined with microbial inoculation on the fermentation of high moisture corn and whole-crop barley. J. Dairy Sci. 2004, 87, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Woolford, M.K. Antimicrobial effects of mineral acids, organic acids, salts and sterilizing agents in relation to their potential as silage additives. Grass Forage Sci. 1978, 33, 131–136. [Google Scholar] [CrossRef]
- Cussen, R.F.; Merry, R.J.; Williams, A.P.; Tweed, J.K.S. The effect of additives on the ensilage of forage of differing perennial ryegrass and white clover content. Grass Forage Sci. 1995, 50, 249–258. [Google Scholar] [CrossRef]
- Ashbell, G.; Theune, H.H.; Sklan, D. Changes in amino acid compounds of wheat plants during ensiling and aerobic exposure: The influence of propionic acid and urea phosphate-calcium propionate. J. Agric. Sci. 1984, 102, 667–672. [Google Scholar] [CrossRef]
- Li, P.; Ji, S.R.; Hou, C.; Tang, H.Y.; Wang, Q.; Shen, Y.X. Effects of chemical additives on the fermentation quality and N distribution of alfalfa silage in south of China. Anim. Sci. J. 2016, 87, 1472–1479. [Google Scholar] [CrossRef]
- Nadeau, E.M.G.; Buxton, D.R.; Russell, R.J.; Allison, M.J.; Young, J.W. Enzyme, bacterial inoculant, and formic acid effects on silage composition of orchardgrass and alfalfa. J. Dairy Sci. 2000, 83, 1487–1502. [Google Scholar] [CrossRef]
- Kung, L.J.; Sheperd, A.C.; Smagala, A.M.; Endres, K.M.; Bessett, C.A.; Ranjit, N.K.; Glancey, J.L. The effect of preservatives based on propionic acid on the fermentation and aerobic stability of corn silage and a total mixed ration. J. Dairy Sci. 1998, 81, 1322–1330. [Google Scholar] [CrossRef]
- Kung, L.J.; Robinson, J.R.; Ranjit, N.K.; Chen, J.H.; Golt, C.M.; Pesek, J.D. Microbial populations, fermentation end-products, and aerobic stability of corn silage treated with ammonia or a propionic acid-based preservative. J. Dairy Sci. 2000, 83, 1479–1486. [Google Scholar] [CrossRef]
- Li, P.; Zhang, Y.; Gou, W.L.; Cheng, Q.M.; Bai, S.Q.; Cai, Y.M. Silage fermentation and bacterial community of bur clover, annual ryegrass and their mixtures prepared with microbial inoculant and chemical additive. Anim. Feed Sci. Technol. 2019, 247, 285–293. [Google Scholar] [CrossRef]
- Wang, Y.; He, L.; Xing, Y.; Zhou, W.; Pian, R.; Yang, F.; Chen, X.; Zhang, Q. Bacterial diversity and fermentation quality of Moringa oleifera leaves silage prepared with lactic acid bacteria inoculants and stored at different temperatures. Bioresour. Technol. 2019, 284, 349–358. [Google Scholar] [CrossRef]
- Broderick, A.G.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Yuan, X.J.; Wen, A.Y.; Desta, S.T.; Dong, Z.H.; Shao, T. Effects of 4 short-chain fatty acids or salts on dynamics of nitrogen transformations and intrinsic protease activity of alfalfa silage. J. Sci. Food Agric. 2017, 97, 2759–2766. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemist: Arlington, VA, USA, 1975. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Thomas, T.A. An automated procedure for the determination of soluble carbohydrates in herbage. J. Sci. Food Agric. 1977, 28, 639–642. [Google Scholar] [CrossRef]
- Nuez-Ortín, W.G.; Yu, P. Estimation of ruminal and intestinal digestion profiles, hourly effective degradation ratio and potential N to energy synchronization of co-products from bioethanol processing. J. Sci. Food Agric. 2010, 90, 2058–2067. [Google Scholar] [CrossRef]
- Hao, X.Y.; Gao, H.; Wang, X.Y.; Zhang, G.N.; Zhang, Y.G. Replacing alfalfa hay with dry corn gluten feed and Chinese wild rye grass: Effects on rumen fermentation, rumen microbial protein synthesis, and lactation performance in lactating dairy cows. J. Dairy Sci. 2017, 100, 2672–2681. [Google Scholar] [CrossRef] [Green Version]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microb. 2006, 71, 8228–8235. [Google Scholar] [CrossRef] [Green Version]
- Lozupone, C.A.; Hamady, M.; Kelley, S.T.; Knight, R. Quantitative and qualitative diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microb. 2007, 73, 1576–1585. [Google Scholar] [CrossRef] [Green Version]
- Ramette, A. Multivariate analyses in microbial ecology. FEMS Microbiol. Ecol. 2007, 62, 142–160. [Google Scholar] [CrossRef] [Green Version]
- White, J.R.; Nagarajan, N.; Pop, M. Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput. Biol. 2009, 5, e1000352. [Google Scholar] [CrossRef] [PubMed]
- Segeta, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishino, N.; Harada, H.; Sakaguchi, E. Evaluation of fermentation and aerobic stability of wet brewers grains ensiled alone or in combination with various feeds as a total mixed ration. J. Sci. Food Agric. 2003, 83, 557–563. [Google Scholar] [CrossRef]
- Moriel, P.; Artioli, L.F.A.; Poore, M.H.; Fellner, V. Effects of replacing ground corn with wet brewers grains on growth performance and concentrations of liver trace minerals and plasma fatty acids of preconditioning beef heifers fed medium-quality fescue hay. Prof. Anim. Sci. 2015, 31, 425–433. [Google Scholar] [CrossRef]
- Westendorf, M.L.; Wohlt, J.E. Brewing by-products: Their use as animal feeds. Vet. Clin. N. Am. Large Anim. Pract. 2002, 18, 233–252. [Google Scholar] [CrossRef]
- Han, L.Y.; Li, J.; Na, R.S.; Yu, Z.; Zhou, H. Effect of two additives on the fermentation, in vitro digestibility and aerobic security of Sorghum–sudangrass hybrid silages. Grass Forage Sci. 2015, 70, 185–194. [Google Scholar] [CrossRef]
- Chamberlain, D.G.; Quig, J. The effects of the rate of addition of formic acid and sulphuric acid on the ensilage of perennial ryegrass in laboratory silos. J. Sci. Food Agric. 1987, 38, 217–228. [Google Scholar] [CrossRef]
- Woolford, M.K. Microbiological screening of the straight chain fatty acids (c1-c12) as potential silage additives. J. Sci. Food Agric. 1975, 26, 219–228. [Google Scholar] [CrossRef]
- Dong, Z.; Yuan, X.; Wen, A.; Desta, S.T.; Tao, S. Effects of calcium propionate on the fermentation quality and aerobic stability of alfalfa silage. Asian Aus. J. Anim. Sci. 2017, 30, 1278–1284. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Herson, S.J.E. The Biochemistry of Silage; Chalcombe Publications: Marlow Bottom, UK, 1991. [Google Scholar]
- Fijakowska, M.; Pysera, B.; Lipiński, K.; Strusińska, D. Changes of nitrogen compounds during ensiling of high protein herbages—A review. Ann. Anim. Sci. 2015, 15, 289–305. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Benno, Y.; Ogawa, M.; Kumai, S. Effect of applying lactic acid bacteria isolated from forage crops on fermentation characteristics and aerobic deterioration of silage. J. Dairy Sci. 1999, 82, 520–526. [Google Scholar] [CrossRef]
- Goeser, J.P.; Heuer, C.R.; Crump, P.M. Forage fermentation product measures are related to dry matter loss through meta-analysis. Prof. Anim. Sci. 2015, 31, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Ni, K.; Wang, F.; Zhu, B.; Yang, J.; Zhou, G.; Pan, Y.; Zhong, J. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 2017, 238, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Ni, K.; Zhao, J.; Zhu, B.; Su, R.; Yi, P.; Ma, J.; Zhou, G.; Yong, T.; Liu, X.; Jin, Z. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour. Technol. 2018, 265, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage processing and strategies to prevent persistence of undesirable microorganisms. Anim. Feed Sci. Tech. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Ogunade, M.; Jiang, Y.; Pech Cervantes, A.A.; Kim, D.H.; Oliveira, A.S.; Vyas, D.; Weinberg, Z.G.; Jeong, K.C.; Adesogan, A.T. Bacterial diversity and composition of alfalfa silage as analyzed by Illumina MiSeq sequencing: Effects of Escherichia coli O157:H7 and silage additives. J. Dairy Sci. 2018, 101, 2048–2059. [Google Scholar] [CrossRef]
- Qin, J.; Wang, X.; Zheng, Z.; Ma, C.; Tang, H.; Ping, X. Production of l-lactic acid by a thermophilic Bacillus mutant using sodium hydroxide as neutralizing agent. Bioresour. Technol. 2010, 101, 7570–7576. [Google Scholar] [CrossRef]
- Ngemenya, M.N.; Mbah, J.A.; Titanji, P.T.A.V. Antibacterial effects of some Cameroonian medicinal plants against common pathogenic bacteria. Afr. J. Tradit. Complement. Altern. Med. 2006, 3, 84–93. [Google Scholar] [CrossRef] [Green Version]
Items | Mean ± SD |
---|---|
DM, % FW | 27.82 ± 1.23 |
NDF, % DM | 67.94 ± 2.14 |
ADF, % DM | 20.53 ± 1.12 |
CP, % DM | 26.95 ± 1.46 |
WSC, % DM | 0.53 ± 0.02 |
LAB, log10cfu/g FW | 4.57 ± 0.013 |
Yeast, log10cfu/g FW | 3.79 ± 0.015 |
Mold, log10cfu/g FW | ND |
Items | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | SF | CAP | |||
Fermentation Characteristics | |||||
pH | 4.44 a | 4.11 b | 4.40 a | 0.051 | 0.0068 |
Ammonia-N, % of DM | 0.237 a | 0.150 c | 0.185 b | 0.005 | <0.0001 |
Lactic acid, % of DM | 1.41 b | 2.57 a | 1.70 b | 0.15 | 0.0036 |
Acetic acid, % of DM | 4.25 a | 0.30 c | 2.04 b | 0.057 | <0.0001 |
Propionic acid, % of DM | ND | ND | 2.2 | - | - |
Butyric acid, % of DM | 2.81 | ND | 1.76 | - | - |
Chemical compositions | |||||
DM, % of FW | 25.75 c | 27.55 a | 26.16 b | 0.077 | <0.0001 |
WSC, % of DM | 0.21 c | 0.43 a | 0.29 b | 0.017 | 0.0002 |
CP, % of DM | 27.80 | 27.17 | 27.63 | 0.39 | 0.53 |
NDF, of DM | 62.91 c | 66.79 a | 64.06 b | 0.30 | 0.0003 |
ADF, % of DM | 20.50 | 20.20 | 20.45 | 0.56 | 0.92 |
In situ effective degradability | |||||
ISDMD 2 % of DM | 47.30 c | 51.75 a | 49.33 b | 0.56 | 0.0039 |
ISNDFD 2 % of NDF | 39.37 c | 44.11 a | 41.30 b | 0.51 | 0.0017 |
ISCPD 2 % of CP | 54.16 b | 57.16 a | 55.52 b | 0.46 | 0.0111 |
Genus | Treatment 1 | SEM | p-Value | ||
---|---|---|---|---|---|
CON | SF | CAP | |||
Lactobacillus | 40.2 b | 84.6 a | 51.9 b | 3.61 | <0.0001 |
Clostridium sensu stricto 11 | 36.7 a | 0.03 b | 18.1 a,b | 5.48 | <0.01 |
Clostridium sensu stricto 12 | 6.74 a | 0.12 b | 9.53 a | 1.17 | <0.01 |
Prevotella 7 | 3.58 a,b | 0.06 b | 7.16 a | 1.26 | 0.02 |
Clostridium sensu stricto 1 | 7.76 a | 0.00 b | 0.40 b | 0.80 | <0.01 |
Bacillus | 0.81 b | 4.53 a | 2.06 b | 0.46 | <0.01 |
Weissella | 0.36 b | 4.07 a | 0.46 b | 0.74 | 0.02 |
Bromus tectorum | 1.57 | 1.00 | 1.46 | 0.17 | 0.12 |
Bifidobacterium | 0.20 b | 0.21 b | 3.54 a | 0.69 | 0.02 |
Clostridium sensu stricto 16 | 0.11 b | 0.02 b | 3.11 a | 0.25 | <0.01 |
Genus | pH | Lactic Acid (% of DM) | Acetic Acid (% of DM) | Propionic Acid (% of DM) | Butyric Acid (% of DM) | Ammonia-N (% of DM) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | r | p | r | p | r | p | |
Lactobacillus | −0.73 | 0.025 | 0.77 | 0.016 | −0.80 | 0.010 | −0.11 | 0.780 | −0.83 | 0.006 | −0.85 | 0.003 |
Clostridium sensu stricto 11 | 0.73 | 0.025 | −0.80 | 0.010 | 0.85 | 0.004 | 0.07 | 0.859 | 0.90 | 0.001 | 0.85 | 0.004 |
Clostridium sensu stricto 12 | 0.92 | 0.001 | −0.43 | 0.244 | 0.48 | 0.188 | 0.64 | 0.061 | 0.56 | 0.117 | 0.59 | 0.092 |
Prevotella 7 | 0.65 | 0.058 | −0.48 | 0.188 | 0.57 | 0.112 | 0.66 | 0.051 | 0.51 | 0.162 | 0.56 | 0.116 |
Clostridium sensu stricto 1 | 0.75 | 0.019 | −0.76 | 0.017 | 0.84 | 0.005 | 0.02 | 0.960 | 0.87 | 0.002 | 0.90 | 0.001 |
Bacillus | −0.85 | 0.004 | 0.68 | 0.042 | −0.87 | 0.003 | −0.07 | 0.859 | −0.92 | 0.001 | −0.93 | 0.0003 |
Weissella | −0.92 | 0.001 | 0.55 | 0.125 | −0.77 | 0.016 | −0.29 | 0.454 | −0.81 | 0.008 | −0.83 | 0.006 |
Bromus tectorum | 0.30 | 0.433 | −0.65 | 0.058 | 0.63 | 0.067 | 0.23 | 0.556 | 0.63 | 0.071 | 0.34 | 0.366 |
Bifidobacterium | 0.27 | 0.488 | −0.02 | 0.966 | 0.05 | 0.898 | 0.78 | 0.013 | 0.00 | 1 | −0.01 | 0.983 |
Clostridium sensu stricto 16 | 0.62 | 0.077 | −0.50 | 0.171 | 0.52 | 0.154 | 0.82 | 0.007 | 0.46 | 0.215 | 0.46 | 0.213 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, J.; Fang, X.; Feng, G.; Zhang, G.; Zhao, C.; Zhang, Y.; Li, Y. Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage. Animals 2020, 10, 1608. https://doi.org/10.3390/ani10091608
Lv J, Fang X, Feng G, Zhang G, Zhao C, Zhang Y, Li Y. Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage. Animals. 2020; 10(9):1608. https://doi.org/10.3390/ani10091608
Chicago/Turabian StyleLv, Jingyi, Xinpeng Fang, Guanzhi Feng, Guangning Zhang, Chao Zhao, Yonggen Zhang, and Yang Li. 2020. "Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage" Animals 10, no. 9: 1608. https://doi.org/10.3390/ani10091608
APA StyleLv, J., Fang, X., Feng, G., Zhang, G., Zhao, C., Zhang, Y., & Li, Y. (2020). Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage. Animals, 10(9), 1608. https://doi.org/10.3390/ani10091608